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Background
Additional chromosomal aberrations in Philadelphia chromosome-positive chronic myeloid
leukemia are non-random and strongly associated with disease progression, but their prognos-
tic impact and effect on treatment response is not clear. Point mutations in the BCR-ABL kinase
domain are probably the most common mechanisms of imatinib resistance.

Design and Methods
We assessed the influence of additional chromosomal aberrations and BCR-ABL kinase domain
mutations on the response to the second-generation tyrosine kinase inhibitor nilotinib after
imatinib-failure. Standard cytogenetic analysis of metaphases was performed to detect addi-
tional chromosomal aberrations and the BCR-ABL kinase domain was sequenced to detect
point mutations.

Results
Among 53 patients with a median follow-up of 16 months, of whom 38, 5 and 10 were in
chronic phase, accelerated phase and blast crisis, respectively, 19 (36%) had additional chromo-
somal aberrations and 20 (38%) had BCR-ABL kinase domain mutations. The 2-year overall
survival rate of all patients without additional chromosomal aberrations (89%) was higher than
that of patients with such aberrations (54%) (P=0.0025). Among patients with chronic phase
disease, overall survival at 2 years was 100% and 62% for patients without or with additional
chromosomal aberrations, respectively (P=0.0024). BCR-ABL kinase domain mutations were
associated with lower remission rates in response to nilotinib, with 9 of 20 (45%) of these
patients achieving a major cytogenetic remission as compared to 26 of 33 (79%) patients with-
out mutations (P<0.05). However, overall survival was not affected by BCR-ABL kinase domain
mutations.

Conclusions
Whereas BCR-ABL kinase domain mutations may confer more specific resistance to nilotinib,
which will predominantly affect response rates, the presence of additional chromosomal aber-
rations may reflect genetic instability and, therefore, intrinsic aggressiveness of the disease
which will be less amenable to subsequent alternative treatments and thus negatively affect
overall survival. Conventional cytogenetic analyses remain mandatory during follow-up of
patients with chronic myeloid leukemia under tyrosine kinase inhibitor therapy.
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Introduction

In chronic myeloid leukemia (CML) the pathogenic role
of the oncogenic BCR-ABL tyrosine kinase, which results
from a reciprocal translocation between chromosomes 9
and 22 to form the Philadelphia chromosome (Ph),
sparked the development of the orally active small mole-
cule kinase inhibitor, imatinib.1 Unprecedented clinical
activity established imatinib as standard first-line therapy
for Ph-positive CML and as a successful paradigm for tar-
geted therapy. However, more than 30% of patients with
newly diagnosed chronic phase CML discontinued ima-
tinib within 6 years2 and acquired resistance after initial
response develops in a substantial proportion of patients.
Various mechanisms have been described to cause resist-
ance, but point mutations within the kinase domain of
BCR-ABL are probably the clinically most relevant and
best characterized.3,4 Several types of mutations, causing
varying degrees of resistance in vitro and in vivo, have been
described.4
Nilotinib is a second-generation tyrosine kinase

inhibitor that was designed to be both more specific and
more potent than imatinib in inhibiting the wild-type ABL
tyrosine kinase, as well as most kinase domain mutations
conferring resistance to imatinib.5,6 Given its significant
clinical activity in imatinib-resistant or -intolerant patients
with Ph-positive CML, nilotinib has been approved as a
second-line agent in chronic and accelerated phases of this
disease.7-9 Resistance to nilotinib due to BCR-ABL kinase
domain mutations has been predicted from in vitro
screens,10-13 but clinical evidence on the relevance of these
mutations is still incomplete.
The occurrence of additional chromosomal aberrations

(ACA) in Ph-positive CML is strongly associated with dis-
ease progression and has been interpreted as both a sign of
clonal evolution and chromosomal instability.14 These
abnormalities are non-random, with the most common
being +8, +Ph, i(17q), +19, -Y, +21, +17, and -7, which
have, therefore, been dubbed major route abnormalities.
Although their clinical impact is variable,14 in the pre-ima-
tinib era abnormalities involving chromosome 17 seemed
to be associated with an inferior prognosis.15 Several stud-
ies have assessed the impact of ACA on the clinical effica-
cy of imatinib under the assumption that these abnormal-
ities may confer BCR-ABL-independent proliferation and
decrease sensitivity to imatinib.16-21 Results have been vari-
able, with evidence for an impact on the duration of
remission,17 survival,16 risk of hematologic relapse,18 and
response.21 However, clonal evolution did not necessarily
impair prognosis when considered as the sole criterion for
acceleration of disease19 or within separate disease
stages.20
Given the clinical importance of predicting resistance to

nilotinib we investigated the influence of ACA and BCR-
ABL mutations on the clinical efficacy of nilotinib in
patients with Ph-positive CML.

