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Chronic autoimmune or pathogen-induced immune reactions resulting in lymphoid neogenesis are associated with
development of malignant lymphomas, mostly extranodal marginal zone B-cell lymphomas (MZBCLs). In this review
we address (i) chemokines and adhesion molecules involved in lymphoid neogenesis; (ii) the autoimmune diseases and
pathogens which are associated with development of B-cell lymphomas; (iii) the molecular mechanisms involved in the
initiation and progression of MZBCL; and (iv) ‘potential’ mouse models for MZBCL.
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Lymphoid tissue neogenesis and ectopic germinal
center formation

Inflammation is a local response to cellular injury and is initi-
ated by macrophages and local epithelial and/or stromal cells
that sense microorganisms and cell damage by pattern recogni-
tion receptors, i.e. the Toll-like receptors (TLRs), soluble intra-
cellular NOD-like receptors and RIG-like helicases.1 The trig-
gered cells respond by secretion of a plethora of inflammatory
mediators such as histamine, prostaglandins, leukotrienes,
platelet-activating factors and typical pro-inflammatory
chemokines and cytokines like IL-1β, IL-6, IL-8 (CXCL8) and
TNF.2 These mediators, and in particular TNF, lead to endothe-
lial activation and vasodilatation followed by a local efflux of
circulating leukocytes. The first leukocytes arriving on site are
granulocytes which combat the microbial invaders, while
monocytes/macrophages clean up dead cells, including apop-
totic granulocytes and destroyed tissue.3 In parallel, dendritic
cells (DCs) take up and process antigens (Ag) from the intrud-
er, mature and migrate to a local lymph node to set off an adap-
tive immune response. 

Chronic inflammatory conditions, due to improper eradica-
tion of pathogens, auto-immune processes or chronic allograft
rejections, are associated with the genesis of organized lym-
phoid tissue. In recent years, a number of key molecular deter-
minants operating during the generation of tertiary lymphoid
tissue, have been identified. In the complex sequence of events,
TNF is again one of the key molecules as it induces the produc-
tion of CCL19 and CCL21 (SLC), which are important for the
attraction of B- and T-lymphocytes. 

The infiltrating lymphocytes switch on expression of mem-
brane-bound lymphotoxin α1β2 (mLTα1β2) when activated e.g.
by Ag.4 High levels of mLTα1β2 lead to lymphotoxin receptor
(LTβ-R) ligation on stromal cells and/or macrophages and
induce CXCL13 (BLC) production.5 The local production of
CXCL13 mediates homing of B cells and induces the arrived B
cells to further upregulate mLTα1β2 and probably also TNF. The
enhanced interaction of CXCL13-producing stromal cells with
the TNF- and mLTα1β2- producing B cells promotes differentia-
tion of resident stromal cells into follicular dendritic cells
(FDCs) which start expressing characteristic molecules to trap
immune complexes, i.e. the complement receptors CD21 and
CD35 and the FcγR-IIB.6-8 Subsequent production of CXCL13
by FDCs establishes a positive feedback loop essential for
ectopic lymphoid tissue development, similar to embryonic
lympho-organogenesis and normal follicle formation (Figure
1).9-12 The importance of LT and TNF in this process has been
demonstrated by transgenic expression of TNF, LTα and LTα/β
in the pancreas and the kidneys, leading to formation of organ-
ized lymphoid tissue including FDC-containing follicles.10,11

Transgenic expression of CCL21 alone, resulted in extensive
lymphoid tissue development in the pancreas.12 However,
ectopic expression of CXCL12 (SDF), CCL19 or CXCL13 leads
to attraction of lymphocytes, some compartmentalization but
not to the genesis of FDC-containing follicles.12

Depending on the type of pathogen, i.e. differences in the Ag
presentation mode and the combination of costimulatory mol-
ecules and cytokine signals, Ag presenting cells (APCs) guide T-
cell differentiation into the direction of T-helper type 1 (TH1) or
T-helper type 2 (TH2) cells. A TH1-polarized response depends
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on IL-12 and results in IFN-γ producing T cells which also
produce IL-2 and TNF and in their turn stimulate
macrophages, natural killer (NK) cells and CD8+ cytotox-
ic T cells. This type of reaction mainly generates cellular
responses against intracellular pathogens like viruses but
also evokes T-cell help leading to production of, for
example, opsonizing IgG2 antibodies (Ab).13 A TH2
response is characterized by secretion of IL-4, IL-5 and IL-
13, and yields humoral immunity, in particular the gener-
ation of plasma cells that secrete high-affinity Abs, main-
ly of IgG1, IgG4, IgA and IgE classes.13,14

In the ectopic follicles, germinal center (GC) reactions
may occur (Figure 1). There are no reasons to assume that
the biological processes operating in ectopic GCs differ
from those in GCs of secondary lymphoid tissues. In sec-
ondary lymphoid tissues, GC reactions are initiated after
activation of B cells and T cells by native and processed
antigenic determinants, respectively. The B cells bind and

internalize antigenic proteins with their membrane-
bound immunoglobulins (mIg or B-cell Ag receptors,
BCR) and, after intracellular processing, express Ag-
derived peptides in MHC-II molecules at their surface.
CD4 T cells, that are activated through cognate interac-
tions with these peptide-MHC complexes, recompense
the B cells by providing costimulatory signals (T-cell help)
through CD40, CD80, CD86 and cytokine receptors.15,16

When properly stimulated at the follicular boundaries,
the B cells directly differentiate into short-lived Ab-form-
ing plasma cells or migrate back into the follicle to under-
go a phase of brisk proliferation thereby creating the GC
dark zone.17,18 The rapidly proliferating B cells, termed
centroblasts, express high levels of the DNA mutator acti-
vation-induced-cytidine-deaminase (AID) and accumu-
late nucleotide substitutions in their Ig variable (IgV)
genes, a process designated as somatic hypermutation
(SHM).19,20 B cells in the GC are prone to undergo apopto-

