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ABSTRACT

Background

The mammalian target of rapamyecin is a conserved protein kinase known to regulate pro-
tein synthesis, cell size and proliferation. Aberrant regulation of mammalian target of
rapamycin activity has been observed in hematopoietic malignancies, including acute
leukemias and myelodysplastic syndromes, suggesting that correct regulation of mam-
malian target of rapamycin is critical for normal hematopoiesis.

Design and Methods
An ex vivo granulocyte differentiation system was utilized to investigate the role of mam-
malian target of rapamycin in the regulation of myelopoiesis.

Results

Inhibition of mammalian target of rapamycin activity, with the pharmacological inhibitor
rapamycin, dramatically reduced hematopoietic progenitor expansion, without altering
levels of apoptosis or maturation. Moreover, analysis of distinct hematopoietic progenitor
populations revealed that rapamyecin treatment inhibited the expansion potential of com-
mitted CD34" lineage-positive progenitors, but did not affect early hematopoietic progen-
itors. Further examinations showed that these effects of rapamycin on progenitor expan-
sion might involve differential regulation of protein kinase B and mammalian target of
rapamycin signaling.

Conclusions

Together, these results indicate that mammalian target of rapamycin activity is essential
for expansion of CD34* hematopoietic progenitor cells during myelopoiesis. Modulation
of the mammalian target of rapamycin pathway may be of benefit in the design of new
therapies to control hematologic malignancies.
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Introduction

Hematopoiesis is a highly regulated process resulting in
the formation of blood cells. It occurs predominantly in the
bone marrow, and is regulated at the level of proliferation,
survival and differentiation." Although it is evident that
these complex processes are regulated by cytokines and
depend on the correct function of the bone marrow micro-
environment, the cytokine-mediated intracellular signal
transduction pathways regulating hematopoietic stem cell
function are thus far incompletely understood. The phos-
phatidylinositol 3-kinase (PI3K) signal transduction path-
way has been demonstrated to play an important role in
survival and proliferation of a plethora of cell types.’It has,
for example, been demonstrated that PI3K plays an essen-
tial role in regulation of hematopoietic progenitor survival
and expansion during myelopoiesis.® Furthermore,
impaired regulation of PI3K and its downstream effector
protein kinase B (PKB/c-akt) has been implicated in carcino-
genesis. In particular, activation of the PISK/PKB signaling
module is observed in a variety of hematopoietic malignan-
cies, including acute leukemias and high-risk myelodys-
plastic syndromes.*® One of the downstream targets of
PIBK/PKB is the mammalian target of rapamycin (mTOR),
which is a conserved serine/threonine kinase that has been
demonstrated to regulate cell size and cell cycle progression
in various cell types.” Activation of mTOR is mediated by
PKB through direct phosphorylation.® In addition, PKB
inhibitor phosphorylates the GTPase activating protein
tuberous sclerosis protein 2 (TSC2), which results in accu-
mulation of GTP-bound Rheb and subsequent activation of
mTOR.” mTOR exists in two distinct multiprotein com-
plexes: mTORC1 and mTORC2. mTORCI consists of the
regulatory-associated protein of mTOR (Raptor) adaptor
protein, mLST8 and mTOR.

The mammalian translational initiation machinery gov-
emns the recruitment of ribosomes to mRNA to commence
the production of protein synthesis. This machinery con-
sists of various eukaryotic initiation factors (elF) that tight-
ly regulate protein synthesis. Importantly, activation of
mTORCI positively stimulates mRNA translation via its
downstream substrates p70S6 kinase and 4E-BP1/elF4E."*"
Phosphorylation of 4E-BP1 by mTORCI results in its dis-
sociation from elF4E, promoting assembly of the elF4F
complex, a protein complex that mediates recruitment of
ribosomes to mRNA.” The mTORC2 complex consists of
mTOR, rapamycin-insensitive companion of mTOR
(Rictor) and mLST8," and is involved in the activation of
PKB. In contrast to mTORC1, mTORC2 activity is not
abrogated by treatment with rapamycin, a potent pharma-
cological inhibitor of mTOR activity."