Design and Methods

Patients and samples
Between September 2004 and February 2009, 53 patients with

Ph-positive CML and imatinib-resistance or -intolerance were
treated with nilotinib in our center and are analyzed in this study.
Most patients (>90 %) received nilotinib as part of still ongoing

clinical trials (registered at Clinicaltrials.gov: NCT00109707 and
NCT00905593). Both trials were conducted in accordance with
the applicable regulatory requirements. Patients gave their written
informed consent to participate in a clinical trial or to have their
data analyzed retrospectively. All procedures were performed in
accordance with the Helsinki Declaration and approved by the
local ethics committee. Patients received nilotinib 400 mg twice
daily with dose reductions, as necessary, in the case of toxicity.
Patients were followed regularly at intervals of 3 to 6 months.
Follow-up included clinical assessment and bone marrow evalua-
tion with metaphase cytogenetics and determination of BCR-ABL
transcript levels in bone marrow or peripheral blood samples by
quantitative polymerase chain reaction (PCR) analysis. Disease
stage and response were determined according to standard crite-
ria.5,9

Karyotype analysis and fluorescence in situ hybridization
Cytogenetic analysis of metaphases and fluorescence in situ

hybridization (FISH) of bone marrow samples were performed
according to standard protocols. Results are reported using the
International System for Human Cytogenetic Nomenclature.
Cytogenetic responses, based on the analysis of at least 20
metaphases, were defined as complete (no Ph-positive metaphas-
es), partial (1-35% Ph-positive metaphases), minor (36-65% Ph-
positive metaphases) or minimal (66-95% Ph-positive metaphas-
es). Major cytogenetic responses included complete and partial
cytogenetic responses.

BCR-ABL sequencing
In order to detect mutations in the kinase domain of BCR-ABL,

RNA from either bone marrow or peripheral blood samples was
reverse transcribed and amplified by nested PCR using previously
published primers to generate an amplicon covering the entire
BCR-ABL kinase domain.22 Sequencing was performed on an ABI
PRISM 310 Genetic Analyzer 310 (Applied Biosystems, Foster
City, CA, USA). At least one sample was sequenced for each
patient: (i) preferentially before the start of nilotinib treatment,
and (ii) in each case of disease progression or loss of response.

Statistical analysis
Descriptive statistical analyses were performed using the χ2-test

or the Mann-Whitney-test when appropriate. Kaplan-Meier
curves were constructed for overall survival and progression-free
survival. Differences were analyzed with the log-rank test. Overall
survival was calculated from the start of nilotinib therapy to death.
Progression-free survival was calculated from the time of the first
major cytogenetic response to loss of this response, disease pro-
gression to accelerated phase or blast crisis, discontinuation of
nilotinib because of resistant disease, or death, whichever
occurred first. Patients were censored at the last follow-up. A P-
value less than 0.05 was considered statistically significant. All
tests were two-sided.

Results

Patients’ characteristics
In total, 53 patients (median age, 63 years; range, 36 -

85) with a median follow-up of 16 months (range, 1 - 50)
were analyzed (Table 1). Of these, 38, 5 and 10 patients
were in chronic phase, accelerated phase and blast crisis,
respectively. The median duration of previous treatment
with imatinib was 33 months (range, 1 - 107). Prior to ima-
tinib 45 of 53 (85%) had received hydroxyurea and 22 of
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53 (42%) interferon. The median duration of nilotinib
therapy was 14 months (range, 1 - 50). Thirty-five of the
53 patients (66%) had a major cytogenetic response.
Twenty-two of the 53 patients (42%) discontinued nilo-
tinib treatment, mostly (16 of 22, 73%) because of clinical
resistance, e.g. loss of response or disease progression. Of
these 22 patients, 11 were either in accelerated phase
(n=3) or blast crisis (n=8) at baseline. Nine patients
received treatment after nilotinib including dasatinib
(n=6), INNO-406 (n=4), homoharringtonin (n=1), conven-
tional chemotherapy (n=3) and/or hematopoetic stem cell
transplantation (n=2).

