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Mixed lineage leukemia is a very aggressive blood cancer that predominantly occurs in pediatric patients. In contrast to
other types of childhood acute leukemias, mixed lineage leukemia presents with a dismal prognosis and despite the avail-
ability of advanced treatment methods cure rates have stagnated over the last years. Mixed lineage leukemia is charac-
terized by the presence of MLL fusion proteins that are the result of chromosomal translocations affecting the MLL gene
at 11q23. These events juxtapose the amino-terminus of the histone methyltransferase MLL with a variety of different
fusion partners that destroy normal histone methyltransferase function of MLL and replace it by heterologous functions
contributed by the fusion partner. The resulting chimeras are transcriptional regulators that take control of targets nor-
mally controlled by MLL with the clustered HOX homeobox genes as prominent examples. Recent studies suggested that
MLL fusion partners activate transcription by two different mechanisms. Some of these proteins are themselves chro-
matin modifiers that introduce histone acetylation whereas other fusion partners can recruit histone methyltransferases.
In particular, histone H3 specific methylation at lysine 79 catalyzed by DOT1L has been recognized as a hallmark of chro-
matin activated by MLL fusion proteins. Interestingly, several frequent MLL fusion partners seem to coordinate DOT1L
activity with a protein complex that stimulates the elongation phase of transcription by phosphorylating the carboxy-ter-
minal repeat domain of RNA polymerase II. The discovery of these novel enzymatic activities that are essentially
involved in MLL fusion protein function presents potential new targets for a rational drug development. 
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ABSTRACT

The molecular biology of mixed lineage leukemia
Robert K. Slany

Department of Genetics, University Erlangen, Erlangen, Germany

Mixed lineage leukemia - a clinical primer

Apart from the fascinating molecular biology underlying the
pathogenesis, mixed lineage leukemia mainly presents a clinical
challenge. More than 30 years ago, physicians realized that cer-
tain subsets of patients initially diagnosed with acute lym-
phoblastic (ALL) or acute myeloid leukemia (AML) fared far
worse than others. In the pediatric field, one of these high-risk
leukemias stood out particularly amongst all remaining cases of
childhood leukemia. A cohort of ALLs diagnosed in newborns
and infants (younger than one year) fell into a group with sim-
ilar clinical aspects and an extremely dismal prognosis. With
the advent of fluorescent activated cell sorting (FACS) it was
revealed that the leukemic blasts of these aggressive leukemias
frequently expressed surface markers of both the lymphoid and
the myeloid lineage. Sometimes even a complete lineage switch
was observed during treatment and a leukemia initially diag-

nosed as ALL could relapse as AML.1 Accordingly the term
mixed lineage leukemia was coined.2-4 Even before this, cytoge-
neticists had noted that translocations affecting the locus
11q23, and in particular the translocation t(4;11), characterize a
special subset of ALL that was associated with poor survival.5-7

Soon thereafter it became clear that these translocations of
the locus 11q23 are also typical for mixed lineage leukemia.
Whereas treatment of non-mixed lineage leukemia in chil-
dren has become the textbook success story of modern med-
icine with 5-year survival rates approaching 90%,8 mixed lin-
eage leukemia treatment seems to have hit a roadblock with
hardly 40% of all infants surviving five years after diagnosis
(Figure 1).8-11

Mixed lineage leukemia reaches a second peak of incidence
later in life, particularly in patients who have been treated pre-
viously for an unrelated neoplastic disease with topoiso-
merase inhibitors like etoposide (so-called therapy related



leukemia; t-AML or t-ALL).12 In total, 11q23 abnormali-
ties occur in up to 70% of infant ALL, and in approxi-
mately 10% of all other ALL cases.13 Therapy related
leukemia almost always manifests as AML with about
10% of therapy induced AML and 3% of de novo AML
carrying an 11q23 translocation.14 Intriguingly, the MLL
gene is also the target of a second type of aberration that
creates a short repeat within the MLL coding sequence
resulting in an internal partial tandem duplication
(PTD). As a consequence, an extra amino-terminus is
added in frame to full length MLL. MLL-PTD occurs
predominantly in AML. Judging from gene expression
patterns and clinical parameters, MLL-PTD seems to
cause a different disease from that induced by classical
MLL fusions. MLL-PTD has been covered by a recent
publication15 and therefore this aberration will not be
subject of this review.

