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Antibodies to CD20 have confirmed the hypothesis that
monoclonal reagents can be given in vivo to alleviate
human diseases. The targeting of CD20 on normal, malig-
nant and auto-immune B-lymphocytes by rituximab has
demonstrated substantial benefits for patients with a vari-
ety of B-cell lymphomas, as well as some with autoim-
mune disorders. There has been a notable increase in the
survival rates from B-cell lymphoma in the decade since
anti-CD20 therapy was introduced.
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ABSTRACT

Introduction

Monoclonal antibody (mAb) therapy with the anti-CD20
mAb rituximab represents one of the most important
advances in the treatment of lymphoproliferative disorders in
the last 30 years. Prior to its introduction, there had been only
modest improvement in the treatment outcome of diseases
such as follicular (FL) and diffuse large B-cell lymphoma
(DLBCL).1-3 However, the use of rituximab, particularly in
combination with various chemotherapy/radiotherapy
regimes, has significantly improved all aspects of the survival
statistics for these patients. In addition, rituximab is
approved, or being investigated for the treatment of many
other hematologic disorders ranging from other malignancies,
such as chronic lymphocytic leukemia (CLL), to autoimmune
disorders, such as immune and thrombotic thrombocy-
topenic purpura and rheumatoid arthritis. This review con-
siders why CD20 is such an effective target and outlines a
range of new CD20 mAb that should improve efficacy in the
future.

Progress in developing CD20 mAb
The last three decades have seen considerable progress in

our understanding of the structure and function of the CD20
molecule and in the development of engineered anti-CD20
mAb. Table 1 and Figure 1 chart these advancements, giving
the key discoveries leading to the translation of this knowl-
edge to the clinic. In particular, pre-clinical work has investi-
gated the extent to which CD20 mAb engage the main effec-
tor pathways commonly employed by mAb, i.e. comple-

ment-dependent cytotoxicity (CDC), programmed cell death
(PCD) and Fc:FcR dependent mechanisms, with passive
immunization a potential fourth mechanism. While it is
widely accepted that Fc-Fcγ receptor (FcγR) interactions are
critical,24 the role of CDC and PCD is still disputed.25 As these
have been discussed in detail elsewhere,25,26 here we will
underline only the critical and recent evidence regarding each
mechanism.

CDC
Rituximab was originally shown to be capable of binding

C1q and inducing complement-mediated cell lysis.27

Subsequent work confirmed this and it is clear that CD20 is
an excellent target for CDC against numerous cell types in
vitro28-30 probably, at least in part, because of its high expres-
sion and the proximity of the mAb-binding-epitope to the
plasma membrane.31 Furthermore, rituximab’s ability to redis-
tribute CD20 into Tx-100 insoluble lipid rafts appears to clus-
ter the mAb and greatly enhances its ability to capture C1q
and elicit CDC.29,32 Support for CDC as a key effector mech-
anism comes from studies demonstrating that expression of
complement-defence molecules is associated with rituximab
resistance,33,34 that complement is consumed in vivo following
rituximab infusion, and that replacement of the consumed
components restores the activity of ex vivo rituximab in CDC
assays35 and might benefit patients.36 Similarly, a number of
animal models have clearly shown that complement inactiva-
tion/deficiency results in reduced anti-CD20 mAb activity in
vivo.32,37 However, it should be noted that these early models
were not ideal25 and animal models of normal B-cell depletion
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show little to no requirement for functional complement
in the activity of rituximab.38,39 Furthermore, Weng and
Levy40 demonstrated that the level of expression of the
complement defence molecules CD45, CD55 and CD59
on FL cells did not correlate with responses to rituximab.
Together these data suggest that many factors influence
the efficacy of complement on target cells. For example,
the level of complement defence molecules on normal
and malignant B cells may often be too high to allow
complement to play a prominent role in anti-CD20 mAb
immunotherapy. Alternatively, as suggested by Taylor
and colleagues,41 certain complement components which
are essential for therapy may become depleted when
patients with bulky disease are treated with large doses
of mAb. To add a further layer of complexity, recent evi-
dence suggests that complement may actually be disad-
vantageous to the efficacy of rituximab. First, Li et al.42