Identification of additional cytogenetic aberrations
prior to nilotinib therapy
Cytogenetic analysis on bone marrow metaphases iden-

tified ACA in 19 patients (36%), with 44 single abnormal-
ities detected. About half of the ACA (21 of 44, 48%) con-
sisted of the previously described major route aberra-
tions,14 including +8, +Ph, i(17q), +19, -Y, +21, +17, and -7
(Table 2). Five of the 44 abnormalities involved chromo-
some 17. The occurrence of ACA was significantly associ-
ated with disease stage and was detected in 24%, 80%
and 60% of the patients in chronic phase, accelerated
phase and blast crisis, respectively (Table 1). There were
no significant differences with respect to age, disease
duration or duration of imatinib therapy between patients
with or without ACA. During therapy with nilotinib three
patients developed new ACA. After 3 months, one patient
in blast crisis with +Ph at baseline developed del(7)(q21),
followed by an additional del(6)(q2?1) 1 month later. Of
two other patients in chronic phase without ACA at base-
line, one developed der(17)t(17;?)(p13;?)del(17)(p13)t(17;?)
(q25;?) with progression to blast crisis after 6 months and
the other +Ph after 7 months. Two patients had chromo-

somal aberrations in Ph-negative clones at baseline. One
patient with +8 is in complete molecular remission at the
last follow-up and one patient with two different clones,
with +12, -18, +mar and +1, -5, +12, died after 17 months.

Frequency and spectrum of BCR-ABL kinase domain
mutations prior to and during nilotinib therapy
Overall, sequencing identified BCR-ABL kinase domain

mutations in 20 of 53 patients (38%, Tables 3 and 4). Most
of these patients (14 of 20, 70%) had a single mutation.
However, five patients presented with two different
mutations (either in a single clone or in two different
clones) and one patient had three mutations. Nine of 38
patients (26%) who were assessed at baseline had muta-
tions prior to nilotinib therapy. Of these, four had com-
pletely different mutations at later time points with loss of
the mutation present at baseline mutation, three acquired
mutations in addition to the baseline mutation, one
patient (with H396R) lost his mutation and one patient
(with E255K) had the same mutation at the end of nilo-
tinib therapy. Six of 53 patients (11%) had more than one
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Table 2. Additional chromosomal aberrations detected after imatinib
and before nilotinib treatment.
N. Aberration Route

6 +Ph Major
6 +8 Major
3 i(17q) Major
3 +14
2 -Y Major
2 +21 Major
2 +19 Major
1 each +X, +1, +2, +6, +11, 15, +der(2), -21, 

add(17)(q10), ider(22)(q10)t(9;22)(q34;q11), 
+C, +mar, t(8;17)(q13;q23), -13, del(2)(p11), 
del(3)(p13p21), del(7)(p11p15), del(7)(q22), 
del(9)(p11p22), der(9)t(9;22)(q34;q11)inv(9)
(p13q34)

Table 3. Relative frequency of BCR-ABL kinase domain mutations
detected before and after treatment with nilotinib.

Before Nilotinib After Nilotinib
N. Mutation Sensitivity N. Mutation Sensitivity

2 E255K resistant 4 Y253H resistant
1 G250E sensitive 4 F359I unknown
1 Q252H sensitive 3 G250E sensitive
1 F311Y unknown 3 E255K resistant
1 T315I resistant 3 T315I resistant
1 M351T sensitive 2 M351T sensitive
1 L387M unknown 1 Y253F unknown
1 H396R unknown 1 E255V resistant
1 A397P unknown 1 D276G sensitive

1 E292V unknown
1 F317L sensitive
1 F359V resistant

Categories are based on an IC50 cut-off value of 150 nM.23

Table 1. Characteristics of patients with or without additional chromo-
somal aberrations (ACA). 

