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Introduction 

In 2001, we described X-linked neutropenia (XLN) as a novel
subtype of congenital neutropenia (CN) in a three-generation
family with 5 affected males and with a g.810T>C WAS muta-
tion, resulting in a p.L270P gain-of-function mutation in the
GTPase binding domain (GBD) of the Wiskott-Aldrich
Syndrome protein (WASP).1,4 In 2006, 2 more XLN cases were
described, one with a p.S272P and one with a p.I294T muta-
tion, the latter reportedly presenting with myelodysplasia
(MDS).2 In 2008, we reported a large XLN kindred with 10
affected males and 8 female carriers with a p.I294T WASP
mutation, which also results in a gain-of function. CN is a het-
erogeneous disease with mostly autosomal inheritance pat-
terns. Autosomal dominant CN is caused by ELA2 mutations
in 60% of cases.5 Autosomal recessive CN or Kostmann’s dis-
ease is caused by HAX1 mutations.6 Other rare subtypes of the
disease include autosomal dominant mutations of GFI17 and
autosomal recessive mutations of G6PC3.8 The diagnosis of
CN is usually made at birth or in the first months of life with
recurrent, severe infections and neutrophil counts below 0.5
109/L. Monocyte and eosinophil counts are elevated in CN.7,9

In contrast, XLN has an X-linked inheritance pattern and
although also characterized by severe neutropenia, it is often
diagnosed at a later age, due to the infectious phenotype
which is relatively mild considering the degree of neutropenia.
Monocytopenia and low NK cell numbers are typical hemato-
logic features of XLN. Low B-cell counts, low-normal
platelets, inversion of the CD4/CD8 ratio and low-normal IgA
levels can be present.3

Autosomal dominant and recessive CN carry an increased
risk of myeloid transformation with a cumulative incidence of
up to 25% at 20 years.9 This leukemic conversion is often
associated with the development of monosomy 7 and muta-
tions in the G-CSF receptor gene.6,9-14 Whether a risk of malig-
nant transformation in XLN exists has not yet been reported
to date. Here we report for the first time 2 cases with XLN,
who developed MDS-RAEB and AML, both with monosomy
7 and CSF3R mutations in leukemic samples. 

Design and Methods

Patient material
Blood and bone marrow samples were obtained according

to the guidelines of the local IRB at the University Hospitals
Leuven. 

Detection and quantification of CSF3R mutations in XLN
patients

DNA was extracted from viably frozen blood, bone marrow
samples or from fixed cells. Exon 17 of CSF3R11,13,15 was ampli-
fied using the primers: CSF3R-F 5’-accctttgtgttccaccagt-3’ and
CSF3R-R 5’-ttggtcctttcttcctccct-3 (GeneAmp PCR system
2400, Applied Biosystems, Foster City, California). PCR prod-
ucts were verified with 6% PAGE-gels and sequenced in both
directions, using BigDye® Terminator v3.1 Cycle Sequencing
Kit (Applied Biosystems). Sequencing results were analyzed
using Sequence Scanner (Applied Biosystems). 

For the detection of the g.2425T>G (p.Y729) mutation by
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X-linked neutropenia (XLN) is a rare form of Congenital
Neutropenia (CN) caused by inherited gain-of-function
mutations of WAS. Here we report 2 cases of the original
L270P X-linked neutropenia kindred that evolved to MDS
or AML, with acquisition of G-CSFR (CSF3R) mutations
and monosomy 7. Thus, leukemic transformation with
acquisition of CSF3R mutations and monosomy 7 is not
restricted to classical congenital neutropenia with autoso-
mal inheritance, but can also occur in other genotypes of
inherited neutropenia.
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qPCR, we used primers DF 5’-ccagcgatcaggtcctttag-3’ as
allele specific forward primer together with 5’-gggcac-
tatctccgctgtga-3’ as reverse primer. QPCR was per-
formed in a Real Time PCR quantification AB7000 using
p53 as a control.