Figure 1. Lymphoid tissue neogenesis
and ectopic germinal center forma-
tion. Upper panels: (A) chronic inflam-
mation is characterized by high levels
of TNF, inducing stromal cells to pro-
duce CCL19 and CCL21 which attract
B- and T- lymphocytes. (B) the inter-
play between CXCL13-producing stro-
mal cells and increasing numbers of
mLTα1β2 and TNF-expressing B lym-
phocytes, leads to the development of
follicular dendritic cells (FDCs) and
subsequent formation of lymphoid fol-
licles. (c) T cells provide specific help
to antigen activated B cells via costim-
ulatory cytokines and membrane
receptors. Lower panels: immunohis-
tochemical stainings on a well-organ-
ized lymphoid infiltrate in a minor sali-
vary gland of a Sjögren’s syndrome
patient. Highlighted is a B-cell follicle
including a germinal center using Abs
specific for B cells CD20, plasma cells
CD138, predominantly follicular den-
dritic cells CD21 and the proliferation
marker Ki67. 
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sis except for those which, based on favorable point
mutations, obtain higher affinities of their BCRs for the
Ag. These high-affinity B cells are selected in the GC
light zone based on successful competition for survival
signals elicited by native Ag that is exposed at the surface
of FDC, and by CD40L from GC T cells.21 In addition,
the Ag-selected B cells may undergo class switch recom-
bination (CSR) a process during which the switch (S)
region sequence upstream of Cµ-Cδ is recombined with
any of the other S region sequences located 5’ of each of
the constant region genes Cγ3, Cγ1, Cα1, Cγ2, Cγ4, Cε
and Cα2, thus leading to isotype switching from
IgM/IgD to either IgG, IgA or IgE.22 The Ag-selected B
cells, either class-switched or not class-switched, will
finally differentiate into memory B cells or Ab-producing
plasma cells.18

Marginal zone B cells
In humans and rodents, distinct populations of recircu-

lating peripheral B cells are being distinguished, i.e. naïve
(B2) or follicular (FO) B cells, naïve CD5+ B cells, margin-
al zone (MZ) B cells and class-switched memory B cells
(Figure 2). Initial studies in mice and humans indicated
that CD5-expressing naïve B cells frequently display

poly-/self-reactivity.23-25 However, more recent work in
humans demonstrated a similar frequency of poly-/self-
reactivity between CD5– and CD5+ naïve B cells.26,27 MZ
B cells particularly respond to T-cell independent type 2
(TI-2) Ags, like large polysaccharides of bacterial cell
walls and polymeric bacterial flagellin, which by repeti-
tive antigenic epitopes, are able to crosslink BCRs. Naïve
B2 cells are involved in T-cell dependent (TD) GC reac-
tions, generating plasma cells, secreting high affinity Igs,
and CD27+ memory B cells. Recently, we obtained evi-
dence in primary human lymph nodes that isotype-
switched memory B cells can re-engage in GC reac-
tions.28

The marginal zone (MZ) was originally defined as an
anatomical compartment within the spleen located
around primary or secondary follicles and containing B
cells with distinct phenotypic and functional characteris-
tics. The MZ of the spleen is believed to be positioned in
such a way that it primarily encounters blood borne
pathogens. Later, primary mucosa-associated lymphoid
tissues (MALT) of e.g. Waldeyer's ring, Peyer’s patches
and appendix, locations known for a significant influx of
Ags, were also found to contain a marginal zone. MZ B
cells in mice and rats express essentially unmutated IgV
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Figure 2. B-cell development in
man. Transitional B cells in the
spleen potentially mature into
three B cell subsets: (i) CD5+

mature naïve B cells; (ii) conven-
tional mature naïve B2 or FO B
cells; and (iii) marginal zone
(MZ) B cells which contain
mutated IgV genes possibly
aquired in a T-cell independent
manner. After antigen recogni-
tion, mature naïve B2 cells
engage in T-cell dependent ger-
minal center (GC) reactions in
which SHM and CSR occur, gen-
erating high-affinity class-
switched memory B cells and
plasma cells (PC). 
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genes and are supposed to be non-recirculating.29 On the
other hand, human MZ B cells of both spleen and Peyer’s
patches do harbor mutated IgV genes and recirculate
(Figure 2).30-32 Human splenic MZ B cells are IgMhi IgDlo

and co-express the B-cell markers CD20, CD22 and
CD79a/b, the memory B-cell marker CD27, the comple-
ment receptors CD18/CD11b, CD21 and CD35, and the
anti-apoptotic molecule BCL-2. MZ B cells are negative
for CD5 and CD23 as well as for the GC markers CD10
and BCL-6. Human MZ B cells, both in tissues and in the
circulation, express high levels of CD1c. Expression
arrays of splenic and recirculating IgM+ IgD+ CD27+ B cells
revealed similar profiles, including high expression of
CD31, CD44 and IL-6, thus confirming the non-resident
nature of MZ B cells in the humans.32

Where and when human MZ B cells obtain their
somatic IgV mutations is still under debate. There is evi-
dence that this occurs outside of GCs as part of an innate
diversification program, like in sheep and birds.32 This is
supported by the fact that mutated IgM+ IgD+ CD27+ MZ
B cells are also found in CD40L-deficient, hyper-IgM
patients lacking GCs and that the Ig repertoire of MZ B
cells is as diverse as naïve B cells, thus not resembling the
highly selected Ig repertoire of class-switched IgM– IgD–

CD27+ B cells.33,34 Moreover, AID expression was
observed in splenic MZ B cells of children under the age
of two years, but not in older individuals.34 Recent data
by Scheeren et al.35 indicated that MZ B cells, with mutat-
ed IgV genes, are already present in human fetuses in
which no active immune responses are thought to hap-
pen. AID expression was found in fetal liver and mesen-
teric lymph nodes but not in the fetal spleen.
Repopulation experiments with human hematopoietic
stem cells in Rag2 -/- γc -/- mice showed that IgV-mutat-
ed MZ B cells develop in a T-cell independent manner.35

Others think that MZ B cells mutate their IgV genes with-
in GCs and argued that some residual GCs may be pres-
ent in CD40L-deficient patients.36 GC formation without
T-cell help has been described in mice, albeit these GCs
were smaller, short-lived and SHM frequencies were low.
Moreover, CD40L-deficient patients have significantly
lower numbers of circulating MZ B cells, being ~20–25%
as compared to healthy individuals, indicative for at least
a partial defect in MZ B-cell development.36 According to
this scenario, MZ B cells would thus not belong to a dis-
tinct developmental lineage, but originate from conven-
tional naïve B2 or follicular (FO) B cells. As currently there
are no clues as to the heterogeneity of the MZ B-cell pop-
ulation, the possibility of multiple developmental routes
producing hypermutated B cells with an MZ-like pheno-
type is not excluded (Figure 2). 