Ph+ ACA Ph p

N. 19 34
Male/Female 12/7 11/23
Median age (years, range) 63 (41-85) 62 (36-84) NS
Stage
Chronic phase (%) 9 (47) 29 (85)
Accelerated phase (%) 4 (21) 1 (3) 0.0109
Blast crisis (%) 6 (32) 4 (12)
myeloid/lymphoid 5/1 2/1*

Previous treatment
Hydroxyurea (%) 17 (89) 28 (82) NS
Busulfan (%) 0 (0) 2 (6)
Interferon (%) 7 (37) 15 (44)
Other (%) 2 (11) 10 (29)
Stem cell transplantation (%) 2 (11) 0 (0)
Follow-up (months, range) 15 (5-40) 23.5 (1-50) NS
Median disease duration 75 (3-156) 67.5 (3-180) NS
(months, range)
Median duration on imatinib 22 (2-61) 36.5 (1-107) NS
(months, range)
Median duration on nilotinib 11 (1-40) 14.5 (1-50) NS
(months, range)

Ph: Philadelphia chromosome-positive; NA: not applicable; NS: not significant; *one
patient in blast crisis was not assessable.
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mutation at baseline or during follow-up with the follow-
ing genotypes: M351T/D276G/F359I, Y253H/F359V,
Y253F/E255K, G250E/T315I (twice), G250E/F359I,
G250E/M351T. One patient had two different combina-
tions at baseline and during follow-up. BCR-ABL point
mutations tended to occur more often in patients with
ACA (53%) than in patients without ACA (29%). Overall,
ten patients had ACA with mutations, nine patients had
ACA without mutations, ten patients had mutations with-
out ACA, and 24 patients had neither ACA nor mutations.
Mutations predicted to confer resistance to nilotinib with
an IC50 of greater than 150 nM23 (Y253H, E255K/V, T315I
and F359V) were found in 15 cases. Six had sensitive
mutations (IC50 <150 nM) and ten cases had mutations
with unknown sensitivity to nilotinib (Table 4).

Clinical response to nilotinib in patients with additional
chromosome aberrations and BCR-ABL point mutations
Overall, the rate of major cytogenetic response in chron-

ic phase was 74%, and the rate of any response in acceler-
ated phase or blast crisis was 73%. There was no statisti-
cally significant difference with respect to response
between patients with and without ACA (Table 4).
However, more patients with ACA discontinued nilotinib
(53% versus 35%), mostly due to resistant disease (47%
versus 21%, P<0.05). Three of the five patients with abnor-
malities of chromosome 17 had resistant disease (60%).
Patients with ACA more frequently tended to have BCR-
ABL mutations (53% versus 29%) and more resistant
mutations (60% versus 38%, Table 4). Patients with muta-
tions were less likely to respond to nilotinib, with 9 of 20
(45%) having a major cytogenetic response as compared
to 26 of 33 (79%) patients without kinase domain muta-
tions (P<0.05). None of four patients with T315I had a
cytogenetic response. In terms of response kinetics, there
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Table 4. Response to nilotinib and spectrum of BCR-ABL kinase
domain mutations in patients with or without additional chromosomal
aberrations.

Ph + ACA Ph P
Best response
NEL or worse (%) 7 (37) 5 (15) NS
Complete hematologic response (%) 1 (5) 5 (15)
Major cytogenetic response (%) 1 (5) 5 (15)
Complete cytogenetic response (%) 8 (43) 8 (23)
Major molecular response (%) 1 (5) 2 (6)
Complete molecular response (%) 1 (5) 9 (26)
Response Kinetics
MCyR at 3 months (%) 8/11 (73) 19/24 (79) NS
MCyR at 6 months (%) 9/11 (82) 21/24 (88) NS
CCyR at 3 months (%) 5/10 (50) 11/18 (61) NS
CCyR at 6 months (%) 8/10 (80) 14/18 (78) NS
Discontinuation of nilotinib (%) 10 (53) 12 (35) NS
Resistance 9 7 0.0417
Intolerance 0 4 NS
Other* 1 1 NS

Deaths (%) 9 (47) 3 (9) 0.0269
Death from disease progression (%) 7 (37) 3 (9) 0.0124
Disease-unrelated death (%) 2 (11) 0 (0) NS
New cytogenetic aberrations
New chromosomal aberrations (%) 1 (5) 1 (3) NS
Chromosomal aberrations in Ph-
negative metaphases (%) 0 (0) 2 (6) NS

BCR-ABL kinase domain mutations
Patients with mutations (%) 10 (53) 10 (29) NS
Resistant (%) 9 (60) 6 (38) NS
Sensitive (%) 2 (13) 4 (25)
Unknown (%) 4 (27) 6 (38)

NEL: no evidence of leukemia; MCyR: major cytogenetic response; CCyR: complete cyto-
genetic response; MMolR: major molecular response; NS: not significant. *Other: 1 seri-
ous adverse event (mucositis and fever), 1 withdrawal of consent.