showed that deposition of active complement compo-
nents facilitated the removal of rituximab: CD20 com-
plexes from the lymphoma cells by FcR-expressing
macrophages through the process of shaving,35,43,44 a phe-
nomenon which seems to be exacerbated by the addition
of C3b. Second, C3b deposition has also been shown to
block the interaction between the Fc domain of rituximab
and CD16 (FcγRIIIA) on NK cells, hence impairing
ADCC.45 Finally, evidence comes from a recent hypothe-
sis-generating study46 investigating the impact of C1qA
polymorphisms on the efficacy of rituximab. In this study
of 133 patients, expression of the A allele which leads to
low C1q levels was shown to correlate with enhanced rit-
uximab responses in FL, compared to those patients with
the G allele (high C1q expressing).

Although it is tempting to speculate that these effects
are solely due to differences in complement activation, it
should be noted that C1q has numerous other effects in
vivo including a critical role in the phagocytosis of apoptot-
ic bodies47 and effects on APC maturation and function.48,49

On consideration of all of these data, it appears that
although complement can evoke potent CDC responses

both in vitro and with xenografts in vivo, there is little direct
evidence to suggest that this activity provides a substantial
positive effect on rituximab-mediated depletion of B cells
in humans.

Programmed cell death
It has also been proposed that mAb binding of CD20

can directly transmit intracellular signals that lead to
PCD.25,26 This was based on early observations of changes
in cell growth, including growth arrest with anti-CD20
mAb.50 Since then PCD has been demonstrated with a
range of lymphoma cell lines, but rarely on primary
tumors, and has generally been shown to depend on fur-
ther anti-CD20 mAb crosslinking.29,51,52 Furthermore, not
all B-cell lines are sensitive28,53 and the cell death pathway
evoked is clearly cell-line and stimulus dependent - appar-
ently varying with both the mAb chosen and the degree of
hyper-crosslinking delivered. When rituximab is suffi-
ciently cross-linked it is capable of eliciting potent apop-
totic responses in sensitive cell-lines via the intrinsic mito-
chondrial pathway.54,55 However, cell death induced by
non-hyper-crosslinked anti-CD20 mAb appears to be non-
apoptotic and varies considerably depending on the mAb
used, rituximab being relatively weak and tositumomab
strong at inducing PCD.56

It has never been formally shown what molecular
process in vivo might mimic the high affinity crosslinking
achieved with mAb reagents in vitro, although it is postu-
lated that this could be performed by FcγR-bearing effec-
tor cells.25 Perhaps the best evidence that PCD may oper-
ate in vivo on primary tumor cells comes from a study in
which both caspase-3 and caspase-9 activation, taken to
signify classical apoptosis, was observed in 10 patients
with CLL treated with rituximab,57 although there are
alternative explanations for these data.25 More recently,
Stolz et al.54 demonstrated evidence of caspase activation
and apoptosis in xenografted B-cell lymphomas in mice
treated with rituximab. Interestingly, rituximab insensitiv-
ity in this model was associated with increased expression
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Table 1. The current development status of anti-CD20 mAb and the key effector mechanisms selected/modified.  
mAb Format Indication Manufacturer Comments Phase of development 

Rituximab4 Chimeric IgG1 NHL/RA Genentech/Biogen Approved 1997 
Y90-Ibritumomab tiuxetan5 Murine (90Y) NHL Biogen/IDEC Low ADCC Approved 2002 
I131tositumomab5 Murine (131I) NHL GSK Low CDC Approved 2003 
Ofatumumab6,7 Human IgG1 NHL/RA Genmab AC/GSK High CDC and ADCC Phase III trials 
Ocrelizumab8 Humanized IgG1 NHL/RA Genentech/Roche/Biogen Phase III trials 
TRU-0159,10 SMIP# RA Trubion Pharma/Wyeth High ADCC Phase I/II 