It has been demonstrated that about 4% of MZ B cells
are responsive to bacterial polysaccharides. Still, a large
fraction of MZ B cells may thus have other specificities.37

In one donor, previously vaccinated with Streptococcus
pneumoniae polysaccharide Ag, 2 of the 27 Abs (7%) gen-
erated out of the MZ B-cell fraction, specifically reacted
with this bacterial Ag.37 Capolunghi et al.38 showed, by
polyclonal activation of naïve and MZ B cells with CpG
DNA, anti-S. pneumoniae (PnPS serotype 14) production
exclusively by MZ B cells. In children below the age of
two years, no or limited responses are detected against

these TI-2 Ags.32 After the age of two, the percentage of
IgM+ IgD+ CD27+ MZ B cells in the blood increases,
which coincides with the appearance of the anatomical
MZ structure in the spleen and with increased humoral
responses to TI-2 Ags, such as pneumococcal polysaccha-
rides.32,39

Human IgM+ CD27+ MZ B cells, when compared to
IgM+ CD27– naïve B cells, appear to be selected against
poly- and self-reactive BCRs. This selection is associated
with a decrease in the average length of the IgVH comple-
mentarity determining regions 3 (IgVH-CDR3), which is
largely due to deletion of B cells expressing the JH6
gene.37 Indeed, long IgVH-CDR3s have been associated
with self- and poly-reactivity.40 Upon reversion of somat-
ic IgV mutations to their corresponding germline IgV
sequences, these Abs did not regain poly- and/or self-
reactivity. This indicates that naïve B cells with poly-/self-
reacting BCRs are already efficiently excluded from the
MZ B-cell pool before the onset of SHM.37 Also in the rat,
selection of naïve B cells into the MZ B-cell compartment
is accompanied by a decrease in IgVH-CDR3 lengths.29

This selection is most likely driven by self antigens as it is
also observed in germ-free rats.41 Notably, no preferential
selection of short CDR3s is observed in conventional
class-switched IgG+ CD27+ memory B cells. Surprisingly,
it has been described that ~50% of IgG+ CD27+ B cells
show poly-/self-reactivity which is generally lost when
reverting IgV SHM. Thus, the poly-/self-reactivity of IgG+

memory B cells is due to the accumulation of IgV SHM
and not due to intrinsic properties of the CDR3s.42

Auto-immune inflammatory conditions associated with
B-cell lymphomagenesis

A number of chronic autoimmune conditions, organ-
specific as well as systemic, are associated with an
increased incidence of non-Hodgkin’s lymphomas (NHL).
Among these, Hashimoto’s thyroiditis (HT) and Sjögren’s
syndrome (SS) are the best examples with increased rela-
tive risks of 3-6743,44 and 9-44,43,45-48 respectively to develop
extranodal marginal zone B-cell lymphomas (MZBCLs).
Moreover, for SS patients a 9-fold increased risk of
obtaining a diffuse large B-cell lymphoma (DLBCL) has
been reported. These lymphomas may develop either de
novo or by transformation out of a prior low-grade
MZBCL.48-51 Systemic lupus erythematosus patients were
reported to have 8-fold and 3-fold higher incidences of,
respectively, MZBCL and DLBCL as well.48,52 Rheumatoid
arthritis (RA) appears to be weakly associated with non-
RA treatment related, development of DLBCL and lym-
pho-plasmacytic lymphoma, with reported odd ratios of
1.8 and 2.5, respectively.52,53 A recent meta-analysis, how-
ever, did not reveal an overall statistically significant asso-
ciation between RA and NHL.48 Celiac disease is strongly
associated with the occurrence of enteropathy-type T-cell
lymphoma.52 It is not understood why some autoimmune
diseases do and many others, like e.g. Crohn’s disease,
ulcerative colitis, type I diabetes, multiple sclerosis, perni-
cious anemia and sarcoidosis, do not entail increased risks
of developing NHLs (Table 1).48,52-62

Sjögren’s syndrome
Sjögren’s syndrome (SS) is a systemic autoimmune dis-
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ease characterized by complaints of dry mouth (xerosto-
mia) and eyes (keratoconjunctivitis sicca). Biopsies of
(minor) salivary and lacrymal glands typically show
mixed infiltrates consisting of CD4 T cells, some CD8 T
cells, macrophages, myeloid and plasmacytoid dendritic
cells (DC), B cells (~20%) and plasma cells. In about 20%
of the patients the infiltrates contain GCs (Figure 1).54

Compatibly, lymphocyte attracting chemokines such as
CXCL12 and CCL21 which mainly attract T cells and
CXCL13 which attracts B cells are abundantly expressed
in SS.54,63-66 High expression levels of CXCL13 and CCL21
within inflamed tissues correlated with the extent of
inflammatory aggregates, the degree of T-cell/B-cell com-
partmentalization, the number of peripheral lymph node
addressin (PNAd)-positive high endothelial venules
(HEVs) and the presence of FDC-network containing
GCs.66 Salivary gland epithelial cells of both normal and
SS patients produce CCL28, which mediates the homing
of CCR10-expressing IgA plasmablasts.67 Plasmacytoid
DCs are present in SS salivary glands which secrete high
amounts of type I IFNs (IFN-α and β) and IL-6, support-
ing plasma cell differentiation.68 Furthermore, IFN-α
induces the B cell and plasma cell survival cytokine BAFF,
which was indeed found to be highly expressed in SS
patients.68,69 CD4+ T cells from SS salivary glands express
~40-fold higher mRNA levels of IL-2, IFN-γ and IL-10, as
compared to peripheral CD4+ T cells from SS patients or
from healthy controls. In agreement with this, the IL-4
and IL-5 mRNA levels of the SS CD4+ T cells were low.70

Thus, in general, the proinflammatory T-helper cell 1
(TH1)-type cytokines IL-2 and IFN-γ are abundant in
Sjögren’s sialadenitis.70 Accordingly, the IFN-γ induced
inflammatory chemokines CXCL9 (MIG) and CXCL10
(IP-10) are highly expressed in SS salivary gland epithelial
cells but not in normal salivary glands.64