Normal MLL - a histone methyltransferase
necessary for efficient transcription

Guided by the chromosomal aberrations, four groups
independently succeeded in cloning the gene spanning
the translocation breakpoint at 11q23.16-19 From
sequence comparison it became immediately clear that
this gene encoded a homolog of a known fly gene
named trithorax (Trx). Because of this relationship and
the involvement in leukemia, the human gene was ini-
tially labeled either HRX (human trithorax), ALL-1
(acute lymphocytic leukemia-1) or MLL (mixed lineage
leukemia). Later it was agreed to use MLL as the stan-
dard name. Drosophila Trx mutants displayed a very
suggestive phenotype with homeotic changes in all
three breast segments reminiscent of Hox gene muta-
tions and indeed Hox gene expression was perturbed in
Trx negative flies.20-22 This function was conserved in
mammals as MLL knockout embryos also showed
skeletal transformations and misexpression of Hox
genes before they died in utero around day 10.5-16.5 p.c.,
depending on the particular knockout allele.23-25 Fly Trx
was also isolated in a genetic screen that was set up to
identify genes that counteracted genetic silencing.26

Since Hox gene expression was correctly initiated in
Trx–/– flies as well as in MLL–/– mice but later deteriorat-
ed during embryogenesis, it was thought that Trx/MLL
is a specific maintenance factor for Hox genes. However,
nowadays it is known that MLL serves a much more
general function. The breakthrough came with the iden-
tification of the highly conserved SET domain (an
acronym for Suppressor of variegation, Enhancer of
zeste, Trithorax) at the C-terminus of MLL as the site of
a histone methyltransferase activity that specifically
methylates histone H3 at lysine 4.27 MLL was found to
be incorporated into a large macromolecular complex
that was purified from mammalian nuclei.28,29 The com-
plex showed conservation across phyla all the way
down to Saccharomyces cerevisiae where SET1, the yeast
counterpart of MLL, was also present in a similar com-
plex called COMPASS (complex of proteins associated
with Set1).30,31 Interestingly, MLL is post-translationally
processed by proteolytic cleavage. 

The large MLL protein is cut by an aspartic protease
called taspase into an N-terminal 320kDa fragment and
a C-terminal 180kDa moiety that are both core compo-
nents of the MLL complex (Figure 2).32-35 Within this
molecular machinery a division of labor exists. The MLLC

subunit associates with at least four proteins that help in
preparing chromatin for efficient transcription. One of
these proteins is the histone H4 lysine 16 specific acetyl-
transferase MOF that loosens up chromatin by histone
charge neutralization.36 The WDR5 protein in turn rec-
ognizes the histone H3 lysine 4 methyl-mark intro-
duced by MLL and it has therefore been suggested that
WDR5 ensures the processitivity of histone modifica-
tion.37-39 And finally the proteins RBBP5 and ASH2L
appear to be necessary for efficient methyltransferase
activity by stabilizing an active conformation of MLL
allowing allosteric control.40 The histone acetyltrans-
ferase CBP and the INI1 subunit of the SWI/SNF nucle-
osome remodeling complex have also been identified as
interaction partners of MLLC in interaction screens,41,42

although these proteins did not copurify with MLLC in
biochemical experiments. 

MLLN on the other side contains features essential for
correct targeting of the MLL complex. At the outmost
amino-terminal end of MLL a binding site for menin,
the product of the tumor suppressor gene multiple
endocrine neoplasia is present.43-45 Menin and MLL form
an interaction surface for LEDGF (lens epithelium
derived growth factor) and LEDGF makes contact to
chromatin via a PWWP domain.46 Interestingly, LEDGF
is also involved in HIV pathogenesis where it assists
integration of HIV proviruses into chromatin.47,48 In
addition, MLLN codes for several AT-hooks, a minor
groove DNA binding motif that preferentially recog-
nizes DNA with distortions like bends or kinks.49