Figure 1. The presence of additional chromosomal aberrations
(ACA) negatively affects overall survival. (A) Overall survival of
the entire population. (B) Overall survival for patients in chronic
phase (CP) only. (C) Overall survival of the entire population strat-
ified for the presence of ACA and BCR-ABL kinase domain muta-
tions.
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was no difference between patients with our without
ACA (Table 4) or patients with or without BCR-ABL
kinase domain mutations (data not shown).

Additional chromosomal aberrations negatively affect
overall survival independently of BCR-ABL kinase
domain mutations
The overall survival and progression-free survival of the

whole cohort at 2 years was 76% and 58%, respectively.
Patients with ACA had significantly worse overall survival
(54%) than patients without ACA (89%, P=0.0025, Figure
1A). The progression-free survival rates at 2 years were
37% and 69%, respectively (P=NS). Since the presence of
ACA was significantly associated with disease stage, we
assessed the influence of ACA for each disease stage.
Overall survival at 2 years among patients in chronic
phase was 62% and 100% for patients with or without
ACA, respectively (P=0.0024) (Figure 1B). In multivariate
analysis, only stage was significantly associated with sur-
vival, while ACA was not statistically significant (P=0.09,
data not shown). Survival was not different for patients
with accelerated phase or blast crisis (data not shown).
Three patients with ACA (16%) and six patients without
ACA (18%) received treatment after nilotinib. Both
patients who underwent hematopoietic stem cell trans-
plantation had ACA. One died of disease progression, and
one is in complete molecular remission 18 months after
transplantation. Abnormalities involving chromosome 17
and duplication of the Philadelphia chromosome did not
affect survival. The presence of BCR-ABL kinase domain
mutations did not affect survival when analyzed inde-
pendently or in the context of ACA (Figure 1C). However,
when stratified for presumed sensitivity to nilotinib, there
was a trend towards an elevated survival with higher sen-
sitivity to nilotinib (data not shown).

Discussion

In patients with Ph-positive CML the prediction of
resistance to targeted therapy with tyrosine kinase
inhibitors may help timely identification of those who
would benefit from alternative therapies. Based on clinical
response to imatinib, criteria have been established to
define failure or suboptimal response in early chronic
phase CML.24 Achievement of a cytogenetic response at 3-
6 months under treatment with a second generation tyro-
sine kinase inhibitor was highly predictive for a major
cytogenetic response at 12 months and was associated
with increased progression-free and overall survival.25
However, these criteria are time-dependent and require
observation for several months.
In our series of patients receiving nilotinib after imatinib

had failed, we found that the presence of ACA prior to
nilotinib treatment predicted worse overall survival.
Clinical results with imatinib have been conflicting with
variable impact on the duration of remission, survival, risk
of hematologic relapse or response.16-21 One reason for the
differences between these studies and our findings may be
that our study population included patients in whom ima-
tinib had failed and who, therefore, had advanced disease,
in which differences may become more apparent. The
correlation of ACA with advanced disease stage may have
contributed to the worse outcome of patients with ACA.
But even among patients in chronic phase, ACA were

associated with decreased overall survival which may be
attributable to the relatively long disease duration of our
chronic phase study cohort. The presence of ACA had no
impact on overall survival among patients in accelerated
phase or blast crisis (data not shown), perhaps due to the
low number of patients in these groups or a true lesser
biological importance. The progression-free survival rate
was lower among patients with ACA, but the difference
was not statistically significant. One possible explanation
for this is the higher number of patients in the ACA group
who had died without having any response. It is unknown
when ACA occurred during imatinib therapy. Indeed, the
duration of ACA could be an important factor. However,
at present there is no evidence to favor a clinical decision,
such as switching treatment or increasing the dose of ima-
tinib, based on the detection of ACA.
ACA were identified in 36% of patients, of which about

half were so-called major route aberrations that are found
in more than 5% of cases with ACA.14 Several patterns of
karyotypic evolution have been correlated with previous
treatment. Although limited by the comparatively small
number of patients and the heterogeneous treatment
before imatinib, there was no increase of unusual aberra-
tions with the possible exception of trisomy 14 which
appeared slightly more common than described in the lit-
erature. Abnormalities involving chromosome 17 or a
duplication of the Philadelphia chromosome were found
in five and six cases, respectively, but did not seem to con-
fer a worse prognosis. Chromosomal aberrations in Ph-
negative clones have previously been observed after treat-
ment with imatinib,26 dasatinib,27 and nilotinib28 with
undetermined significance.
Several mechanisms of resistance to imatinib have been