A variety of nuclear auto-Ags are humoral immune tar-
gets in SS patients. Anti-nuclear Abs, among which are
the anti-SSA/Ro and anti-SSB/La Abs, are detectable in
70-85% of the patients. SSA/Ro52, SSA/Ro60 and
SSB/La Ags together form a complex with a small cyto-
plasmic uridine-rich Y RNA.71 Five anti-SSA/Ro human
monoclonal Abs of SS patients have been produced, i.e.
2 anti-Ro52 IgM Abs derived from peripheral blood B
cells and 3 anti-Ro60 IgG Abs obtained from B cells of
affected salivary glands. The IgM anti-SSA/Ro52 Abs
were regarded unmutated containing 0 and 3 somatic
mutations in their IgVH genes, while the IgG anti-
SSA/Ro60 Abs were heavily mutated, containing >20
somatic mutations.72,73 By immunohistochemistry using
biotinylated SSA/Ro52, SSA/Ro60 and SSB/La, evidence
was obtained that the anti-SSA/Ro and anti-SSB/La Abs
are produced by local plasma cells, most likely generated
within the ectopic GCs.54 Serum anti-SSA/SSB Ab levels
correlated with the presence of ectopic GCs.74 By
immunohistochemistry, evidence for AID expression
was provided75 and by tissue microdissection formal
proof was obtained of the occurrence of clonal B-cell
expansion and SHM in the ectopic GCs76 (also RJ Bende
et al., unpublished data, 2009). Ig repertoire analysis on
cells isolated from crude tissues of parotid and minor
salivary glands of SS patients, revealed that most (~80%)
of the infiltrating B cells harbored mutated IgVH genes
and thus are GC, marginal zone or memory B cells.77,78

The combined data strongly suggest local generation and
affinity maturation of the auto-Abs.

Hashimoto’s thyroiditis
Hashimoto’s thyroiditis (HT) and Grave’s disease rep-

resent extremes of a clinical spectrum of typical organ-
specific autoimmune diseases, histologically character-
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Table 1. Chronic inflammatory conditions and lymphoma association.
Disease or Cause % of patients Affected tissue Lymphoma Lymphoma sub-types References
Inflammatory condition with ectopic GCs association and odd ratios

Rheumatoid artritis Autoimmune 10-35% Synovial membrane ? DLBCL (OR: 2), LPL (OR: 3) 7, 48, 53
Sjogren’s sialadenitis Autoimmune ~20% Salivary gland Yes DLBCL (OR: 9), MZBCL (OR: 9-44) 43, 45-48, 54
Systemic lupus Autoimmune Systemic Yes DLBCL (OR: 3), MZBCL (OR: 8) 48, 52
erythematosus
Celiac disease Autoimmune a Intestinal mucosa Yes EATCL (OR: 17) 52
Crohn’s disease Autoimmune a Intestinal mucosa No 48, 52
Ulcerative colitis Autoimmune a Colon mucosa No 48, 52
Type I diabetis Autoimmune Pancreas No 48, 52
Multiple sclerosis Autoimmune 30-40% Central nervous system No 7, 48, 52
Sarcoidosis Autoimmune Systemic No 48, 52
Psoriasis Autoimmune Skin No 48, 52
Myasthenia gravis Autoimmune 100%b Thymus No 7
Hashimoto’s thyrioiditis Autoimmune 100% Thyroid gland Yes MZBCL (OR: 3-67) 43, 44, 55
Grave’s disease Autoimmune ~60% Thyroid gland No 7
Arthererosclerosis ? ~30% Arteries No 8
Conjunctivitis Chlamydia psitacci ? Eye Yes MZBCL (OR: ?) 56
Gastritis Helicobacter pylori 30-100% Gastric mucosa Yes MZBCL (OR: ?) 57
Hepatitis HCV 30-85% Liver Yes DLBCL (OR: 2), LPL (OR: 3), MZBCL (OR: 3) 58, 59, 60
Dermatitis Borrelia burgdorferi ? Skin/synovial membrane Yes MZBCL (OR: ?) 61, 62

aIn these inflammatory bowel diseases, it is difficult to distinguish between lymphoid neogenesis and hyperplasia of normal mucosa-associated lymphoid tissue; bEarly onset myasthe-
nia gravis.
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ized by chronic lymphocytic infiltration. In Grave's dis-
ease, inflammation is generally mild and accompanied by
the production of thyrotropin receptor stimulating Abs,
resulting in hyperthyroidism. In HT, the infiltrates are
more severe and progressive, ultimately causing destruc-
tion of the thyroid parenchyma and hypothyroidism. It
has been shown that in all HT patients the lymphocytic
infiltrate is well-organized containing GCs.55 T-cell
attracting chemokines CXCL12 and CCL21 are produced
by the follicular epithelium surrounding HEVs.79 Ectopic
expression of CCL21 in the thyroid of mice leads to the
development of lymphoid tissue containing FDCs,
resembling HT.80 In this model, also the IFN-γ inducible
inflammatory chemokines CXCL9, 10 and 11 were
expressed.80,81 Cultures of CD4 and CD8 T cell clones
retrieved from human HT patient thyroids yielded high
levels of TNF and IFN-γ, whereas hardly any clones pro-
duced IL-4.82 Quantitative RT-PCR on patient thyroids
revealed high levels of IFN-γ and IL-2, confirming that the
TH1 cytokines are highly expressed in HT.83

Auto-Abs produced in HT are specific for thyroglobu-
lin (Tg), thyroid peroxidase (TPO) and the thyroid stimu-
lating hormone receptor (TSH-R). The Abs against Tg
and TPO are not detected in all patients. Auto-Abs specif-
ic for the TSH-R are capable of blocking the activation of
this receptor and thus can contribute to the impairment
of the thyroid function.84 Numerous anti-Tg and anti-
TPO human monoclonal Abs have been reported, isolat-
ed from peripheral blood B cells, thyroid tissue and cervi-
cal lymph node tissue. All these human monoclonal Abs
were heavily mutated containing >10 mutations per IgVH

gene.84 A correlation has been found between the levels of
CCL21, CCL22 and CXCL13 in the inflamed thyroid and
the titers of thyroid-specific auto Abs.79 Biotin-labeled Tg
and TPO were shown to bind immunohistochemically to
ectopic GCs in HT. The combined data support local gen-
eration and affinity maturation of anti-thyroideal Abs.55

Infections indirectly provoking B-cell
lymphomagenesis

Helicobacter pylori-infection related gastric MZBCL is the
most commonly mentioned example of bacterium-driven
tumorigenesis but in fact is the only undisputed exam-
ple.57 Cutaneous MZBCL has been linked to chronic
Borrelia burgdorferi dermatitis (Lyme’s disease) in a minor-
ity of European patients, but not in cases from Asia or the
United States.61,85-87 Recently, an association of Chlamydia
psittaci and ocular adnexal MZBCL was found by PCR in
studies from Italy, South Korea, Germany and
Austria.56,88-90 Immunohistochemistry, laser assisted
microdissection PCR and electron microscopy further
provided evidence that C. psittaci was present in mono-
cytes/macrophages within the MZBCL.91 Moreover, C.
psittaci was cultured in vitro from conjuctival swabs and/or
PBMCs from 25% of ocular adnexal MZBCL patients.92

