
16q23-q24 (the same region as DHSt),16 while others
map to chromosome 2q35-q36, which may suggest the
involvement of a heterodimer.17

Certain other conditions result in increased erythro-
cyte cation permeability, including sickle cell disease and
the invasion of erythrocytes by the malaria parasite,
Plasmodium falciparum.18 The transporter of the cation
leak in these conditions is not known; however, it is
tempting to speculate that these leaks may also be con-
ducted by disrupted or misfolded red cell proteins, as is
the case for HSt. HSt represents a distinct group of disor-
ders caused by mutations that convert band 3 or RhAG
into cation conductors in the red cell membrane; the
molecular bases of DHSt and FP remain elusive but may
yet be found to result from mutations causing mis-fold-
ing in other multispanning membrane proteins. The lat-
est report from Iolascon et al. identifies a new band 3
mutation resulting in HSt, accompanied by dyserythro-
poietic features, and raises the idea that tyrosine phos-
phorylation and associated signaling is altered in these
cells. Further investigations of HSt at the molecular level
should aid our understanding of the processes underly-
ing the range of pathologies observed in this diverse
group of conditions.

Joanna Flatt is a PhD student at the Bristol Institute for
Transfusion Science, University of Bristol. Dr. Bruce is a
research scientist/project leader at the Bristol Institute for
Transfusion Sciences. The experimental work described in this
perspective article was supported by the UK National Health
Service R & D Directorate.
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The typical patient with myelodysplastic syndrome
(MDS) presents with a normocytic or slightly
macrocytic anemia that is refractory to treatment

with folates and vitamin B12.1 Many patients also have
abnormal white blood cell and platelet counts, typically
neutropenia and/or thrombocytopenia.

A rational approach to the diagnosis of myelodysplas-
tic syndrome should be initially based on the exclusion of
more common anemic disorders (Table 1). When anemia
is frankly macrocytic, differential diagnosis should pri-
marily include megaloblastic anemia. The real challenge
is represented by the patient with normocytic anemia,
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whose differential diagnosis should not only consider
renal failure and chronic disease, but also less common
conditions such as celiac disease.2 Microcytic anemia is
very rarely found in myelodysplastic syndromes and
may be caused by somatic deletions of globin genes.

Examination of peripheral blood smear is mandatory in
the initial work-up of any hematologic disorder, particu-
larly of a myelodysplastic syndrome. This examination
often reveals such morphological abnormalities as
hypogranulated neutrophils with hyposegmented nuclei
(pseudo-Pelger-Huët anomaly) and large platelets. Bone
marrow aspiration is required for the assessment of
dyserythropoiesis, dysgranulopoiesis, and dysmegakary-
ocytopoiesis, and for the enumeration of ringed siderob-
lasts and blast cells.3

While bone marrow biopsy may be avoided in elderly
patients who are in any case only going to receive sup-
portive care, it should be performed in the remaining
patients due to its diagnostic and prognostic utility.4 In
fact, bone marrow biopsy may provide information
about marrow cellularity, fibrosis and CD34+ cell clusters.
Hypoplastic MDS needs to be distinguished from both
aplastic anemias and hypocellular acute myeloid
leukemia.5 Bone marrow fibrosis identifies a distinct sub-
group of MDS with multilineage dysplasia, high transfu-
sion requirement, and poor prognosis, while the presence
of CD34+ cell clusters is an independent risk factor for
progression to acute leukemia.4

Cytogenetic abnormalities have a major role in the
diagnosis of myelodysplastic syndrome and in risk
assessment.6,7 Fluorescence in situ hybridization (FISH)
should complement conventional cytogenetics in partic-
ular cases. Specifically, FISH may improve the detection
of deletion 5q31-q32 in patients with MDS without cyto-
genetic evidence of del(5q).8,9

The pathological hallmark of myelodysplastic syn-
drome is marrow dysplasia, which represents the basis of
the World Health Organization (WHO) classification of
these disorders.10 This classification has been recently
revised,6,11 and provides clinicians with a very useful tool
for defining the different subtypes of myelodysplastic
syndrome. The combination of overt marrow dysplasia

and clonal cytogenetic abnormality allows a conclusive
diagnosis of MDS, but this is found in only a portion of
MDS patients. In many instances, cytogenetics is not
informative, and the diagnosis of MDS is based entirely
and exclusively on morphological criteria. Diagnosis of
MDS may be particularly difficult in patients with a nor-
mal karyotype or non-informative cytogenetics who do
not have robust morphological markers, such as ringed
sideroblasts or excess of blasts.