Further downstream a CxxC domain can be found.
CxxC domains occur in proteins that discriminate the
methylation status of DNA, and indeed, also the MLL
CxxC moiety binds specifically to unmethylated CpG
dinucleotides.50 Swap experiments between MLL and
the highly homologous MLL2 indicated that the CxxC
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Figure 1. Event free survival of infants with ALL separated by MLL
status. Redrawn after Hilden et al.9 Please note that the data cor-
respond to event free survival (a more stringent criterion) and do
not include children older than one year.
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domain seems to be a major determinant of subnuclear
localization and target gene selection.51 In addition, the
CxxC region also has been shown to recruit repressive
factors like histone deacetylases and polycomb group
proteins.52 This interaction appeared to be regulated by
conformational changes elicited by the prolyl-isomerase
cyclophilin 33 (Cyp33) that interacts further carboxy-ter-
minal with the plant homeodomain (PHD) of MLLN.

In summary therefore, the MLL complex coordinates
three major mechanisms of chromatin modification:
methylation, acetylation and nucleosome remodeling.
Most likely transcription factors recruit the MLL com-
plex to initiate RNA synthesis. Examples are p53 and β-
catenin that have been found to associate with MLL dur-
ing transcriptional activation.36,53 H3K4 methylation is
universally introduced around the transcription start site
of all transcribed genes, and next to MLL several other
confirmed or putative H3K4 methyltransferases (MLL2,
MLL3, MLL5, SET1A, SET1B, and ASH1L) have been
identified in mammalian cells. If all of these proteins
have a comparable number of cellular targets, and with
an estimated 10,000 genes transcribed at any present
moment under standard conditions, each H3K4 methyl-
transferase should be responsible for more than 1,000
loci. Although this is a greatly oversimplified prediction,
nonetheless it seems to be confirmed by emerging
experimental data that identified several hundred
genomic loci bound by MLL and ASH1L in ChIP experi-
ments.54,55 Obviously certain genes, like the Hox genes,
depend more on MLL mediated chromatin modification
than others, and therefore they stand out in the MLL loss
of function phenotype. 

The origin of 11q23 translocations
Much has been speculated about the origins of the

chromosomal aberrations that convert an innocuous
chromatin modifier into a pernicious oncogene. Several
lines of evidence point to a mishap in non-homologous
end joining of double strand breaks as the most likely
reason for 11q23 translocations. 

For one, the characteristic peak of mixed lineage
leukemia in patients treated with etoposide is highly sug-
gestive for an involvement of DNA double strand lesions
in the etiology of MLL fusions. Etoposide inhibits topoi-

somerase II and therefore causes breaks in both DNA
strands. Indeed, it could be shown that the locus 11q23
is particularly susceptible to this kind of assault in cells
treated with topo II inhibitors.56,57 Alternatively, a break
might be introduced at early stages of apoptotic DNA
fragmentation that was later aborted and repaired.
Published data also provide some support for this sce-
nario, as breaks preferentially occur at 11q23 in early
apoptotic cells.58

Whatever the reason for the initiating event, an aber-
rant non-homologous end joining (NHEJ) process most
likely causes the cross-wise sealing of the DNA ends. A
close examination of the breakpoint junctions revealed
that they frequently code for non-templated
nucleotides,59 a hallmark of NHEJ repair as known from
generation of antibody and T-cell receptor diversity.
Despite the attractions of this hypothesis as an explana-
tion for the origin of 11q23 translocations it does not
take into consideration that many double strand breaks
induced by background radiation are continuously
repaired in each cell without dire consequences. In this
respect, a publication might be important showing that
double strand breaks lead to chromosomal aberrations
only in cells with impaired ATM-dependent DNA-dam-
age signaling, whereas normal cells are able to join free
ends correctly.60 The potential involvement of DNA
repair pathway defects in mixed lineage leukemia is
almost completely unexplored and would be a rewarding
topic for future research. 

MLL fusion proteins; transcriptional elongation
and chromatin modification versus
dimerization

The first and most striking property of MLL fusion
proteins is their incredible diversity. 

