
the actual variant would be performed. In the absence of
P50 values, as with patients in this study, it is important
to eliminate the possibility of Hb variants by sequencing
the globin genes, which confirmed 6 positive cases on the
registry.
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Pyruvate kinase M2 and prednisolone resistance
in acute lymphoblastic leukemia

Treatment of childhood acute lymphoblastic leukemia
(ALL) combines different classes of chemotherapeutic
agents, such as Vinca alkaloids, anthracyclines and gluco-
corticoids (GCs). Although such therapy nowadays cures
the majority of the patients, combination chemotherapy
still fails in approximately 20%.1 Most treatment failures
can be explained by resistance to antileukemic agents,2

and resistance to the glucocorticoids in particular has
been shown to be related to an unfavorable event free
survival.3,4 Since the glucocorticoids prednisolone and
dexamethasone play a crucial role in essentially all thera-
py protocols, the development of strategies to reverse
resistance to these agents is important to improve ALL
treatment efficacy. Recently, we have demonstrated that
glucocorticoid resistance in pediatric ALL is associated
with increased glucose metabolism, and that inhibition of
glycolysis sensitizes prednisolone-resistant ALL cells to
glucocorticoids.5 Although it has been known for several
decades that cancer cells shift their energy production
from oxidative phosphorylation towards the less efficient
glycolysis pathway (the so called Warburg effect)6 it is
still not clear how tumor cells establish this altered meta-
bolic phenotype. Christofk et al. recently showed that
altered expression of the glycolytic enzyme pyruvate
kinase (PK), and more specifically the switch to the alter-
natively spliced isoform M2 (PKM2), is responsible for
the increased rate of glycolysis observed in cancer cells.7

Together, these findings suggest an upregulation of
PKM2 in prednisolone resistant leukemia. 

To investigate if pyruvate kinase M2 plays a role in glu-
cocorticoid resistance in pediatric ALL, the expression of
PKM2 was determined in leukemic cell samples of ALL
patients and compared to PKM2 expression in normal
peripheral blood and bone marrow samples. To distin-
guish between the different isoforms in real time quanti-
tative PCR (RT Q-PCR), primers were designed that
specifically amplify PKM2 or that recognize both isoform
1 and 2 of pyruvate kinase (PKM1/2, Figure 1A). The
expression of PK isoforms was subsequently tested in dif-
ferent cell lines, confirming the specificity of the primer
combinations (Figure 1B).  

Next, the expression of the different PK isoforms was
determined in normal peripheral blood lymphocytes,
normal bone marrow and in leukemic samples from
untreated children at initial diagnosis of ALL that were
identified by an in vitro cytotoxicity assay (MTT)8 as pred-
nisolone-resistant (n=11, LC50≥150 µg/mL), or sensitive to
prednisolone (n=19, LC50≤0.1 µg/mL).6 In correspondence
with the results of Christofk et al.,7 a significant difference
(p<0.0001) was found in the expression of PKM2
between normal and ALL cells (Figure 2A). However,
PKM2 transcripts were found in all patient samples and
no significant difference was observed between pred-
nisolone-resistant or prednisolone–sensitive ALL cases
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(Figure 2B). Similar expression patterns were observed
for PKM1/2 (Figure 2C and D), although the transcript
levels of PKM1/2 were about ten-fold higher than the
expression levels of PKM2. Together, these data indicate
that not only the M2 isoform of pyruvate kinase was
present in ALL patients but also PKM1, and that the
mRNA expression levels of different PKM isoforms are
no indication of glucocorticoid resistance in childhood
leukemia.  

Since it has been reported that tumor cells exclusively
express the M2 isoform of pyruvate kinase7,9-11 and not
PKM1, we also determined the expression of the differ-
ent PKM isoforms at the protein level. Western blotting
was performed using antibodies that, like the primers in
the Q-PCR experiments, specifically recognized PKM2 or
both PKM1/2 isoforms. Blots incubated with these anti-