However, the association between C. psittaci and ocular
adnexal MZBCL could not be confirmed in studies from
The Netherlands, Japan and The United States (Florida),
suggesting geographical differences regarding this link.56,93-

95 Hepatitis C virus (HCV) infection has been inferred in
the development of malignant B-cell proliferations, in
particular splenic and extranodal MZBCLs and

DLBCLs.96,97 In a large intercontinental study, the relative
risks for HCV patients to develop MZBCL, DLBCL or
lymphoplasmacytic lymphoma were calculated as 2.5,
2.2 and 2.6, respectively (Table 1).58

H. pylori is a gram-negative bacterium able to persist
during lifetime in the gastric mucosa and is present in
~50% of the world population. H. pylori binds tightly to
epithelial cells via multiple bacterial surface components.
H. pylori, like most intracellular bacteria, evoke TH1
immune responses characterized by high IFN-γ levels.98-103

IFN-γ targets genes with microbicidal properties such as
enzymes that generate NO and O2 radicals. To circum-
vent the negative effects of these radicals H. pylori pro-
duces radical-scavenging enzymes.104 In addition, H. pylori
secretes urease to neutralize the local low pH. Most
strains of H. pylori possess the cag pathogenicity island,
including the CagA gene. The CagA protein leads to a
massive influx of neutrophils by inducing high produc-
tion levels of the chemotactic factor CXCL8 (IL-8) by
epithelial cells. Later, during the chronic phase also T
cells, B cells, plasma cells and macrophages are recruited
and secondary mucosa-associated lymphoid tissue
(MALT) is formed within the gastric mucosa.105,106 By in
situ hybridization and immunohistochemistry, CXCL13
was found to be expressed in the ectopic primary follicles
and mainly in the mantle zones of ectopic GCs.106 H.
pylori induces a strong Ab response which does not lead
to eradication, but instead may contribute to the tissue
damage. Two human anti-H. pylori single-chain Ig vari-
able fragment (Ig-Fv) isolated from peripheral blood B
cells of a H. pylori-infected patient have been reported,
each displaying mutated IgVH genes (>7 mutations).107

Lymphoid aggregates with GCs have also been observed
in B. burgdorferi-induced skin and synovial lesions, and in
the liver of ~60% of the patients suffering from chronic
HCV infections.59,60,108 In the ectopic GCs of B. burgdorferi-
induced synovitis, B-cell expansion and IgVH diversifica-
tion have been demonstrated.109

Extranodal marginal zone B-cell lymphoma
Extranodal marginal zone B-cell lymphoma (MZBCL)

of mucosa-associated lymphoid tissue, also designated as
MALT lymphoma, appears as heterogeneous infiltrates
containing small centrocytic and monocytoid B cells,
plasma cells and in some scattered immunoblasts and
centroblasts. The growth characteristics of MZBCLs
resemble those of the normal MZ of, for example, Peyer’s
patches. MZBCLs typically expand around ectopic GCs
and are able to invade the epithelium to form lympho-
epithelial lesions. Colonization of ectopic GCs by tumor
B cells contribute to a pseudo-follicular growth pattern.
Also immuno-phenotypically, MZBCL cells are reminis-
cent of normal MZ B cells of the spleen and Peyer’s patch-
es. They express the pan-B cell markers CD20, CD22 and
CD79a/b, the memory B-cell marker CD27, the comple-
ment receptors CD18/CD11b, CD21 and CD35, the anti-
apoptotic molecule BCL-2, and CD1c/CD1d. MZBCLs
do not express CD5 and CD23, nor the GC molecules
CD10 and BCL-6.110 There are as yet no markers by
which MZBCLs can be unequivocally identified.
MZBCLs have a low tendency to disseminate systemical-
ly, a feature which explains why the majority of these
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malignancies can be controlled by local treatments alone.
About 30% of MZBCLs disseminate which, due to
expression of the mucosal homing integrin α4β7, most
often involves other mucosal sites or regional lymph
nodes.111,112 Interestingly, in both lymph nodes and
spleen, MZBCL cells also tend to expand peri-follicularly,
in accordance with their MZ B-cell properties.113

As outlined, the chronic inflammatory conditions
enabling MZBCL development are generally of TH1 type,
characterized by high IFN-γ levels. IFN-γ receptor bind-
ing leads, via STAT1 activation, to induction of genes
encoding microbicidal proteins and to induction of the
transcription factor t-Bet which in its turn induces,
among other genes, expression of the chemokine recep-
tor CXCR3.98,114,115 CXCR3 is the specific receptor for the
IFN-γ induced chemokines CXCL9 (MIG), CXCL10 (IP-
10) and CXCL11 (ITAC). Indeed, extranodal and splenic
marginal zone B-cell lymphomas almost invariably
express CXCR3 and t-Bet.116-119 High expression of
CXCL9 has been demonstrated in histiocytes, fibroblasts
and endothelial cells of thyroid and gastric MZBCLs.120

We recently reported that within the group of MZBCLs,
most cutaneous MZBCLs are distinct as they arise in a
TH2 background and, in accordance with this immuno-
logical context, lack CXCR3 and t-Bet and carry isotype-
switched Igs. Interestingly, a few cases of cutaneous
MZBCL did express IgM and CXCR3 like other
MZBCLs, and were thus most likely established in a typ-
ical TH1 inflammatory environment. Notably, the few B.
burgdorferi-infection associated MZBCLs we have studied
also co-expressed IgM and CXCR3.121

Genetic alterations in low- and high- grade 
extranodal marginal zone B-cell lymphomas