MLL has been found in 73 different translocations and
54 partner genes have been cloned (http://atlasgeneticson-
cology.org/Genes/MLL.html; last update 5/08). Despite this
variety most cases of mixed lineage leukemia present as
a clinical entity and gene expression signatures in
leukemic blasts do not separate MLL fusions according
to the fusion partner.61-64 Therefore, it was a long stand-

Figure 2. The MLL complex. After post-transcrip-
tional proteolytic processing amino-terminal
and carboxy-terminal portions of MLL are incor-
porated in a macromolecular complex with his-
tone methyltransferase and histone acetyltrans-
ferase function. Functional domains in MLL are
indicated in yellow. AT = AT-hooks, a DNA bind-
ing domain, CxxC = motif recognizing unmethy-
lated CpG dinucleotides, PHD = plant home-
odomain, SET = histone methyltransferase
active site. Proteins associated with MLL are
explained in the text. 



ing question how a multitude of different proteins could
cause the same disease. Two facts gave early clues to
this problem. Firstly, all MLL fusion proteins share a
common structure with the respective partners invari-
ably fused in frame to MLLN right after the CxxC
domain but excluding the PHD fingers. Secondly, pro-
teins joined to MLL clearly fall into two classes. Only 6
frequent partner proteins (AF4, AF9, ENL, AF10, ELL,
AF6) constitute the bulk (> 85%) of all clinical cases of
mixed lineage leukemia65,66 (Table 1) whereas the
remaining fusions were cloned each from a few isolat-
ed, mostly adult patients. This distinction is mirrored by
the biology of the respective proteins. With the excep-
tion of AF6, all frequent MLL partners are nuclear
while cytoplasmatic localization predominates
amongst the rarely occurring MLL fusions. Therefore it
was expected that at least two different mechanisms
should be responsible for MLL fusion function. Further
clarification of these pathways was promoted by the
development of an in vitro assay that was able to meas-
ure the biological readout of MLL fusion activity.67

This serial replating assay records an inhibition of
hematopoietic differentiation as surrogate parameter for
transformation activity. A block in differentiation can be
visualized as enhanced clonogenic capacity of
hematopoietic precursor cells after repeated replating in
semisolid medium. With respect to the MLL portion
included in the fusions, deletion studies demonstrated
that the LEDGF-menin binding motif and the CxxC
domain were absolutely necessary for the overall func-
tion of MLL fusions.68,69 In addition, it was mandatory
that the breakpoint in MLL was upstream of the PHD
fingers because artificial MLL fusions including this
domain lost their transforming capacity.70,71 This
explains the strict conservation of the fusion breakpoints
found in leukemic blasts. Further studies suggested that
the leukemogenic potential of truncated MLL could be
activated in at least four different ways (Figure 3).

The “common” nuclear fusion partners (ENL, AF9,
AF4, ELL, and AF10) - transcriptional elongation
meets histone methylation

Early reports showed that MLL fusions function as a
novel type of general transcription factor that is able to
indiscriminately activate many different promoters.72

The search for a common MLL machinery revealed that
the close homologs ENL and AF9 were both able to
interact with other MLL fusion partners like AF4, the
AF4-homolog AF5 and probably also with AF10. In
addition, it was realized that ENL could bind to histone
H3, indicating a potential shared link of these proteins
with chromatin modification.73 A breakthrough con-
cerning the normal function of these proteins came
from the purification of the ENL associated protein com-
plex (EAP).74,75 In this complex, ENL was not only linked
with all members of the AF4 protein family that occur
as MLL fusion partners (AF4, AF5q31, LAF4) but also
with positive transcription elongation factor b (pTEFb)
and the histone methyltransferase DOT1L. pTEFb is a
dimer of cyclin dependent kinase 9 (CDK9) and a cyclin
T that phosphorylates the carboxy-terminal repeat
domain of RNA polymerase II. This activity is essential