Results and Discussion

Case II.3 (Figure 1) was diagnosed with neutropenia
with neutrophil counts between 0.15-0.9 109/L in his late
twenties. Before that time his medical history consisted
of frequent staphylococcal skin infections, recurrent
bronchitis, pulmonary tuberculosis, a sacral fistula and
peritonitis of unknown origin (possibly TBC). The bone
marrow karyotype was normal. At age 63, a marrow
aspirate showed a poorly represented myeloid lineage
with neutrophil maturation arrest and discrete dysplasia
in the red lineage and a normal karyotype. From age 63
onwards, G-CSF (filgrastim) was initiated at 0.3 mg/day
subcutaneously. At age 65, the diagnosis of MDS type
RAEB16 was made and monosomy 7 was found in 10/10
evaluated metaphases.17-18 At age 65, he was admitted
with fever and a leukocyte count of 17.9 109/L of which
31% were blasts. After discontinuation of G-CSF, the
leukocyte number and circulating blasts decreased and
the cytological diagnosis was revised to MDS-RAEB. A
stable clinical and hematologic remission was achieved
after 4 courses of decitabine. Although the bone marrow
blastosis remained at 10%, this was interpreted as evi-
dence of maturation arrest and not of MDS, as repeated
marrow karyotypes remained normal. A truncating
CSF3R mutation g.2390C>T (p.Q718), previously
described by other authors,11,13,15 was identified in a het-
erozygous pattern in a marrow sample obtained at the
time of RAEB (Figure 2). The same mutation could also
be documented at lower levels in a sample 2.5 years
after treatment, during stable remission (Figure 2). He
died at age 68, due to an unrelated cause.

In case III.6 (Figure 1), neutropenia was first diagnosed
at age 27, with a neutrophil count of 0.3 109/L and a
medical history consisting of frequent herpes labialis and
anal fistulas. He reportedly had a hypocellular bone mar-
row aspirate with low numbers of granulocyte precur-
sors. At age 31, on the occasion of neutropenic fever and
a staphylococcal abscess in the right thigh, a bone mar-
row aspirate showed a maturation arrest in the myeloid
lineage and monosomy 7 in 2 of 11 metaphases. He was
not on G-CSF at that time. Interfase FISH was also con-
sistent with monosomy 7 in a minor subpopulation
(7%). However, two subsequent marrows six months
and five years later revealed a normal karyotype. At age
33, supportive treatment with G-CSF was started at 0.3
mg SC 3 x/wk. At age 37, monosomy 7 reappeared in
the bone marrow (7/10 metaphases)19. One year later he
developed a refractory AML with monosomy 7 (10/10)
as sole karyotypic abnormality. CSF3R mutation screen-
ing in a bone marrow sample at this time showed a het-
erozygous g.2425T>G (p.Y729) mutation in approxi-
mately all cells. The same mutation was also identified
by qPCR in ~34% of cells in a pre-leukemic sample
obtained at age 37 (Figure 2).

Figure 1. Updated L270P Pedigree. Filled squares: males with
documented neutropenia; circles with a black dot: carrier females;
open symbols: unaffected individuals; patients with MDS/AML are
indicated in red squares. 

Figure 2. Sequencing profile of patients II.3 and III.6 at different time points.
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In this article we describe 2 cases of XLN with evolu-
tion to AML/MDS with acquired monosomy 7 and
CSF3R mutations. Monosomy 7 is among the most
common chromosomal aberrations in AML and
MDS(20). Acquired loss of 7 or of 7q is associated with
an array of congenital bone marrow failure syndromes,
including CN, Shwachman-Diamond Syndrome and
Fanconi anemia and is considered a poor prognostic fac-
tor.17,20

CN is well known as a pre-leukemic condition.6,9,13,21-23

Evolution to acute myeloid leukemia has been best doc-
umented in autosomal dominant CN (with ELA-2 muta-
tions).9,13 The cumulative incidence of malignant trans-
formation in CN is reportedly more than 25% after 20
years of observation.9 In CN, development of
MDS/AML is significantly associated with the acquisi-
tion of truncating CSF3R mutations. The frequency of
CSF3R mutations in CN patients with leukemic trans-
formation is approximately 80% in both ELA2 and
HAX1 positive patients, whereas in CN patients with-
out leukemia, the frequency of CSF3R mutations is only
30%.9 CSF3R mutations have also been described in one
of 4 members of the original Kostmann family with a
presumable HAX1 mutation without clear malignant
evolution.24 In addition, 3 other patients with a HAX1-
mutation have been described with a CSF3R mutation,
one of whom developed myelodysplasia.6 Moreover,
Ward et al. described a young patient with an ELA2
mutation and a constitutive extracellular G-CSF-R
mutation, leading to hyporesponsiveness to G-CSF
treatment. This patient later developed consecutive
acquired (intracellular) CSF3R mutations, leading to
restoration of CSF3R responsiveness, but so far without
malignant conversion.25