haematologica | 2009; 94(9) | 1323 |

Figure 1. Verification of the
real time PCR primer-probe
specificity. (A) Graphic repre-
sentation of primer design to
distinguish pyruvate kinase
isoforms. The primers located
in exon 3 can not distinguish
different PKM isoforms
(PKM1/2). A primer-probe
combination amplifying nt
1586-1692 (exon 9) was used
to specifically amplify PKM2.
Amplification efficiency was
over 95% for all primer-probe
combinations. Ribosomal pro-
tein S20 (RPS20) was used as
a control gene for normaliza-
tion. (B) Graphic representa-
tion of mRNA levels of pyru-
vate kinase isoform M2 (left
panel) or isoform 1 and 2
(right panel) in different
leukemic cell lines confirming
primer-probe specificity.
Expression of PK-M1/2 in
Jurkat cells was set to be
100% and relative expression
levels were calculated.  
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Figure 2. Expression of PKM isoforms in ALL patients. (A-D)
Graphical representation of the expression of pyruvate kinase iso-
form M2 (panels a, b) or isoform M1 and M2 (panels c, d) as
measured by Q-PCR. Expression of PK isoforms in normal lympho-
cytes versus ALL cells is depicted in panels a and c; expression of
PK isoforms in prednisolone-resistant or prednisolone–sensitive
patients in panels b and d. As normal samples peripheral blood
(¢) or bone marrow (£) was used. Medians are indicated as hor-
izontal lines. (E-F) Western blots representing the expression of
pyruvate kinase isoforms in normal lymphocytes (panel e) or in
prednisolone-resistant or prednisolone–sensitive patients (panel
f). 20 µg of protein was loaded and membranes were incubated
with 1:1000 diluted antibody directed against PKM1/2 or PKM2
(Cell Signaling Technology Inc., Danvers USA).  
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bodies showed a clear band for PKM1/2, but not PKM2,
in normal lymphocytes (Figure 2E). In samples from ALL
patients, however, equivalent expression levels of
PKM1/2 and PKM2 were present (Figure 2F). Analogous
to the Q-PCR results, no significant difference in protein
levels were observed between prednisolone-resistant and
prednisolone–sensitive cases, suggesting that pyruvate
kinase isoform M2 is not responsible for glucocorticoid
resistance in childhood leukemia. Whether the difference
in expression between different isoforms of pyruvate
kinase that was detected between normal bone marrow
and leukemic cells reflects a difference in glycolytic rate
is not known, since patient cells do not grow in vitro and
we can not detect glucose consumption. Thus, although
pyruvate kinase might play a role in the regulation of gly-
colysis in childhood ALL, glucocorticoid resistance is
unlikely to be caused by selective expression of PKM2. 
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Detection of twelve nucleotides insertion in the
BCR-ABL kinase domain in an imatinib-resistant
but dasatinib-sensitive patient with bi-phenotypic
acute leukemia

Although targeted inhibition of BCR-ABL by imatinib
(IM) is an effective therapy for patients with Philadelphia
chromosome-positive leukemias, a minority of patients,
most of them in advanced phase, acquire mutations in
the BCR-ABL kinase domain (KD) leading to relapse.1-5

These mutations consist, almost exclusively, in single
nucleotide (nt) substitutions. Rare cases of splicing events
inducing deletion or insertion of multiple nucleotides into
ABL KD have been described. A deletion of 27 amino
acids (aa) induced by the L248V mutation activating a
cryptic splice site has been identified6 as well as cases
resulting from the insertion of 35 nt from intron 8 lead-
ing to a frameshift.7,8 In the latter, this insertion could
account for up to 62% of IM-resistant CML patients in
chronic phase.8 Here, we describe a novel mutation
acquired at the moment of the IM resistance, consisting
in an insertion of 12nt, and leading to the conservation of
the open reading frame (ORF). 

The 57-year old female patient was diagnosed in July
2006 with bi-phenotypic acute leukemia (hyperleukocy-
tosis at 48 G/L with 47% of blasts exhibiting myeloid and
lymphoid features: CD13+, CD33+, CD19+, CD10+ and
CD22+). The procedures followed were in accordance
with the Helsinki Declaration as revised in 2008. A kary-
otypic analysis demonstrated a t(9;22)(q34;q11) as sole
anomaly and molecular analysis detected M-BCR-ABL
transcript. Hyper C-VAD and IM at 800 mg/day were
used as induction regimen leading to complete remission.
Consolidation therapy with alternating high-dose
methotrexate plus cytarabine and Hyper C-VAD plus IM
were given. She achieved a complete hematologic remis-
sion, a complete cytogenetic response and a major molec-
ular response (BCR-ABL/ABL IS 0.06%). In April 2007, as
she didn’t have any HLA-matched donor she underwent
high-dose therapy with cyclophosphamide plus total
body irradiation (12Gy) conditioning regimen followed
by the autologous transplantation of G-CSF collected
PBSC. As the BCR-ABL/ABL IS rose to 0.09% IM was re-
introduced at 600 mg/day leading to a sustained drop of
the transcript level to 0.035% six months later (Figure 1).
Then the transcript ratio rose rapidly within three
months (0.7%; 2.4%; 8.1%). A mutation screen per-
formed in April 2008 revealed an insertion of 12nt in
100% of the BCR-ABL transcripts and no other mutation.
This mutation induced the insertion of 4 aa (A, F, G and
S) between I293 and K294 (Figure 2). Retrospective
analyses revealed that the mutation could be detected by
a sensitive RQ-PCR on the cDNA five months before
relapse, even while the patient experienced a molecular
response (BCR-ABL/ABL IS at 0.035%). The proportion
of the mutated clone in the setting of minimal residual
disease assessed by nested PCR-RFLP analysis was 100%
at this time (Figure 1). Comparison of this 12nt with
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