for efficient transcriptional elongation.76 DOT1L methy-
lates histone H3 at lysine 79, a modification that is
introduced also during transcriptional elongation.77 This
immediately invoked parallels to AF10 as it had been
demonstrated that AF10 binds DOT1L and that DOT1L
recruitment was essential for the transforming activity
of MLL-AF10.78 A dramatically increased H3K79 methy-
lation has been demonstrated for the HOXA9 gene acti-
vated by MLL-ENL79 and this result was corroborated on
a global scale in two recent studies by genome-wide
ChIP where the majority of MLL target genes defined
by MLL fusion protein binding also showed increased
H3K79 modification.80,81 Another connection to tran-
scriptional elongation is defined by the fusion partner
ELL, as this protein had been identified before as elon-
gation factor.82 This idea was later dismissed because
domains in ELL necessary for elongation activity were
dispensable for transformation by MLL-ELL.83 However,
ELL also interacts with proteins that are homologous to
AF4, and ELL might therefore make indirect contact to
the EAP elongation machine.84,85 In summary, the com-
mon MLL fusion partners with clinical importance all
seem to participate in the same biological process if not
in the same macromolecular complex responsible for
control of transcriptional elongation. Although not yet
formally proven, it is tempting to speculate that MLL
fusions might recruit EAP to genomic loci to achieve
ectopic target gene expression. Indeed, there are hints
that the association of ENL and AF9 with AF4 family
members is essential for survival of mixed lineage
leukemia cells as small peptides disrupting this interac-
tion proved to be toxic for MLL transformed cells but
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Table 1. A selection of MLL fusion partners with known functions or domains.

Name Gene alias Features Localization

ENLb MLLT1 Binds histone H3, assembles EAPa Nuclear
elongation/chromatin modification complex

AF9 MLLT3 ENL homolog, also found in EAP Nuclear
AF4 AFF1, MLLT2 Founder of AF4 family, member of EAP Nuclear
AF5q31 AFF4, MCEF AF4 homolog, found in EAP Nuclear
LAF4 AFF3 AF4 homolog, found in EAP Nuclear
ELL Elongation factor, interacts with a Nuclear

protein related to AF4
AF10 MLLT10 Interacts with DOT1L histone Nuclear

methyltransferase
CBP CREBBP Histone acetyl-transferase, Nuclear

in therapy related MLL fusions
P300 EP300 CBP homolog, in therapy related Nuclear

MLL fusions
AF1p EPS15 Dimerization domain Cytoplasma
GAS7 Dimerization domain Cytoplasma
AF6 MLLT4 Dimerization domain Cytoplasma
ABI1 Interacts with ENL when imported Cytoplasma

to nucleus
EEN Interacts with histone arginine Cytoplasma

methyltransferase PRMT1 when
imported to nucleus

aEAP: “ENL associated proteins”; bthe six most frequent fusion partners are printed in bold.
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not for blasts of a different etiology.86,87 The potential
usefulness of these peptides as therapeutic intervention
is under active investigation.88

CBP and p300 - MLL fusions and histone acetylation 
Interestingly, fusions of MLL with the histone acetyl-

transferases CREB binding protein (CBP) and the related
p300 have been observed. Although these MLL deriva-
tives have only been found in a few cases of therapy
induced secondary leukemia, they allowed immediate
insight into a possible activation mode for MLL.89,90

Structure function analyses clearly singled out the
bromo- and histoneacetyltransferase domains of CBP as
necessary and sufficient for the oncogenic function of
the respective fusion proteins.91 Unfortunately, the con-
sequences of MLL-CBP/p300 expression for target chro-
matin have not yet been investigated. However, it seems
reasonable to assume that the permanent recruitment of
HAT activity will result in a hyperacetylation of chro-
matin and an increased transcriptional output.

The special case of MLL-EEN arginine specific
histone methylation

Although the EEN fusion partner was cloned only
from a single case of mixed lineage leukemia and has
never been found again, the resulting MLL fusion was
studied in great detail. Surprisingly, a biochemical inter-
action study revealed that EEN bound the arginine
methyltransferase PRMT1 through the adaptor protein
SAM68.92 PRMT1 is an arginine specific methyltrans-
ferase that shuttles between nucleus and cytoplasma.
Next to several cytoplasmic substrates, PRMT1 also
methylates histone H4 at arginine 3. This modification
has in turn been shown to be correlated with an
increased histone acetylation.93 Therefore MLL-EEN
might feed into the same pathway as suggested for
MLL-CBP or MLL-p300. 