Analysis of mTOR-deficient mice has revealed that
mTOR is essential for embryonic development. mTOR-
deficient mice die in utero due to impaired cell prolifera-
tion.”” Moreover, exposure of mouse embryos to
rapamycin results in a block in cell proliferation, indicating
that the rapamycin-sensitive mTORC1 complex plays an
essential role in the regulation of developmental process-
es.'” Rapamycin has also been demonstrated to regulate the
differentiation and proliferation of various adult cell types,
including human endothelial progenitors, epithelial cells,

chondrocytes, osteoblasts and myoblasts.”” Although
these data demonstrate the importance of mTOR signaling
in the regulation of multiple cellular processes, a role for
mTOR in the regulation of myelopoiesis remains to be
investigated. In this study, we investigated the role of the
mTOR signal transduction pathway in the regulation of
myelopoiesis utilizing a human ex vivo granulocyte differ-
entiation system.

Design and Methods

Isolation and culture of human CD34" cells

Mononuclear cells were isolated from umbilical cord
blood by density centrifugation over a Ficoll-paque solu-
tion (density 1.077 g/mL). MACS immunomagnetic cell
separation (Miltenyi Biotech, Aubumn, CA, USA) using a
hapten-conjugated antibody against CD34, which was
coupled to beads, was used to isolate CD34* cells. CD34*
cells were cultured in Iscove’s modified Dulbecco’s medi-
um (IMDM) (Gibco, Paisley, UK) supplemented with 9%
fetal calf serum (FCS) (Hyclone, Logan, UT, USA), 50 uM B-
mercaptoethanol, 10 U/mL penicillin, 10 pg/mL strepto-
mycin, and 2 mM glutamine at a density of 0.3x10°
cells/mL. Cells were differentiated towards eosinophils
upon addition of stem cell factor (SCF) (50 ng/mL), FLT-3
ligand (FTL-3L) (50 ng/ml), granulocyte-macrophage
colony-stimulating factor (GM-CSF) (0.1 nmol/L), inter-
leukin (IL)-3 (0.1 nmol/L), and IL-5 (0.1 nmol/L). Every 3
days, cells were counted and fresh medium was added to a
density of 0.5x10° cells/mL. After 3 days of differentiation,
only IL-3 and IL-5 were added to the cells. Neutrophil dif-
ferentiation was induced upon addition of SCF (50 ng/mL),
FLT-L (50 ng/mL), GM-CSF (0.1 nmol/L), IL-3 (0.1 nmol/L)
and granulocyte colony-stimulating factor (G-CSE) (30
ng/mL). After 6 days of culture only G-CSF was added to
the cells. Twenty ng/mL of rapamycin (Biomol
International LP, Hamburg, Germany) used to inhibit
mTOR activity, was added freshly to the cells every 3 or 4
days. Cord blood samples were collected from healthy
donors after informed consent had been given according to
the Declaration of Helsinki. Protocols were approved by
the local ethics committee of the University Medical
Center in Utrecht.

Flow cytometric analysis of myeloid progenitors
Hematopoietic progenitors were isolated as described by
Manz et al® In short, CD34* cells were isolated as
described above and cultured for 2 days in the presence of
SCE FLT-3L, GM-CSE IL-3 and G-CSF in the absence or
presence of rapamycin. Cells were subsequently washed
and resuspended in PBS/5% FCS and incubated for 30 min
on ice with a mixture of antibodies (Becton Dickinson,
Alphen a/d Rijn, The Netherlands). Lineage markers includ-
ed CD2, CD3, CD4, CD7, CD8, CD14, CD19, CD20 and
CD235a. Myeloid progenitors are negative for these line-
age markers. The lineage negative (Lin’), CD34", and CD38
populations consist of hematopoietic stem cells. Lin,
CD34+, CD38%, CD123*, and CD45RA" cells are common
myeloid progenitors, whereas Lin, CD34', CD38’,
CD123", and CD45RA" cells are granulocyte-macrophage
progenitors and Lin, CD34, CD38", CD1237, and

haematologica | 2009; 94(7)



mTOR is required for expansion of CD34* cells

CDA45RA" cells are megakaryocyte-erythrocyte progeni-
tors. Different hematopoietic stem cells, common myeloid
progenitor and granulocyte-macrophage progenitor popu-
lations were analyzed using a FACS ARIA (from Becton
Dickinson). Appropriate isotype-matched, control anti-
body staining was used to determine the level of back-
ground staining.