Recurrent chromosomal translocations identified in
MZBCLs are t(11;18) (API-2/MALT1), t(14;18)
(IgH/MALT1), t(1;14) (BCL-10/IgH) and t(3;14) (FOX-
P1/IgH) (Table 2).122-138 Except for the t(11;18), these
translocations involve IgH loci, like most translocations
in other mature B-cell lymphomas.139 The t(11;18) is
extraordinary since it does not involve the Ig locus and
encodes a fusion protein which is constituted by the
amino-terminal portion of API-2 and the carboxyl-termi-
nal of MALT-1. The overexpression of either BCL-10 or
MALT-1, but also the API2-MALT1 chimeric protein,
cause constitutive activation of the canonical NF-κB sig-
naling pathway.140,141 The t(14;18) is found in 5-15% of
pulmonary, salivary gland and ocular adnexae MZBCLs.
About 5% of intestinal and pulmonary MZBCLs harbor
the t(1;14) (Table 2).128-131,142,143 More recently, three novel
IgH translocations in non-gastric MZBCL involving

ODZ2, CNN3 and JMJD2C have been described, of
which ODZ2 and JMJD2C were found recurrently.144

The t(11;18) is present in ~40% of pulmonary- and in
~20% of gastric- MZBCLs and is virtually absent in
MZBCLs of the salivary gland (Table 2).86,128-134 Gastric
MZBCLs harboring the t(11;18) were found to be associ-
ated with CagA-positive strains of H. pylori. CagA
induces activation of neutrophils releasing reactive oxy-
gen species. It has been hypothesized that these are the
genotoxic conditions which are instrumental in generat-
ing the t(11;18).132 The assembled literature indicates that
t(11;18)-carrying MZBCLs generally possess a limited
degree of additional chromosomal imbalances, are non-
responsive to H. pylori eradication therapy and are not
prone to transform into high-grade DLBCLs.50,51,145-147

T(11;18)-negative gastric MZBCLs with a high degree of
genomic imbalances were also associated with H. pylori
independency.148 Trisomies of chromosome 3, 12 and 18
are observed in t(11;18)-negative gastric (20%), pul-
monary (40%), ocular adnexae (40%) and salivary gland
(60%) MZBCLs.128,149 Interestingly, in MZBCLs, concur-
rent gains at 8q24, 9q34, 11q11-13 and 18q21 are fre-
quent.149,150 The gains of these loci appear to target genes
whose products stimulate the NF-κB pathway (i.e.
TRAF2 and CARD9 at 9q34, RELA at 11q11-13 and
MALT-1 at 18q21) and the cell cycle (Cyclin D1 at 11q12-
13) (Figure 3).150 Gain of 6p and loss of 6q23 was specifi-
cally found in ocular adnexal MZBCL in ~25% of the
cases.149,151 High resolution tile-path array CGH indicated
that 6p gains were centered at the TNF locus at 6p21.33
with NF-κB inhibitor-like 1, TNF, LTα and LTβ as puta-
tive target genes.149 The loss of 6q23, consistently deleted
the TNF-induced protein 3 also known as A20 at
6q23.3.149,151 FISH assays further confirmed the occur-
rence of A20 deletions in MZBCLs of the ocular adnexa
(19%), salivary gland (8%) and thyroid (11%) but not in
MZBCLs of lung, stomach, skin and small intestine. A20
is a potent inhibitor of NF-κB signaling which is required
for termination of TNF- and TLR- induced NF-κB activa-
tion. A recent study showed that both MALT1 and API2-
MALT1 can inactivate the A20 inhibitor by proteolysis,
which further implicates A20 in the pathogenesis of
MZBCL.149

The t(3;14)(FOX-P1/IgH), deregulating expression of
the forkhead box P1 (FOX-P1) transcription factor, was
initially reported by an Austrian study in as much as 4
out of 20 (20%) ocular adnexae MZBCLs and in 3 out of
6 (50%) thyroid MZBCLs.127 However, in more recent
studies by North American and German groups, this
translocation was not detected in series of 133 and 122
MZBCLs, respectively.129,135 Also others did not detect the
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Table 2. Chromosomal translocations of MZBCL.
Translocation Stomach Lung Salivary gland Intestine Ocular adnexae Skin Thyroid

t(11;18)   API2/MALT (57/256)   20% (63/168)  40% (3/144)   2% (13/41)   35% (10/134)   7% (4/140)   3% (1/29)   3%
t(14;18)   IgH/MALT (2/118)   2% (6/70)   9% (5/72)   7% (0/28)   0% (11/79)   15% (7/107)   7%a (0/11)   0%
t(1:14)   BCL10/IgH (0/118)   0% (2/70)   3% (1/72)   1% (2/28)   7% (0/79)   0% (0/94)   0% (0/11)   0%
t(3;14)   FOXP1/IgH (9/267)   3% (0/125)   0% (0/91)   0% (0/25)   0% (4/146)   3%b (2/36)   6%b (3/25)   12%b

aThe t(14;18) IgH/MALT was only detected by Streubel et al.128 in 7 of 51 cutaneous MZBCL; bThe t(3;14) FOXP1/IgH was only detected by Streubel et al.127 in 4 of 20 ocu-
lar adnexae MZBCL, in 2 of 20 cutaneous MZBCL and in 3 of 6 thyroid MZBCL; t(11;18)85,128-134; t(14;18)128-131; t(1;14)128-131; t(3;14)127,129,135-138.
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t(3;14) in series of 126 ocular adnexae and 19 thyroid
MZBCLs.129,135-137 On the other hand, Goatly et al.136 report-
ed the t(3;14) in 8 out of 188 (4%) gastric MZBCLs (Table
2). Strong nuclear FOX-P1 expression has been found,
irrespective of the t(3;14) or FOX-P1 copy number
changes, in ~30% of MZBCLs.136,138 Sagaert et al.138 recent-
ly described 5 MALT lymphomas with strong nuclear
FOX-P1 expression, one with the t(3;14) and 4 having tri-
somy 3 and 18, which all transformed into an aggressive,
ABC-type DLBCL.138 Finally, there is little dispute that
t(3;14) is prevalent in a subset of DLBCLs, with extran-
odal presentation and having the activated B cell-like
(ABC) expression profile.135,137,152

Although the precise frequencies of transition of the
various low-grade MZBCLs into DLBCLs are not clear in
literature, ample evidence exists that MZBCLs can trans-
form particularly into ABC-type DLBCLs rather than
into GC-type DLBCLs: (i) trisomy 3 has been observed
as a characteristic alteration in both MZBCLs and ABC-
type DLBCLs;49,51,153 (ii) MZBCLs with high nuclear FOX-
P1 were documented to progress into ABC-type
DLBCLs;138 (iii) the majority of genomic alterations in
t(11;18)-negative MZBCLs are also found in ABC-type
DLBCLs;49,153 (iv) both MZBCLs and ABC-type DLBCLs
are characterized by constitutive NF-κB signaling;154,155