Cytoplasmatic fusion partners and dimerization
MLL joined to proteins of cytoplasmatic origin seem

to be more weakly transforming as fusions with nuclear
proteins. Cytoplasmatic fusions are found preferentially in
older patients where more time has elapsed from the ini-
tiating pre-leukemic event to the outbreak of acute
leukemia allowing additional secondary mutations to
occur. Consequently several of these MLL fusions do not
read out in the standard in vitro assays that measure MLL
fusion activity.94,95 Nevertheless MLL fusions with the
cytoplasmatic proteins GAS7, AF1p and AF6 could be
assayed in this system, and therefore the minimally nec-
essary contributions of the respective fusion partner
could be localized to a coiled-coiled dimerization
domain.96 In addition, also fusion of MLL to an artificial
inducible dimerization domain caused activation of the
transforming potential.97 Unfortunately, up to now it is
not known how dimerized MLL fusion proteins activate
target genes. With respect to cytoplasmatic fusion part-
ners, it must be taken into consideration that all MLL
fusions will be imported to the nucleus because of the
strong nuclear import signals in MLLN.98 This might
cause aberrant protein-protein interaction of the fusion
partner, a situation that has been demonstrated for the
ABI1 protein. Normally localized in the cytoplasma,
ABI1 interacts with ENL after import to the nucleus.99 In
this way, also cytoplasmatic fusion partners might feed
into pathways used by the nuclear partner proteins. 

MLL fusion downstream targets and the
problem of pediatric leukemia

Normal MLL performs an important task necessary for
the transcription of many genes. Because all domains
within MLLN thought to be involved in target selection
are retained in the fusion proteins, it seems likely that

Figure 3. Molecular pathways leading to
oncogenic activity of MLL fusion pro-
teins. MLL fusions are aberrant tran-
scription factors that activate gene
expression. Four different mechanisms
have been suggested as to how fusion
partners might induce transcriptional
activation. (A) The most frequent fusion
partners of the ENL and AF4 family are
members of the EAP complex that com-
bines histone H3K79 methyltransferase
activity catalyzed by DOT1L with tran-
scriptional elongation stimulation by
pTEFb (positive transcription elongation
factor b, a dimer of CDK9 and a cyclinT)
that phosphorylates the C-terminal
repeat domain of RNA polymerase II. It
is speculated that MLL fusion proteins
aberrantly recruit this complex to target
chromatin. (B) Active histone acetyl-
transferases are fused to MLL in the
MLL-CBP and MLL-p300 proteins. (C)
MLL-EEN indirectly recruits the histone
H4R3 arginine methyltransferase
through binding of the adaptor SAM68.
(D) Dimerization of MLL via coiled-coiled
or other dimerization domains supplied
by the fusion partner activates target
genes by unknown mechanisms.



MLL fusions will share many target loci with wild type
MLL. This assumption has been confirmed for the clus-
tered HOX homeoboxgenes that are under control of
MLL as well as of MLL fusion proteins. In addition to
the HOX cluster, MLL-AF4 has been found on a
genome-wide scale on more than 1,000 promoters that
also showed a corresponding H3K79 methylation pat-
tern as an indication for a functional interaction of MLL-
AF4 with chromatin.80,81 This number matches approxi-
mately the amount of loci occupied by MLL; 55 howev-
er, the potential overlap has never been determined.
Surprisingly, experiments searching for MLL fusion con-
trolled transcripts on the RNA level uncovered only a
relatively small number (<100) of genes with a signifi-
cant response to MLL fusion presence.64,100,101 Obviously,
many genes are largely resistant to MLL fusion induced
modifications and only some of them, like the HOX
genes, are susceptible to e.g. elongation stimulation.
This fits well with the fact that a subset of genes con-
trolling embryonic development and cellular differenti-
ation preferentially are occupied by RNA polymerase II
also in the non-transcribed state. These genes are poised
for transcription, and release of the stalled polymerase
allows a fast response without the need to recruit tran-
scription factors and histone modifiers to free the chro-
matin and allow assembly of the transcriptional initia-
tion complex.102 Whatever the exact number and identi-
ty of all fusion targets will be, undoubtedly, HOX dereg-
ulation is the most important factor for MLL fusion
induced leukemogenesis.79,100,101,103-109 HOX proteins,
especially HOXA9, and its dimerization partner MEIS1,
are major hematopoietic oncoproteins that are over-
expressed in a wide variety of different leukemias and
that act, at least partially, through activation of the
proto-oncogene c-Myb.110 In general, HOX transcription
factors are not only master controls of embryonic devel-
opment but they also direct normal hematopoietic dif-
ferentiation. HOX expression is high in stem cells and
early precursors and needs to be down-regulated for
maturation. Therefore, a continuous ectopic HOX
expression will block differentiation and create a rapid-
ly proliferating pre-leukemic precursor pool (Figure 4).
Secondary mutations will have to occur to convert this
smoldering state into an acute leukemia. Such mutations
have been found in murine experimental models111 and
also in patient cells that frequently carry an activating
mutation in the receptor tyrosine kinase Flt-3.112,113 In a
very surprising development, it has also recently been
suggested that increased glycogen-synthase-kinase 3
activity is involved in the etiology of mixed lineage
leukemia, an unexpected finding because GSK3 normal-
ly is a tumor suppressor gene.114 It is very interesting
that mixed lineage leukemia tends to be a pediatric dis-
ease in contrast to many other tumors that arise later in
life, because several years are needed to accrue the
mutations necessary to convert a normal cell into a can-
cerous state. An attractive hypothesis to answer this
question has been brought forward by Greaves and col-
leagues115. They speculated that a persistent genetic
assault during gestation first produces MLL transloca-
tions. Once these are transcribed, the presence of the
fusion proteins might sensitize cells to further muta-