Low CDC 
Veltuzumab11,12 Humanized NHL and ITP Immunomedics Phase I/II IgG1 
AME-133v13,14 Humanized IgG1 Relapsed NHL Applied Molecular High ADCC Phase I/II 

Evolution/Eli Lilly 
PRO131921 humanized IgG1 CLL and NHL Genentech High CDC and ADCC Phase I/II 
(Version 114)15

GA10116 Humanized IgG1 CLL and NHL Glycart/Roche High PCD and ADCC Phase I/II 
Low CDC 

#Small modular immunopharmaceutical (SMIPTM) drug composed of human IgG1 Fc and hinge regions (hinge,CH2,and CH3) linked directly to an anti-CD20 scFv.



of anti-apoptotic Bcl-2 family proteins, which could be
overcome with the BH3-mimetic ABT-737. Although
interesting, these results only reflect effects in cell lines as
opposed to bona fide tumor cells, and do not demonstrate
that apoptosis is an important effector mechanism for in
vivo depletion of primary lymphoma cells. In our most
recent studies, we have compared the ability of rituximab
to deplete human CD20 transgenic mouse B cells in vivo in
the presence or absence of a second transgene encoding
high levels of Bcl-2 which blocks the intrinsic apoptosis
pathway.58 Although B cells expressing the Bcl-2 transgene
are relatively resistant to apoptotic stimuli, such as
cyclophosphamide, etoposide and dexamethasone in vitro,
in vivo they are just as susceptible to rituximab as B cells
lacking the transgene (Beers et al., unpublished observations,
2009). Clearly, in this fully syngeneic model, induction of
the intrinsic apoptosis pathway is not important for sub-
sequent B-cell depletion. By contrast, tositumomab
appears (without further crosslinking) to promote a cyto-
plasmic form of death, involving lysosomes, which is able
to bypass the apoptotic inhibition provided by high levels
of Bcl-2 both in the presence and absence of radiation56,59,60

perhaps explaining the efficacy of the I-131 radioimmuno-
conjugate, I131-tositumomab, even in cases refractory to
both chemotherapy and rituximab.61 Thus, as with CDC,
the support for rituximab promoting cell death is appar-
ent, but whether this mechanism is critical for the deple-
tion of CD20 positive target cells in vivo remains to be
proven.

Fc:FcR dependent mechanisms
Although the evidence regarding the involvement of

CDC and PCD remains inconclusive, it is clear that

Fc:FcγR interactions are critical for the success of anti-
CD20 immunotherapy. FcγR are expressed on immune
cells such as monocytes, macrophages, natural killer cells
and neutrophils. FcγR-dependent activation of these
immune effectors potentially leads to the release of
inflammatory mediators and/or killing/direct phagocyto-
sis of the opsonized target cells.25 However, the outcome
of these mAb:effector cell interactions varies markedly,
dependent on both the cell type and balance of activatory
and inhibitory FcγR signaling induced.62,63 The first evi-
dence that Fc:FcγR interactions are critical for the efficacy
of anti-CD20 mAb came from the seminal paper of
Clynes and Ravetch64 showing that rituximab treatment of
subcutaneous Raji xenografts is fully dependent upon the
γ chain-associated activatory FcγR. However, some of the
best evidence comes from clinical studies where patients
with the higher affinity allelic variants of CD16 (FcγRIIIA
respond better to treatment with rituximab.62,63,65

Polymorphisms in FcγRIIa63 have also been found to influ-
ence responses in FL. Interestingly, and in marked contrast
to the above, no association between FcγR polymorphic
variation and response was shown in CLL patients,66 indi-
cating that the requirement for Fc:FcγR interaction varies
between diseases, as may the dominant effector mecha-
nisms.