Measurement of apoptosis

Apoptotic cells were measured by staining with annex-
in V (Alexis, Leiden, The Netherlands) according to the
manufacturer’s protocol. Necrotic cells were visualized in
the same assay by staining with propidium iodide.

Colony-forming unit assay

Freshly isolated CD34" cells were used in colony-form-
ing unit (CFU) assays. Cells were plated in IMDM supple-
mented with 35.3% FCS, 44.4% methylcellulose-based
medium called Methocult (StemCell Technologies,
Vancouver, Canada), 11.1 umol/L of B-mercaptoethanol,
2.2 units/mL of penicillin, 2.2 pg/mL of streptomycin, and
0.44 mmol/L of glutamine at a density of 500 cells/well.
CFU assays were done in the presence of SCF (50 ng/mL),
FIT-3L (50 ng/mL), GM-CSF (0.1 nmol/L), IL-3 (0.1
nmol/L), and G-CSF (0.2 nmol/L). Colonies were scored
after 7 days of culture.

Histochemical staining of hematopoietic cells

May-Grinwald Giemsa staining was used to analyze
myeloid differentiation. Cytospins were prepared from
5x10* differentiating granulocytes and were fixed in
methanol for 3 min. After fixation, cytospins were stained
in a 50% eosin methylene blue solution according to May-
Griinwald (Sigma-Aldrich GmbH, Seelze, Germany) for 20
min, rinsed in water for 5 seconds, and the nuclei were
counterstained with 10% Giemsa solution (Merck kGaA,
Darmstadt, Germany) for 15 min. During eosinophil dif-
ferentiation, cells could be characterized as differentiating
from myeloblasts towards pro-myelocyte type I, pro-mye-
locyte type II, myelocyte, meta-myelocyte, and finally
mature eosinophils with segmented nuclei. These stages
can be distinguished by the size of the cells, ratio of cyto-
plasm versus nucleus present, presence of azurophilic
granules, appearance of eosinophilic granules and the
shape of the nuclei. Differentiated eosinophils were char-
acterized as cells belonging to the stages of myelocyte,
metamyelocyte and mature eosinophils. Neutrophil differ-
entiation can also be characterized by distinct stages from
myeloblast, promyelocyte I, promyelocyte II, myelocyte,
and metamyelocytes towards neutrophils with banded or
segmented nuclei. Differentiated neutrophils were charac-
terized as cells containing either banded or segmented
nuclei. Micrographs were acquired with an Axiostar plus
microscope (Carl Zeiss, Sliedrecht, The Netherlands) fitted
with a 100x/1.3 NA EC Plan Neofluor oil objective using
Immersol 518F oil (Carl Zeiss), a Canon Powershot G5
camera (Canon Nederland, Hoofddorp, The Netherlands),
and Canon Zoombrowser EX image acquisition software.
Photoshop CS2 was used for image processing (Adobe
Systems Benelux, Amsterdam, The Netherlands). A mini-
mum of 100 cells per cytospin were counted in two to
three randomly selected microscopy fields.

Western blot analysis

Western blot analysis was performed using standard
techniques. In brief, differentiating granulocytes were
lysed in Laemmli buffer (0.12 M Tris HCI pH 6.8, 4%
SDS, 20% glycerol, 0.05 pug/uL bromophenol blue, and
35 mM B-mercaptoethanol) and boiled for 5 min. Equal
amounts of total lysate were analyzed by 12% SDS-
polyacrylamide gel electrophoresis. Proteins were trans-
ferred to Immobilon-P and incubated with blocking
buffer (Tris buffered saline/Tween-20) containing 5%
low-fat milk for 1 h before being incubating with anti-
bodies against PKB (Cell Signaling Technology, Beverly,
MA, USA) or tubulin (Sigma) overnight at 4 °C in the
same buffer. Before incubation with an antibody against
phosphorylated PKB, phosphorylated S6, phosphorylat-
ed p70S6kinase or phosphorylated elF4B (all obtained
from Cell Signaling Technology, Beverly, MA, USA) for
16 h at 4°C, blots were incubated for 1 h in blocking
buffer containing 5% bovine serum albumin (BSA). Blots
were subsequently incubated with peroxidase-conjugat-
ed secondary antibodies for 1 h. Enhanced chemical
luminescence was used as a detection method according
to the manufacturer’s protocol (Amersham Pharmacia,

Amersham, UK).