tions induced by the same mutagens that created the
fusion before. In this way, secondary events would
accumulate very rapidly and congenital leukemia would
ensue. Indeed, there are experimental hints that MLL
fusions increase susceptibility to mutagenic influence,115

and a few reports suggest that this might be due to inhi-
bition of the tumor suppressor protein p53.116-118

Unsolved questions and future directions

While the molecular pathways triggered by MLL
fusion proteins slowly emerge, other major questions
still wait for answers.

1. Certainly, the most pressing problem with respect
to the dismal prognosis of this disease is if new rational
treatments can be devised by targeting the enzymatic
activities necessary for MLL fusion activity. 

One possible approach would be to interfere with the
protein interactions necessary for proper MLL fusion
protein function. Here, either the interaction with

MLL-fusion proteins in leukemia

haematologica | 2009; 94(7) | 989 |

Figure 4. The role of HOX proteins in control of hematopoiesis.
HOX transcription factors control hematopoietic differentiation.
HOX expression must be terminated for maturation to occur, and
therefore ectopic presence will block maturation and cause a pop-
ulation of self-renewing precursor cells to expand. 
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menin or LEDGF could be disrupted or, at least for the
fusions employing the EAP complex, the protein-protein
interactions stabilizing EAP might be targeted. Proof of
principle experiments have been performed with pep-
tides as binding site mimetics86,87 but if this is a feasible
approach in patients remains to be seen. Theoretically,
also the interaction surface between the MLL CxxC
domain and DNA might be a point of attack, since this
interaction has been analyzed in detail by X-ray crystal-
lography.119 The largest concern with these strategies,
however, is that apart from technical difficulties deliver-
ing peptides, likely also the vital natural function of MLL
will be abrogated leading to toxicity. A small molecule
approach that can be finely tuned to turn down the local
hyperactivity of the enzymatic functions of MLL recruit-
ed EAP seems more promising. In this regard, specific
methyltransferase inhibitors blocking DOT1L might be
valuable tools. Also kinases like CDK9 or maybe GSK3
are potential targets for a rational therapeutic approach.
Finally, also activities downstream of MLL fusions or
cooperative oncogenic pathways might be druggable. It
has been shown, for example, that inhibitors of the FLT-
3 receptor tyrosine kinase are remarkably efficacious in

mixed lineage leukemia animal models,120,121 although
the role of FLT-3 in the etiology of MLL fusion induced
leukemia is not exactly clear.122

2. It is not known how histone modifications intro-
duced by MLL and MLL fusions actually support tran-
scription. In particular, H3K79 methylation still remains
enigmatic. 

3. HOX proteins are transcription factors at the top of
a regulatory cascade. We need to know what is down-
stream of HOX and which other proteins cooperate
with these regulators. 

4. It would be interesting to know if MLL fusions are
indeed only hyperactive MLL molecules and how these
molecules find their appropriate binding sites.

With advanced molecular biology at hand it is to hope
that 18 years of MLL research will finally translate into
better survival chances for patients that all but too often
face a bleak prospect after their diagnosis.
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