Flow cytometry immunophenotyping is a reliable
method for quantitative and qualitative evaluation of
hematopoietic cells, and not surprisingly has been evalu-
ated as a potential diagnostic tool for myelodysplastic
syndromes.12-17 Despite many efforts, no one single sim-
ple immunophenotypic parameter has been proved to be
diagnostic of MDS. Three articles in this issue of the jour-
nal provide additional observations in this field.

Ogata and co-workers18 designed a flow cytometry
protocol applicable in many laboratories, and verified its
diagnostic utility in patients with low-risk myelodysplas-
tic syndromes. The cardinal parameters were blasts, B-
cell progenitors, myeloblast CD45 expression, and chan-
nel number of side scatter where the maximum number
of granulocytes occurs. This protocol was able to dis-
criminate between low-grade MDS without convention-
al markers (cytogenetic abnormalities, ringed siderob-
lasts) and nonclonal cytopenias with good specificity.

Goardon and coworkers19 investigated whether
reduced mean fluorescence intensity (MFI) of CD38
expression on CD34+ cells could be used as a surrogate
marker for abnormalities in the MDS CD34+ compart-
ment, and whether this may provide a single simple use-
ful flow cytometric measurement diagnostic of MDS.
They found that the examined immunophenotypic
parameter diagnosed low-risk MDS with 95% sensitivi-
ty and 92% specificity, and concluded that it may be of
value in the routine clinical diagnosis of MDS, especially
in cases with a low blast count and normal karyotype.

The report by van de Loosdrecht et al.20 describes the
results of the first European LeukemiaNet (ELN) working
conference on flow cytometry immunophenotyping in
MDS. This article is a very comprehensive analysis of

Table 1. Diagnostic approach to a patient with myelodysplastic syndrome: standard and novel tools.
• The process starts with a differential diagnosis of cytopenia, most commonly of anemia.

• Morphological examination of peripheral blood and bone marrow smears according to the 2008 WHO criteria are the mainstay of MDS diagnosis.

• Bone marrow biopsy is important, as it provides clinically useful information on cellularity, fibrosis, and CD34+ cells.

• Cytogenetic investigations have a major role not only in the diagnostic process, but also in risk assessment. The identification of a non-random
chromosomal aberration makes diagnosis of MDS almost certain. FISH can be a useful complement to conventional cytogenetics in individual
patients.

• Flow cytometry immunophenotyping may provide complementary information. The most common use is the assessment of blasts through
immunophenotyping of CD34+ cells: although discrepancies between this approach and morphological evaluation have been reported, the flow 
cytometry approach appears particularly useful for serial assessments in the individual patient. Pattern recognition strategies may complement 
morphological evaluation of dysgranulopoiesis. The development of monoclonal antibodies against mitochondrial ferritin might allow a reliable 
diagnosis of refractory anemia with ringed sideroblasts.

• Molecular studies might revolutionize the diagnostic process in the future. Based on the available evidence, the identification of somatic TET2
mutations in circulating granulocytes allows a conclusive diagnosis of myeloid neoplasm. At present, this requires sequencing of whole gene. 
In addition, TET2 mutations are found in 20-25% of MDS patients. However, other genes capable of determining clonal dominance may be 
identified in the future. Somatic mutations of TET2 and other similar genes may eventually become a molecular marker of clonal myeloid neoplasm.
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this topic, and provides detailed information on what is
currently known in the field. The ENL group agreed that
flow cytometry reports should always be descriptive in
nature, with a statement that findings could be consis-
tent with MDS. However, the group concluded that
despite strong evidence for an impact of flow cytometry
immunophenotyping in MDS, prospective validation of
markers and immunophenotypic patterns are required
against control patient groups, as well as further stan-
dardization in multi-center studies.

Standardization of flow cytometry in MDS may
improve not only diagnosis of MDS, but also its prog-
nostication.21,22 However, it is not likely to revolutionize
the approach to the MDS patient. This is more likely to
happen with molecular markers such as mutant genes,
as was the case with the myeloproliferative neoplasms.
Indeed, recent papers report somatic mutations of TET2
in about 20-25% of patients with MDS.23,24 These muta-
tions would cause clonal dominance of mutated stem
cells, and predispose to the acquisition of additional
mutations that determine the clinical phenotype. A new
molecular era in the diagnosis of MDS might be starting.

Dr. Cazzola is a Professor of Hematology at the University
of Pavia, Pavia, Italy. The author reported no potential conflict
of interest.
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