described. However, mutations within the kinase domain
of BCR-ABL are probably the clinically most important.4
Although nilotinib has been described to be effective
against most mutations conferring resistance to imatinib,23
screening assays were performed to analyze potential
resistance mechanisms against this second-generation
tyrosine kinase inhibitor.10,11,13 Several nilotinib-resistant
mutations that are only partly overlapping with imatinib
and dasatinib were identified with the T315I mutation
being completely resistant to all currently approved tyro-
sine kinase inhibitors. In vitro and in vivo, there is evidence
that the Y253H, E255K/V and F359C/V mutations are rel-
atively resistant to nilotinib23,29-32 and may negatively affect
the response to nilotinib.33 Alternative mechanisms of
resistance to nilotinib include the relative insensitivity of
CML progenitors,34,35 survival factors,36,37 src kinase overex-
pression,38 and the protective bone marrow environment.39
BCR-ABL kinase domain mutations were frequent in

our population, which is in agreement with previous
results8 and the generally advanced stage after imatinib-
failure. Patients with mutations had significantly less
response to nilotinib than patients with wild-type BCR-
ABL, but this did not translate into worse overall survival.
In addition, the presence of BCR-ABL kinase domain
mutations did not enable further stratification of patients
with ACA. The correlation of single point mutations with
clinical outcome is confounded by various issues.
Heterogeneous definitions of resistance, e.g. cut-off values
for IC50, the assays that these IC50 values are based upon,
and the lack of information for a number of mutations
must all be taken into account. In addition, correlating the
IC50 with Cmax and/or Cmin as in vivo parameters may better
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reflect the physiological significance of individual muta-
tions. Here, defining resistance with an IC50 cut-off of 150
nM, we found evidence for selection of resistant muta-
tions with nilotinib in vivo. Overall, there were more muta-
tions after nilotinib therapy than before, with a relative
increase of resistant mutations. Most (7 of 8) patients with
wild-type BCR-ABL at baseline and a point mutation dur-
ing nilotinib therapy had a resistant mutation, e.g. Y253H,
E255K/V or T315I. A recent analysis did not find a worse
outcome for patients with T315I after failure of treatment
with imatinib or a second generation tyrosine kinase
inhibitor.40 However, none of four patients with T315I had
a cytogenetic response and three had completely resistant
disease and died in blast crisis. One patient retrospective-
ly found to harbor T315I and G250E had lost T315I, while
additionally acquiring F359I more than 3 years later, indi-
cating that T315I is not invariably selected during progres-
sion.22 The timing of screening for BCR-ABL kinase
domain mutations triggered by rising transcript levels has
been addressed in several reports.41-43 However, there are
currently no consensus guidelines similar to those for
defining failure and suboptimal response in early chronic
phase.24 A practical approach to monitoring patients with
CML has recently been proposed.44
Despite the relatively small sample size and retrospec-

tive nature of this single center analysis, the presence of
ACA significantly affected overall survival and to a lesser
degree response to nilotinib. However, BCR-ABL kinase
domain mutations conferred resistance to nilotinib, as evi-
denced by fewer cytogenetic remissions, but did not affect
survival. One possible explanation for this apparent dis-
crepancy is a direct and rather specific resistance to nilo-
tinib through BCR-ABL point mutations, whereas ACA

are evidence for a generally more aggressive disease that
may or may not have additional mutations. Obviously,
patients in whom nilotinib had failed received subsequent
treatment with alternative substances with different
resistance profiles, which could circumvent resistance to
nilotinib but would address the intrinsic aggressiveness of
the disease to a lesser degree.
In conclusion, ACA were frequently detected and were

significantly associated with worse overall survival in
patients with Ph-positive CML after imatinib treatment
had failed. This indicates that conventional cytogenetics
on metaphases remains mandatory at diagnosis and dur-
ing follow-up and should not be replaced by techniques
that analyze only BCR-ABL. The decreased efficacy of
nilotinib in the context of ACA may reflect intrinsic
aggressiveness of the disease that should, therefore, be
monitored more closely. Point mutations of the BCR-ABL
kinase domain were common and associated with resist-
ant disease. However, differential sensitivities to nilotinib
and varying clinical courses with the same mutation ham-
per clinical decision-making based solely on mutational
analysis, with the notable exception of T315I.
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