The g.2390C>T (p.Q718) and g.2425T>G (p.Y729)
CSF3R mutations that were observed here, have already
been reported in CN and were found to be associated
with malignancy.11,13,15 Thus, XLN also encompasses an
increased risk of conversion to a myeloid malignancy, as
does classical CN. At the time of overt leukemia, both
patients exhibited a heterozygous CSF3R mutation in
approximately 100% of analyzed cells. In case III.6 we
could show that the CSF3R mutation preceded the
leukemic transformation by approximately 21 months.
In patient II.3, no antecedent samples were available but
the mutational burden was decreased in two remission
bone marrow samples 1.5 and 2.5 years later. Thus, the
CSF3R mutational burden was found to correlate with
the leukemic burden, as was also described in CN.13

Given the context of congenital neutropenia and admin-
istration of G-CSF in both cases, it is unclear to what
extent the chronic neutropenia and the administration
of G-CSF contributed to the malignant transformation.
Patient II.3 had received high doses of G-CSF for two
years and patient III.6 had received only supportive G-
CSF during the five years preceding the development of
AML. Although the duration of G-CSF is not a risk fac-
tor for leukemia, a G-CSF dose-effect has been suggest-
ed in CN patients requiring high doses of G-CSF.
Whether this is due to the severity of the disease, the
apparent resistance to G-CSF or the high doses of G-
CSF is still under debate.14

CSF3R mutations often precede the leukemic trans-
formation and can be present for years in patients who
never develop leukemia. Therefore, CSF3R mutations
are considered an early event in leukemogenesis, occur-
ring prior to malignant transformation, as an adaptive
response of a defective stem cell pool in CN and leading
to activation of anti-apoptotic signaling cascades.13 In
line with this is the observation that mutant ELA2 leads
to increased apoptosis of myeloid progenitors and that
this pro-apoptotic effect could be overridden by CSF3R
mutations, leading to enhanced survival and prolifera-
tion of hematopoietic progenitor cells.26 According to
this model, G-CSF therapy may cause genomic instabil-
ity of the progenitor cells due to increased pressure on
proliferation. Long-term G-CSF therapy could lead to
preferential clonal expansion of CSF3R mutant cells that
may already be more susceptible to additional aberra-
tions, possibly leading to leukemia.9,27

Non-truncating CSF3R mutations have also been doc-
umented in de novo MDS and AML and aberrant expres-
sion of G-CSF and its receptor have been observed in
solid tumors like ovarian cancer, bladder cancer and
squamous cell carcinoma.28 Although G-CSF is frequent-
ly administered in these malignancies to overcome
chemotherapy-induced neutropenia, this could be a rea-
son for concern. 

So far, no cases of hematologic malignancies have
been diagnosed in the large Irish p.I294T kindred that
we recently reported, nor have we detected major sub-
populations with CSF3R mutations using direct
sequencing. However, most cases in the latter family are
younger than in the first family; the oldest p.I294T XLN
case in the Irish family is now 48 years old (range 10-48;
mean 35 years) and G-CSF is used more sparingly in this
family.

We conclude that XLN is a pre-leukemic condition,
similar to autosomally inherited CN. Acquisition of
monosomy 7 and CSF3R mutations appear to be a final
common pathway associated with leukemic transfor-
mation, irrespective of the genetic defect underlying the
neutropenia. The benefits of G-CSF treatment should,
therefore, be carefully weighed against the possible
effects in leukemogenesis in pre-leukemic diseases, such
as congenital neutropenias. Based on our findings and
on the mild infectious phenotype of XLN, we recom-
mend that G-CSF be used sparingly in XLN and restrict-
ed to infectious episodes. 
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