3H-thymidine incorporation assays

Eighty thousand CD34" cells, resuspended in normal
culture medium (see Isolation and culture of human CD34
cells), were incubated with 1 uCi/mL *H-thymidine for 72
hatdays 0, 7 and 10. The amount of "H-thymidine incor-
porated was analyzed after 3 days of culture.

Single-cell proliferation assay

For single-cell proliferation assays, freshly isolated
CD34" cells were seeded in 60-well plates (Nunc,
Kamstrup, Denmark) by limiting dilution at a density of
1 cell per well in 20 pL of normal culture medium con-
taining SCE FLT-3L, GM-CSEF, IL-3, and G-CSF in the
presence or absence of 20 ng/mL rapamycin. Per condi-
tion, 120 wells were scored for both colony size and
number of colonies after 7 days of incubation.

Proliferation assays

For proliferation assays, freshly isolated CD34" cells
were first resuspended in normal culture medium con-
taining 2 uM of LavaCell™ (Active Motif, Rixensart,
Belgium), a commercially available non-toxic fluorescent
cell stain, and stained for 15 min at 37°C. Subsequently
cells were washed twice and resuspended in normal cul-
ture medium containing SCE FLT-3L, GM-CSE IL-3 and
G-CSF in the absence or presence of rapamycin.
Proliferation was evaluated as the decrease of fluorescent
LavaCell™-probe per cell, as measured by flow cytomet-
ric analysis.

Statistics

An independent sample ¢ test was performed to com-
pare the differences in proliferation, differentiation, and
annexin-positive cells between the control cells and
rapamyecin-treated cells. A p value of 0.05 or less was
considered statistically significant.
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Results

Inhibition of rapamycin-sensitive mTOR signaling
decreases cellular expansion of granulocyte progenitors
during myelopoiesis

In order to determine whether mTOR activity plays a
critical role in the regulation of myelopoiesis, an ex vivo dif-
ferentiation system was utilized. Human CD34" hema-
topoietic progenitor cells, isolated from umbilical cord
blood, were cultured in the presence of either G-CSF or IL-
8 and IL-5 to induce neutrophil and eosinophil differentia-
tion, respectively. Cells were cultured in either the absence
or presence of rapamycin, a specific pharmacological
inhibitor of mTOR, and differences in expansion were
determined both by analysis of the number trypan blue-
negative cells as well as by performing *H-thymidine incor-
poration assays. Rapamycin reduced expansion during neu-
trophil differentiation (Figure 1A, 1B). To determine
whether rapamycin-mediated inhibition of expansion was
due to enhanced levels of apoptosis, the percentage of
annexin-V positive cells was analyzed. Inhibition of mTOR
activity did not significantly affect the levels of annexin-V
positive cells during neutrophil differentiation (Figure 1C).
As for neutrophil differentiation, inhibition of mTOR
reduced progenitor expansion during eosinophil develop-
ment (Figure 1D), without altering progenitor survival
(Figure 1E). These results demonstrate that inhibition of

=
(=)

mTOR decreases cellular expansion of neutrophil and
eosinophil progenitors during differentiation.

mTOR signaling is not essential for myeloid
differentiation of hematopoietic progenitors

In order to investigate the clonogenicity of distinct
hematopoietic progenitor populations, CFU assays were
performed, in either the absence or presence of rapamycin,
and colony formation was analyzed after 7 days. Inhibition
of mTOR did not affect the granulocyte-macrophage
colony formation capacity of hematopoietic progenitor
cells (Figure 2A). To determine whether mTOR plays a role
in regulating terminal maturation, CD34* progenitor cells
were differentiated towards neutrophils or eosinophils for
17 days in either the presence or absence of rapamycin.
After 10, 14 and 17 days of culture, cytospins were pre-
pared and the morphology of the differentiating granulo-
cytes was analyzed as described in the Design and
Methods section. Treatment of hematopoietic progenitor
cells with rapamycin did not significantly alter the percent-
ages of mature neutrophils or eosinophils (Figure 2B, 2D).
However, since rapamycin inhibited progenitor expansion
during both neutrophil and eosinophil development, the
absolute numbers of mature neutrophils and eosinophils
were also reduced (Figure 2C, 2E). Together these results
show that rapamycin-sensitive mTOR signaling is not
involved in the regulation of early lineage development or
terminal maturation.