(v) DLBCLs which still contain a low-grade lymphoma
component are mostly of the ABC type;156 (vi) primary
gastrointestinal DLBCLs show a similar expression pro-
file as gastrointestinal MALT lymphoma;157 and (vii) the
majority of rheumatoid arthritis-associated DLBCLs are
of the ABC type.158

The molecular mechanisms underlying MZBCL pro-
gression are as yet ill-defined. A number of genetic alter-
ations has been associated with histological transforma-
tion such as allelic loss and mutation of TP53 and hyper-
methylation or deletion of CDKN2A (p16-INK4A,
ARF).159-161 Furthermore, several chromosomal gains and
losses are associated with transformation.50 Since most
MZBCLs express mutated IgV genes with intra-clonal
sequence variation, proving previous and suggesting con-
tinued exposure to the SHM machinery, a role for the
DNA mutator AID in MZBCL transformation cannot be
excluded. However, immunohistochemical expression
analyses showed that AID is detectable only in a minori-
ty of the cases.75,156 Accordingly, several investigators
demonstrated variable, but generally low AID mRNA
expression levels in MALT lymphomas.156,162,163 On the
other hand, in ~50% of DLBCL, several proto-oncogenes,
including PIM1, PAX5, RhoH/TTF and cMYC are targeted
by aberrant SHM. Sequence analysis of MALT lym-
phomas revealed that 75% of low-grade MZBCLs and
100% of low-grade MZBCLs with a DLBCL component
contained mutations in one or more of these oncogenes.
In the latter group, higher frequencies of aberrant SHM
were found as compared to pure low-grade MZBCLs,
supporting the concept of AID-mediated lymphoma pro-
gression.156

BCR specificity of marginal zone B-cell lymphomas
The general idea is that MZBCLs still depend on envi-

ronmental stimuli and on antigen-receptor ligands. IgVH

and IgVL gene sequence analyses have revealed that in
spite of high mutation loads the overall structure of the Ig
is being preserved.119 Apparently, selective forces prevent
the outgrowth of BCR- MZBCL mutants.119 Nearly 80%
of early stage H. pylori-associated gastric MZBCLs, but
also a proportion of cutaneous and ocular adnexal
MZBCLs is curable by bacterial eradication alone.62,164,165

Similarly, IFNα-2b treatment can cause regression of
HCV-associated MZBCL.166,167

In vitro culture experiments with gastric MZBCL cells
have revealed that the tumor B cells do not respond to H.
pylori directly, but instead depend for their survival on
stimuli provided by intra-tumoral, H. pylori-specific T
cells.168 We have recently produced soluble recombinant
Abs derived from gastric and other MZBCLs, and indeed
did not observe any reactivity with H. pylori bacteria. 119

Alternatively, it appeared that ~10% of gastric, and as
much as ~40% of salivary gland MZBCLs expressed V1-
69/JH4- and V3-7/JH3- encoded BCRs with strong IgVH-
CDR3 amino acid sequence homology to canonical
rheumatoid factors (RF).119,169,170 Among an extensive panel
of B-NHLs, this RF homology was unique for MZBCL.119

Indeed 7 out of 10 recombinant MZBCL-derived Abs
showed strong in vitro binding activity to immobilized
human IgG.119 MZBCLs with high affinity IgG-specific
BCRs may thus be continuously stimulated by Ab-Ag
immune complexes, like IgG-opsonized H. pylori in
chronic gastritis or IgG-chromatin and/or IgG-SSA/SSB-
RNA in Sjögrens sialadenitis. The IgG-reactive BCRs may
also capture and internalize Ab-Ag complexes and acti-
vate TLR9 and/or TLR7 by autologous or bacterial CpG
DNA or by autoantigen-associated RNA, consequently

Figure 3. Scenarios of multistep development of gastric MZBCL.
Chronic H. pylori (HP) infection induces lymphoid tissue neogene-
sis. As a result of both direct and indirect stimulation infiltrating B
cells will undergo active proliferation. Direct antigenic stimulation
can be accomplished by auto-Ags like IgG-containing immune
complexes, by bacterial or other, unknown, Ags. Indirect stimula-
tion is provided by H. pylori-specific T cells. Due to the acquisition
of genetic damage, B cells may obtain growth advantage. Gastric
MZBCL with t(11;18) grow autonomously, do not respond to H.
pylori eradication, but rarely progress to DLBCL. Gastric MZBCL
with trisomy 3 and/or 18 and/or having extra copies of the MALT
gene have a more aggressive clinical behavior. Following inactiva-
tion of the tumor suppressor genes TP53 or CDKN2A or due to
mutation in oncogenes, possibly by aberrant SHM, MZBCL may
transform to DLBCL.
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potentiating the NF-κB pathway (Figure 4). Synergistic
effects of BCR and TLR9 or TLR7 engagement have orig-
inally been shown in the mouse by T-cell independent
activation of IgG-reactive B cells, using IgG-chromatin or
IgG-RNA complexes.171,172

Intriguingly, none of 8 previously published,119 nor 12
newly analyzed MZBCLs that harbored the t(11;18),
express BCRs with RF homology or reactivity170 (also H.
Inagaki, written communication, Department of
Pathology, University Graduate School of Medical
Sciences, Nagoya, Japan, April 4, 2008). Moreover, the
frequency of RF-BCRs, being ~40% of salivary gland,
~10% of gastric and <1% of pulmonary MZBCLs,
inversely correlates with the t(11;18) frequencies found
in these entities (Table 2).119,128,132,133 This tentative inverse
relation suggests that t(11;18)+ MZBCLs do not depend
on BCR (and perhaps neither on CD40 and TLR7/9) sig-
nals for their expansion since constitutive NF-κB activa-
tion is already guaranteed due to the expressed fusion
protein (Figures 3 and 4). The facts that: (i) t(11;18)+ gas-
tric MZBCLs are resistant to H. pylori eradication thera-
py; and that (ii) within the overall group of MZBCLs,
t(11;18) and trisomy 3 harboring cases were from
patients without underlying autoimmune diseases, sup-
port this hypothesis.145,147,173 Of note, the finding that
t(11;18)+ MZBCLs lack RF-BCRs, indicates that this
genetic aberration occurs independently of the selection
process favoring this specificity.

