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There is increasing evidence that sickle cell disease
(SCD), as well as other chronic hemolytic anemias
such as β thalassemia, paroxysmal nocturnal

hemoglinuria, autoimmune hemolytic anemia and unsta-
ble hemoglobinopathies, are characterized by a hyperco-
agulable state.1 In addition to increased thrombin and fib-
rin generation, increased tissue factor activity, and
increased platelet activation (Figure 1), patients with
hemolytic anemias manifest thrombotic complications,
including venous thromboembolism, in situ pulmonary
thrombosis and stroke.1-7 Furthermore, the risk of throm-
boembolic complications appears to be higher following
splenectomy.1,3,6

The mechanism of coagulation activation in hemolyt-
ic anemias is likely multifactorial. Both SCD and tha-
lassemia are characterized by red blood cell (RBC) mem-
brane abnormalities, with abnormal exposure of phos-
phatidylserine.1,8 Normally, phosphatidylserine is found
in the inner monolayer of the cell membrane, whereas
choline-containing phospholipids, such as phosphatidyl-
choline and sphingomyelin, are located in the outer
monolayer in the plasma membrane.9 Abnormal phos-
phatidylserine exposure functions as both a recognition
signal for cell removal during apoptosis of nucleated
cells,10 and a docking site for enzymatic complexes
involved in coagulation and anticoagulation pathways.11
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External exposure of phosphatidylserine alters the adhe-
sive properties of RBC12 and appears to be involved in
the hemostatic changes observed in hemolytic ane-
mias.13-16 The number of phosphatidylserine-positive
RBC has been reported to be significantly correlated
with plasma markers of thrombin generation, such as
prothrombin fragment 1+2 (F1+2), D-dimer and plas-
min-antiplasmin complexes in SCD, but no correlation
was found between phosphatidylserine-positive
platelets and any of these hemostatic markers,13,14 sug-
gesting a role for RBC in coagulation activation.

Circulating microparticles (small membrane-derived
vesicles released by cells following activation or apopto-
sis), derived from RBC, platelets, endothelial cells and
monocytes, may also contribute to the hypercoagulable
state in hemolytic anemias.17-21 The total number of
microparticles, total tissue factor-positive microparticles,
monocyte-derived tissue factor-positive microparticles
and RBC-derived microparticles are correlated with D-
dimer, thrombin-antithrombin complexes and F1+2 lev-
els in SCD patients,17 suggesting that microparticles may
contribute to the hypercoagulable state observed in
patients with SCD and other hemolytic anemias. 

Tissue factor, the principal initiator of coagulation, is
abnormally expressed on circulating endothelial cells in
patients with SCD22 and may contribute to hypercoagu-
lability in hemolytic anemias.23 Microparticles released
during hemolysis may be tissue factor-positive.17 Several
potential mechanisms for increased tissue factor expres-
sion have been described in SCD and other hemolytic
anemias, including ischemia-reperfusion injury,24

increased levels of soluble CD40 ligand25 and increased
heme levels.26 Heme, an inflammatory mediator and a
product of intravascular hemolysis in patients with
hemolytic anemia, induces tissue factor expression on

the surface of both macrovascular and microvascular
endothelial cells, possibly via the transcription factor
nuclear factor kappa B.26 Hemolysis also results in the
scavenging of nitric oxide (NO) by cell-free hemoglobin27

and releases erythrocyte arginase, an enzyme that con-
verts L-arginine, the substrate for NO synthesis, to
ornithine, thus further reducing NO availability.28 In
addition to regulating vascular tone and inhibiting endo-
thelial adhesion molecule expression, NO has potent
antithrombotic effects. Via cGMP-dependent signaling,
NO inhibits platelet activation.29-31 NO has also been
shown to inhibit tissue factor expression32 although
there are conflicting data regarding this effect.33

In their study published in this issue of the Journal,
van Beers and colleagues report that the majority of
microparticles in SCD patients originate from platelets
and erythrocytes, and that the numbers of these
microparticles do not differ significantly between crisis
and steady state.34 Unlike a previous study by Shet and
colleagues,17 no microparticles originating from mono-
cytes or endothelial cells were detectable and no
microparticles expressing tissue factor were identified.
Erythrocyte-derived microparticles correlated strongly
with plasma levels of hemolytic markers, as well as to
von Willebrand factor, D-dimer and F1+2 levels.
Furthermore, thrombin generation depended on the
total number of microparticles, and anti-human factor XI
inhibited thrombin generation by about 50%. 

The strong association of erythrocyte-derived micro-
particles with markers of fibrinolysis and coagulation
activation as well as with hemolytic markers further
confirms a role for hemolysis in the coagulation activa-
tion that is observed in patients with hemolytic anemias.
This finding is similar to those in a study by our group
in which associations were observed between markers