In syngeneic mouse model systems, using either mouse
anti-mouse CD20 mAb in wild-type mice67 or anti-human
CD20 mAb in human CD20 transgenic mice38 (also Beers
et al., unpublished observations, 2009), a complete absence of
normal B-cell depletion has been observed in mice lacking
the common γ chain, indicating an absolute requirement in
vivo for activatory FcγR interactions. Recently, the ability
of anti-mouse CD20 mAb to deplete syngeneic Eµ-Myc

Anti-CD20 mAb

haematologica | 2010; 95(1) 137

Figure 1. History of
CD20 mAb in clinical
translation. The time-
line describes the
chronological intro-
duction over the last
three decades of
respective anti-CD20
mAb in human trials,
as well as the corre-
sponding progress in
Ab technology from
1st through to 3rd gen-
eration reagents: gen-
eration Ab are murine
or human/mouse
chimeric Ab, 2nd gen-
eration Ab are either
humanized or fully
human and 3rd gener-
ation Ab have further
modifications to the
Ab structure e.g.
mutation or a-fucosy-
lation of the Fc
domain for enhanced
FcR binding profiles. 

History of anti-CD20 mAb in clinical translation

1980 1985 1990 1995 2000 2005 2010

Generation: I II III

Murine Chimeric Humanized Human SMIPTM Mutated Fc
Ab Ab Ab Ab mice domain

mAb development

Ab
 te

cn
ol

og
y

*1F5 (m2a)17

*Ibritumomab tiuxetan
(Y90m1a)18

*Rituximab (clgG1)19

131l tositumomab (m2a)20

Ocrelizumab
(humanized IgG1)21

PRO13192115

Rituximab
FDA approved4

AME-133v4614

Veltuzumab
(humanized IgG1)12

GA101
(humanized 
glycoengineered
IgG1)16,23

Ofatumumab
(human IgG1)22

TRU-015
(SMIPTM)10

Hi
st

or
y 

of
 m

Ab
in

to
 p

at
ie

nt
s



tumor cells was also shown to be dependent on activato-
ry FcγR.68 However, it still remains to be determined
which of the FcγR-expressing immune effector cells are
critical. In the mouse, there is good agreement that mono-
cytes/macrophages are the key effectors when deleting
either normal or malignant B cells with anti-CD20
mAb.38,67,68 Depleting macrophages using liposome-encap-
sulated clodronate69 results in decreased mAb efficacy38,67,68

(also Beers et al., unpublished observations, 2009), but the
removal of neutrophils or natural killer cells has no impact.
Gong et al.38 also investigated the relative importance of
the splenic and liver compartments of the reticuloen-
dothelial system. They showed that surgical limitation of
the hepatic blood supply correlated with lower B-cell
depletion, underscoring the role of hepatic Küpffer cells
and the need for an intact reticuloendothelial system for
maximal mAb response. They also postulated that differ-
ences in depletion kinetics between tissues were, for the
most part, simply a reflection of the access of those B cells
to the vasculature and that targets with slower recircula-
tion kinetics were more resistant to depletion simply due
to reduced access to the reticuloendothelial system’s effec-
tor cell populations. Similar studies are clearly impossible
in humans, so it is not known whether the same systems
operate. However, the need for lymphoma cells to traffic
out of solid tumor deposits and pass over the reticuloen-
dothelial system might help explain some of the slow and
late responses to rituximab. This provides a logical alter-
native to the immunization effect (see below) used to
explain late responses to rituximab. 

In humans, in vitro experiments with blood borne effec-
tor cells point to the NK cell as a prominent effector in
ADCC,30,70 but whether this is also true in tissues is
unclear. Similarly, whether FcγRIIIb-expressing neu-
trophils, the predominant leukocyte in peripheral blood,
play a role in providing therapy in vivo remains to be clar-
ified. Cartron et al.71 found no correlation between neu-
trophil phagocytosis (from patients with different FcγRIIIb
polymorphisms) and response to rituximab. However,
they did find a high level of response in FL patients given
GMCSF plus rituximab, possibly associated with increas-
es in monocyte, granulocyte, and dendritic cell popula-
tions.72 Recently, Shibata-Koyama et al.73 demonstrated
enhanced phagocytosis of lymphoma cells in human
whole blood using a modified non-fucosylated rituximab
reagent with enhanced affinity for FcγRIIIb on neu-
trophils. Although it is possible that neutrophils have a
role in the functioning of rituximab in vivo, which may be
boosted by additional manipulations, such as GCSF treat-
ment or a-fucosylation of the mAb Fc domain,74 definitive
proof is currently lacking.