Mouse models of marginal zone B-cell lymphoma
As yet a limited number of mouse models have been

generated aimed at MZBCL development. In general,
four categories of potential 'MZBCL' models can be dis-
tinguished: (i) mice with transgenic expression of genes
involved in lympho-organogenesis; (ii) mice chronically
challenged with Helicobacter species; (iii) mice carrying
MZBCL-specific gene alterations; and (iv) mice with

chronic or uncontrolled T-cell mediated B-cell activation.
As delineated in the first chapter, transgenic expression

of the key molecules LT and TNF results in augmented
lymphoid tissue neogenesis.10,11 Similarly, transgenic
expression of B- and T-lymphocyte-attracting chemo-
kines initiates formation of ectopic lymphoid tissues,
presumably also via the LT/TNF axis.12 Although it could
be argued that in these transgenic animals the continued
ectopic lymphoproliferation would ultimately lead to
cellular transformation, development of MZBCLs has
not been described. This may be due to the fact that in
these mice chronic antigenic stimulation has not been
assayed. 

In mice infected with Helicobacter species, the occur-
rence of organized lymphoid tissues in and beyond the
gastric mucosa has been described.174-177 Oral infection of
A/J mice with Helicobacter sp leads to development of
hepatic inflammatory lesions containing HEVs, the pro-
duction of CCL21 and CXCL13 and influx of B and T
cells.177 Infection of BALB/c mice with Helicobacter felis
resulted in a massive influx of B cells and lympho-
organogenesis in the stomach.174,175 It was reported that
after 23 months of infection, 25-75% of these mice
developed low- or intermediate-grade MZBCLs. In these
mice, regression of the infiltrates after anti-bacterial ther-
apy was also demonstrated.174,175 Other investigators have
infected BALB/c mice with different 'H. heilmannii' iso-
lates originating from human and animal hosts. MZBCLs
developed in ~25% of the infected mice. The lymphoma
prevalence was dependent on the origin of the infecting
isolates and the duration of infection.176 Finally, infection
of C57BL/6 mice with Candidatus H. heilmannii resulted
in the development of gastric MALT lymphoma in 100%
of the mice after six months.178 It is noted that in all these
infection protocols, the diagnosis of MZBCLs was based
on morphological grounds alone, i.e. the presence of cen-
trocyte-like cells and lympho-epithelial lesions, but not
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Figure 4. MZBCL proliferation
depends on constitutive NF-κB
signaling provoked either by
combined CD40/BCR/TLR9 sig-
naling or by the API2-MALT1
fusion protein. Gastric- and sali-
vary gland MZBCL, lacking
t(11;18), depend on CD40L and
other T-help factors, together
with the (RF-specific) BCR
and/or TLR7/9 NF-κB signals.
MZBCL with constitutive NF-κB
signaling due to t(11;18), do not
depend on T-helper factors, BCR
nor TLR signaling. 
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on the assessment of monoclonality by Ig gene rearrange-
ment assays nor on any other molecular genetic analy-
ses.174,175

Transgenic FVB mice expressing the API2-MALT1
fusion gene, driven by the SRα promoter under control
of the Eµ Ig heavy chain enhancer, specifically triggered
the expansion of splenic MZ B cells. However, the
expression of the API2-MALT1 fusion protein alone was
not sufficient for the development of lymphomas over a
period of 50 weeks.179 Immunization of these mice with
complete Freund's adjuvants induced the loss of splenic
compartmentalization and a poly- or oligo-clonal lym-
phoid hyperplasia which gradually disappeared after
cessation of the antigenic stimulation.180 P100-/- mice
with signal-independent activation of the non-canonical
NF-κB pathway had markedly elevated MZ B-cell num-
bers and a disturbed spleen microarchitecture.181 BAFF
overexpression, activating the non-canonical NF-κB
pathway in BAFF-Tg and BAFF-Tg/TNF -/- mice, result-
ed in increased survival and accumulation of transitional
T2 and MZ B cells.182,183 Interestingly, the BAFF-Tg/TNF -
/- mice showed a high incidence of B-cell infiltrates with
histological features of extranodal MZBCL, but again
not substantiated by molecular analyses.183 Mice with
constitutively active IKK2, enhancing the canonical NF-
κB pathway, showed a mild B-cell hyperplasia due
rather to prolonged survival than to proliferation. Cell
proliferation was dramatically enhanced when the IKK2
B cells were stimulated via the BCR or TLR4/9.184 Mice
with B cell-specific expression of a chimeric CD40/latent
membrane protein 1 (LMP1) protein showed an
increased number of FO- and MZ- B cells in secondary
lymphoid organs. The constitutive CD40-like signaling
via the cytoplasmic LMP-1 tail in the B cells induced acti-
vation of the non-canonial NF-κB pathway, but also of
the MAP kinases, Jnk and ERK.185 Interestingly, in mice
of >12 months, oligo- and mono-clonal B-cell lym-
phomas developed at a high incidence. These B-cell lym-
phomas did not resemble human MZBCLs as they did
not express CD21. 

Some mouse models nicely underscore the role of
chronic T-cell help in the development of B-cell lym-
phomas. For example, in Igλ transgenic mice with B cells
presenting Igλ idiotype (Id)-derived peptides on MHC
class II, the transferral of Id-specific CD4 T cells resulted
in B-cell lymphoma development after approximately 40
weeks. The lymphomas resembled MZBCLs as they
expressed CD21, CD35, CD1d and IgM. Moreover, the
lymphomas were shown to be mono-/ bi-clonal, har-
bored some somatic IgVH mutations and had major cyto-
genetic aberrations.186 Mice deficient for the autoimmune
regulator (Aire) gene showed a high frequency of
MZBCLs after 15-24 months. The B-cell lymphoprolifer-
ations were shown to be oligoclonal in the spleens of 4
out of 9 mice and displayed a MZ B-cell phenotype with
low IgD and high CD1d.187 Interestingly, Aire is a recent-
ly discovered transcription factor that is expressed in
thymic medullary epithelial cells and plays a key role in
central tolerance induction.188 Thus, in these mice
MZBCL development is most likely related to chronic
help from autoreactive T cells. 

In conclusion, the assembled literature points towards
a key role of constitutive NF-κB signaling in MZBCL
development. This requirement is fulfilled by the combi-
nation of persistent BCR triggering, chronic T-cell help
and TLR stimulation elicited by chronic infection or
autoimmunity. In the ectopically formed lymphoid tis-
sue, these physiological stimuli can be overruled by
genetic alterations which guarantee constitutive NF-κB
signaling, thus making the cells less dependent on the
environmental stimuli.
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