Figure 1. Rapamycin-sensitive mTOR signaling is

required for proliferation of granulocyte progeni-
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Rapamycin-sensitive mTOR is not implicated

in the regulation of cell-size of myeloid progenitors
mTOR activity has been implicated in the regulation of

cell size in a variety of cell lineages.” In order to investigate

whether mTOR is also involved in regulation of the cell

size of hematopoietic progenitors, human CD34" progeni-

tors were cultured for 2 days in the presence of SCF, FLT-
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Figure 2. mTOR signaling is not essential for myeloid differentia-
tion of hematopoietic progenitors. (A) Freshly isolated CD34" pro-
genitor cells were plated in CFU assays, in the presence or
absence of 20 ng/mL rapamycin, and colony formation was ana-
lyzed after 7 days. CD34" cells were cultured for 17 days in the
presence of (B/C) G-CSF or (D/E) IL-5 and IL-3 to induce neutrophil
differentiation or eosinophil differentiation, respectively. After 10,
14 and 17 days of differentiation, cytospins were prepared to ana-
lyze the morphology of the differentiating granulocytes. Data are
expressed as either (B/D) the percentage of differentiated cells or
(C/E) as absolute cell numbers. Results are presented as means
of four independent experiments. Error bars represent SEM.
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3L, GM-CSE IL-3 and G-CSF in either the absence or pres-  Treatment with rapamycin resulted in a decreased num-
ence of rapamycin and myeloid progenitors were analyzed  ber of colonies, which were also reduced in size, showing
by multilineage flow cytometry. Different hematopoietic — that mTOR is involved in the regulation of expansion of
progenitor populations, including hematopoietic stem cells  myeloid progenitors.

and common myeloid, granulocyte-macrophage, mega-

karyocyte-erythrocyte progenitors (CMP, GMP, MEP) and

Lineage positive (Lin‘) cells can be distinguished by a com-

bination of extracellular lineage markers as described in the

Design and Methods section (Figure 3A). Differences in cell 80 x -

size were determined by analysis of the forward scatter * - 1050
(FSC-H). Analysis of distinct myeloid progenitor popula- 60 O total
tions revealed that inhibition of mTOR by rapamycin did _T_

not result in a significant change in overall cell-size (Figure
3B, 3C). These results suggest that rapamycin-sensitive
mTOR is not implicated in the regulation of cell-size of
myeloid progenitors.
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. . . Error bars represent SEM.
After 7 days, wells with colonies were scored (Figure 4).
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To further dissect how the mTOR pathway regulates
progenitor expansion, CD34" progenitor cells were differ-
entiated towards neutrophils in the presence or absence of
rapamycin. After 3 and 7 days of culture, cells were plated
in CFU assays, and colony formation was analyzed after 7
days of culture. Interestingly, granulocyte-macrophage
colony formation of CD34" cells that had been cultured in
the presence of rapamycin for 7 days was significantly
increased compared to that of control CD34* cells (Figure
5A). These data suggest that rapamycin selectively inhibits
expansion and thereby preserves the clonogenic capacity
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Figure 5. mTOR activity regulates proliferation of hematopoietic
progenitor cells during myeloid differentiation in a stage-specific
manner. (A) CD34* progenitor cells were differentiated towards
neutrophils in the presence or absence of rapamycin. After 3 and
7 days of culture, cells were plated in CFU assays, and colony for-
mation was analyzed after another 7 days of culture. (B-E) Freshly
isolated CD34" cells were stained with LavaCell™, a fluorescent
dye, and cultured in either the presence or absence of rapamycin
in the presence of SCF, FLT-3 ligand, GM-CSF, IL-3 and G-CSF for 3
days. Different myeloid progenitor populations, including (B)
CD34Lin", (C) CD34Lin*, (D) HSC, and (E) CMP/GMP cells were
analyzed by flow cytometry. Proliferation was visualized by the
decrease in the mean fluorescent intensity per cell of LavaCell™.
Results are presented as means of four independent experiments.
Error bars represent SEM.

of a specific population of progenitors.