Immunization
Mechanisms such as CDC, ADCC and PCD are consid-

ered to be immediate and comparatively short-acting, but
the clinical response to a single course of mAb can be late
acting and prolonged. This has led to the suggestion that
anti-CD20 mAb could also have an immunization effect.75

Rituximab-induced cell death, by the three main path-
ways described, will result in release of tumor antigens
and changes in localized inflammation. Such an environ-
ment promotes the uptake of tumor-associated antigens

by dendritic cells and cross-presentation to T lympho-
cytes, providing the potential for cell mediated immuni-
ty.76-78

That this might occur during therapy was demonstrated
recently in a small proof of principle study which showed
an increase in FL idiotype specific T cells after rituximab
monotherapy.79 However, due to the size of the study, it is
not known whether this immunization effect correlates
with clinical outcome. Moreover, whether this vaccine
effect is specific to therapeutic mAb in general or any cell-
killing modality is currently unclear.80 Alternative explana-
tions also exist, such as whether the mAb and/or
chemotherapy alters the immunogenicity of the tumor
cells as suggested by Zitvogel and Kroemer81 and Haynes.82

Future anti-CD20 mAb
The success of rituximab has stimulated considerable

efforts to develop improved reagents and there are now at
least 7 CD20 mAb in clinical development with many
more in pre-clinical evaluation (Table 1). These new mAb
are engineered for potential benefits over the 1st genera-
tion rituximab, the modifications include: 2nd generation
reagents where the IgG1 mAb is humanized or fully
human to reduce immunogenicity, but with an unmodi-
fied Fc region; and 3rd generation mAb which are human-
ized and have an engineered Fc region designed to
improve therapeutic performance by adapting their effec-
tor functions. 

The former (2nd generation) include ocrelizumab, vel-
tuzumab and ofatumumab, and the latter (3rd generation)
includes, TRU-015, AME133V, Pro13192 and GA101
(Table 1 and Figure 1). Clinically, ofatumumab is the most
advanced of these reagents in that it will be the first to
seek FDA and EMEA approval for the treatment of CLL.
Its most notable features are its slow off rate, unusual
CD20 epitope specificity and high CDC activity.30 This
latter feature is probably related to the slow off rate and/or
unusual binding specificity, resulting in lysis of rituximab
resistant CLL targets. It will be interesting to know if such
potency of lysis can be achieved in vivo where comple-
ment availability may be limited as discussed.
Interestingly, this ability to activate complement has not
been associated with more toxicity in patients, which was
a potential concern knowing the toxicity associated with
systemic complement activation. The clinical efficacy and
safety of single-agent ofatumumab have now been report-
ed in two phase I-II trials in relapsed/refractory CLL and
FL with phase III trials ongoing.6,22 Moreover, ofatumum-
ab was effective in a group of fludarabine- and alem-
tuzumab-resistant CLL patients, known to have a poor
prognosis.7

It will be interesting to see if combination chemothera-
py with ofatumumab will also produce higher responses
than those observed with rituximab.

The other two 2nd generation mAb are very similar to rit-
uximab in both their structure and potency, and advan-
tages over rituximab will probably come from their
immunogenicity and alternative routes of administration.
The 3rd generation mAb, AME133V, Pro13192 and GA101
are all modified either by amino-acid substitution or by
glycoengineering to promote interaction with FcγR, partic-
ularly FcγRIIIa. As discussed, considerable clinical data
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suggest that high affinity interaction with FcγRIIIa is ben-
eficial for FL treatment and patients with the low affinity
allele, 158F, are less sensitive to rituximab treatment.
Using these 3rd generation mAb should overcome this dif-
ficulty. The final 3rd generation mAb, TRU-015, is slightly
smaller than IgG, has low complement activating ability
and is currently under development for RA.