Figure 1. Schematic repre-
sentation of pathophysio-
logical mechanisms
(described or postulated)
leading to coagulation acti-
vation in sickle cell disease
and other hemolytic ane-
mias. Based on Virchow’s
triad, the illustrated path-
ways contribute to activa-
tion of coagulation (and
possibly eventual thrombo-
sis) by one of three broad
mechanisms, i.e.: (i)
changes in the vessel wall;
(ii) changes in blood flow;
and/or (iii) changes in the
composition of blood com-
ponents (‘hypercoagulabili-
ty’). Ab: antibody; NO:nitric
oxide; PS: phosphatidylser-
ine; RBC: red blood cell;
MPs: microparticles; TF:
tissue factor. (Adapted
from Ataga KI, Key NS.
Hypercoagulability in sickle
cell disease: new
approaches to an old prob-
lem. Hematology Am Soc
Hematol Educ Program.
2007:91-96)



of coagulation activation (F1+2, thrombin-antithrombin
complexes and D-dimer) and measures of hemolysis in
a cohort of SCD patients.35 In this study we speculated
that hemolysis, with resultant scavenging of NO, might
play a role in coagulation activation in SCD patients.
Platelets are also activated in SCD and other hemolytic
anemias.1 Platelets appear to be further activated in SCD
patients with pulmonary hypertension and this activa-
tion of platelets is directly correlated with measures of
hemolysis.29 Furthermore, platelet activation is inhibited
by NO donors, although the NO inhibitory effect is
abolished by the addition of pathophysiologically rele-
vant levels of cell-free hemoglobin in the platelet-NO
donor mixture.

The study by Tripodi and colleagues published in this
issue of the Journal evaluated, by means of thrombo-
elastometry and thrombin generation tests, the relative
role played by cells and plasma in the hypercoagulabili-
ty of patients with β thalassemia.36 All the thromboelas-
tometry parameters determined in whole blood, includ-
ing shortened clotting time and clot formation time, and
increased maximum clot firmness, were consistent with
hypercoagulability, especially in splenectomized
patients. However, thrombin generation determined in
platelet-poor plasma was not significantly different
from that in healthy individuals. These results suggest
that RBC, platelets and possibly other cellular elements
play a significant role in the hypercoagulability
observed in thalassemic patients. 

Although histopathological studies show that SCD-
associated pulmonary hypertension is associated with a
thrombotic pulmonary arteriopathy,37 we previously
observed that while markers of coagulation activation
appeared to be higher in SCD patients with pulmonary
hypertension than in those without, these differences
did not achieve statistical significance.35 The findings
from the study by Tripodi and colleagues now appear to
confirm our previous suspicion that cellular elements
contribute to hypercoagulability in hemolytic anemias
and suggest that despite the absence of significant dif-
ferences in plasma levels of coagulation activation in our
study, patients with complications such as SCD-associ-
ated pulmonary hypertension may indeed be more
hypercoagulable if evaluated using techniques that
assess whole blood, rather than just plasma. 

Despite a report showing associations between plas-
ma fibrinolytic activity, as well as platelet procoagulant
activity with the frequency of acute pain episodes in
SCD, it remains uncertain whether platelet activation,
as well as increased thrombin and fibrin generation con-
tribute to the pathophysiology of SCD.38 However, it is
becoming increasingly clear that patients with hemolyt-
ic anemias are at risk of thromboembolic complications,
particularly following splenectomy. The increased fre-
quency of these complications may be a result of the
increased number of circulating abnormal RBC and
microparticles that express phosphatidylserine follow-
ing splenectomy. Indeed splenectomized patients with
thalassemia intermedia have significantly higher levels
of microparticles and thrombin-antithrombin complex-
es when compared to non-splenectomized patients.39

Furthermore, the levels of phosphatidylserine-positive

microparticles and plasma hemoglobin were higher in
the splenectomized patients, although this difference
did not reach statistical significance.39

The utility of anticoagulation in hemolytic anemias
prior to the development of thrombotic complications is
uncertain. While it is reasonable to use prophylactic
anticoagulants to decrease the risk of deep vein throm-
boses when these patients are hospitalized, there is a
paucity of controlled trials in this setting. In those
patients who develop venous thromboembolism, the
necessary duration of anticoagulation is also uncertain,
as the risk of recurrent episodes is not defined. 

As hemolysis is associated with endothelial dysfunc-
tion in hemolytic anemias, hypercoagulability may be
associated with several hemolysis-associated complica-
tions, including pulmonary hypertension. Defining the
contribution of platelet activation, as well as increased
thrombin and fibrin generation, to the pathophysiology
of hemolytic anemias requires further studies.
Furthermore, with the increasing evidence that hemoly-
sis plays a crucial role in the development of hypercoag-
ulability, novel approaches, including anti-hemolytic
therapies, hemoglobin scavengers and NO donors may
decrease the occurrence of thrombotic complications in
hemolytic anemias. Finally, well-controlled clinical stud-
ies of anticoagulants and/or antiplatelet agents employ-
ing appropriate clinical endpoints in hemolytic anemias
are warranted.
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The term classic BCR/ABL-negative myeloprolifera-
tive neoplasms encompasses three disorders,
polycythemia vera (PV), essential thrombo-

cythemia (ET), and primary myelofibrosis (PMF), which
originate in a single pluripotent hematopoietic stem cell
and share several clinical, hematologic and histological
features. These include bone marrow hypercellularity
with variable degrees of fibrosis, overproduction of one

or more of the blood cell lines, frequent splenomegaly,
increased risk of thrombosis and bleeding, and the ten-
dency to evolve into acute leukemia. Transition from
one disorder to another is also occasionally observed.
Recently, the discovery of the V617F mutation in the
JAK2 gene in the majority of patients with a myelopro-
liferative neoplasm has provided biological support to
the inclusion of the three diseases within the same