All but one of these mAb (GA101) are so-called Type I
mAb; characterized by their ability to redistribute CD20
into Tx-100 insoluble lipid rafts and induce potent
CDC,29,32,56 unlike Type II mAb which instead induce
homotypic adhesion and PCD. GA101 was derived from
the murine mAb Bly1 and converted from Type I to Type
II during humanization.83 This is the first time that an
unconjugated humanized Type II mAb has been investi-
gated clinically (B1/tositumomab the other established
Type II is only used as an I131 radiolabeled format) and it
will be extremely interesting to see how it performs com-
pared with both rituximab and the other optimized Type
I reagents. 

Given the dependency of anti-CD20 mAb on Fc-FcγR
interactions, and that both types appear equally effective
at binding opsonized targets to macrophages39 and elicit-
ing ADCC84, it might be expected that both mAb Types
would perform equivalently in vivo. However, in xenograft
tumor studies32 and more recently syngeneic models of
normal B-cell depletion39 (also Beers et al., unpublished
observations, 2009) we have observed that Type II mAb are
notably more effective. In support of this, pre-clinical
studies with GA101 indicate that it outperforms rituximab
in a number of assays including in vivo xenograft mod-
els.16,23 We are currently exploring whether the superior
performance of Type II mAb is due to their direct cell
killing by PCD, their failure to promote CDC when com-
pared with Type I mAb, or other as yet undefined differ-
ences between the two classes.

Anti-CD20 mAb in combination therapy
As detailed earlier, the main success of anti-CD20 mAb

has been in combination with chemo- or radiotherapy. 
Although single-agent rituximab, in patients with

relapsed or refractory low-grade NHL demonstrated overall
response rates (ORR) of 40-50%, with median time to pro-
gression (TTP) of approximately nine months,85-88 combined
rituximab and CHOP chemotherapy (R-CHOP) produced a
higher ORR of 95%, with median TTP of 82 months.89,90

Addition of rituximab to standard front-line chemothera-
py regimens significantly improves ORR, CR and OS in
low-grade NHL91-93 and newly diagnosed patients with
DLBCL.94,95

The mechanism of this synergistic activity is not clear.
Demidem et al.96 showed in vitro that a lymphoma cell line
that was resistant to some cytotoxic agents could be sen-
sitized by pre-treatment with rituximab, with some evi-
dence of apoptosis. 

It is well recognized that anti-apoptotic Bcl-2 is over-
expressed in lymphoid malignancies97 and a link with
chemosensitization by rituximab was first established by
Alas et al.98 who showed that rituximab down-regulated
IL-10 in AIDS-related lymphoma cells, where IL-10 is a
recognized anti-apoptotic factor, and a promoter of Bcl-2
expression. Further studies showed that rituximab down-

regulated both Bcl-2 and IL-10 expression,99 via the
p38MAPK signaling pathway.100

In lymphoma cell lines such as Daudi, Raji and Ramos,
a different mechanism appears to be involved. Here, ritux-
imab apparently chemosensitizes cells to drug-induced
apoptosis through downregulation of another anti-apop-
totic member of the Bcl-2 family, Bcl-xL.101 The expression
of Bcl-xL is regulated by nuclear factor κB (NF-κB) and
extracellular signal regulated kinase 1/2 (ERK 1/2). In vitro
experiments with Daudi and Raji cell lines show that rit-
uximab blocks NF-κB and ERK 1/2 signaling, as well as
PI3K-Akt activity, leading to reduced Bcl-xL expres-
sion.102,103

Our own studies have shown little potentiation of cell
death by rituximab and other Type I mAb in combination
with radiation. In contrast, we have observed potent addi-
tive effects with radiation and Type II mAb59 in an ERK-
dependent mechanism. This is independent of apoptotic
cell death as caspase inhibition and/or Bcl-2 overexpres-
sion are unable to block the potentiation, perhaps explain-
ing the potency of 131I-tositumomab in the treatment of
chemoresistant FL (which over-express Bcl-2).
Unfortunately, as with the PCD experiments detailed
above, these experiments are performed in sensitive, pre-
dominantly Burkitt’s lymphoma, highly adapted in vitro
cell lines as opposed to bone fide tumors in vivo. We are
currently designing novel mouse models to address these
questions more appropriately. Despite the efficacy of
chemo-immunotherapy, a significant number of patients
remain resistant to such combination therapy and so novel
combinations are currently being investigated. Many of
these make the assumption that resistance arises from a
blockade of apoptosis and attempt to overcome this using
strategies to down-regulate or block anti-apoptotic pro-
teins in the tumor cells. For example, Vega et al.104 showed
that rituximab-resistant cell lines which expressed high
levels of Bcl-xL (produced by repeated treatment with rit-
uximab) were sensitized to death by bortezomib (a pro-
teosome inhibitor) and DHMEQ, (a specific inhibitor of
NF-κB), an observation correlated with the downregula-
tion of Bcl-xL. As mentioned earlier, Stolz et al.54 also
showed that Bcl-xL was over-expressed in lymphoma
lines that were resistant to rituximab-induced cell death,
and showed that this could be overcome by combined use
of rituximab and the BH3-mimetic ABT-737. Similar activ-
ity was seen by combining rituximab AT-101 a less well-
defined BH3-mimetic.105 Whether these approaches will
be successful and well-tolerated in the clinic remains to be
seen, although at least pre-clinical drug combinations with
BH3 mimetics appear extremely promising.106

Thalidomide and its more potent 2nd generation deriva-
tive, lenalidomide are an entirely different class of drugs
being explored in combination studies. These immuno-
modulatory (IMID) agents possess a multitude of biologi-
cal effects ranging from modulation of cell-mediated
immunity and alteration of cytokine responses through to
anti-angiogenic properties.107 Importantly they display sin-
gle agent activity in both indolent and aggressive lym-
phomas.108,109 Based on this and their non-overlapping
spectrum of activities it was anticipated that IMID would
complement rituximab, and in lymphoma-bearing SCID
mice survival was prolonged when lenalidomide was

Anti-CD20 mAb

haematologica | 2010; 95(1) 139



combined with rituximab.110 However, Lapalombella et
al.111 recently demonstrated that lenalidomide down-regu-
lated CD20 expression in CLL cells, resulting in dimin-
ished apoptosis and ADCC, which may in fact reduce its
efficacy.

In another approach, Zhao et al.112 have combined ritux-
imab with histone deacetylase inhibitors (HDACi).
HDACi alter transcription regulation and hence expres-
sion of genes involved in cellular differentiation, prolifera-
tion and apoptosis.113 In in vitro experiments using lym-
phoma cell lines, murine models and primary tumor from
patients with relapsed B-NHL previously treated with rit-
uximab, Zhao et al.112 showed that the combination of an
HDACi and rituximab promoted tumor cell apoptosis
through enhanced downregulation of Bcl-2 and Bcl-xL via
NF-κB inactivation. Phase II trial data have been reported
on the use of single-agent HDACi in relapsed/refractory B-
NHL resistant to rituximab, with an ORR of 29%, indicat-
ing that these agents may have utility in this context.114

Conclusion
More than a decade after the introduction of rituximab,

anti-CD20 mAb have become mainstream treatment for
many B-cell disorders. Even so, questions remain as to the

best use of anti-CD20 mAb, optimization of dosing, why
its activity is limited as a single agent, and its exact mode
of action, both alone and in combination with chemother-
apy. In spite of these unresolved issues, there are multiple
new anti-CD20 mAb which will soon be reaching clinical
practice. These offer numerous advantages over rituximab
and it will be extremely interesting to observe how these
compare clinically. In addition to the obvious importance
to patient treatment, the range of engineered modifica-
tions should help to guide our understanding of the criti-
cal effector mechanisms used by anti-CD20, allowing us
to optimize these reagents even further. It is likely to be
some time before we have determined the optimal anti-
CD20 mAb for a given disease, a task that becomes more
difficult if different diseases or different tissue compart-
ments require different effector mechanisms for optimal
B-cell depletion. However, by combining basic cancer cell
biology, appropriate in vivo models, and well designed clin-
ical trials we hope to be able to address these issues.
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