To define what cell population is the target of
rapamycin, freshly isolated CD34" cells were stained with
LavaCell™, a fluorescent dye, and cultured in either the
presence or absence of rapamycin in the presence of SCE,
FLT-3L, GM-CSE, IL-3 and G-CSE Subsequently, after 3
days of culture, myeloid progenitor populations were ana-
lyzed by flow cytometry and the level of proliferation was
visualized by the decrease in the mean fluorescent intensi-
ty of LavaCell™. Inhibition of mTOR activity significantly
decreased proliferation of Lin* CD34" hematopoietic cells
(Figure 5B), while expansion of hematopoietic stem cells
and common myeloid and granulocyte-macropage pro-
genitor populations (Figure 5D, 5E) and the more differen-
tiated Lin" progeny that no longer expresses the CD34
(Figure 5C) was not altered upon treatment with
rapamycin. Together, these observations show that
rapamycin selectively inhibits expansion of the most com-
mitted CD34* progenitors, indicating that rapamycin-sen-
sitive mTOR activity regulates proliferation of hematopoi-
etic progenitor cells during myeloid differentiation in a
stage-specific manner.

Inhibition of mTOR activity by rapamycin differentially
regulates protein kinase B and mTOR signaling
during granulopoiesis

To investigate the effect of rapamycin on mTOR signal-
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Figure 6. Inhibition of mTOR activity by rapamycin differentially
regulates PKB and mTOR signaling during granulopoiesis. (A)
CD34" cells were cultured in the presence of G-CSF to induce neu-
trophil differentiation, in either the presence or absence of
rapamycin. After 3,10 and 17 days of culture, protein lysates were
made and western blot analysis was performed using an antibody
against phosphorylated p70S6K, phosphorylated S6, phosphory-
lated PKB or total PKB as a control for equal loading. (B) CD34*
cells were cultured in the presence of G-CSF to induce neutrophil
differentiation, in either the presence or absence of rapamycin.
After 10 days of culture, protein lysates were made and western
blot analysis was performed using an antibody against phospho-
rylated elF4B or tubulin as a control for equal loading. (C) CD34*
cells were cultured in the presence of G-CSF to induce neutrophil
differentiation. After 10 days of culture, cells were left untreated
(lanes 1, 2) or treated with rapamycin (lane 3) for 3 h before stim-
ulation with G-CSF (lanes 2, 3) for 15 min. Protein lysates were
prepared and western blot analysis was performed with an anti-
body against phosphorylated PKB, phosphorylated S6, and as a
control for equal loading an antibody against tubulin. Similar
results were obtained in three independent experiments.
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ing during granulopoiesis, CD34" cells were cultured in the
presence of G-CSE to induce neutrophil differentiation, in
the presence or absence of rapamycin. After 3, 10 and 17
days of culture, protein lysates were made and western
blot analysis was performed using an antibody against
phosphorylated p70S6K and phosphorylated S6, a direct
substrate of the mTOR substrate p70S6K (Figure 6A). S6
phosphorylation levels were low early during neutrophil
differentiation, but increased after 10 to 17 days of differ-
entiation. However, phosporylation of both p70SK and S6
was inhibited or completely blocked in cells cultured in the
presence of rapamycin for 10 or 17 days, respectively.
However, no effect of rapamycin on S6 phosphorylation
could be detected after 3 days of culture. In addition,
rapamycin treatment resulted in a block in PKB phosphory-
lation at day 10, while phosphorylation of PKB at day 3 of
culture in the presence of rapamycin was induced com-
pared to that in control cells and was unaffected at day 17.
In addition, rapamycin treatment resulted in a decrease in
phosphorylation of elF4B, a downstream target of PKB,” at
day 10 (Figure 6B). In contrast, G-CSF-induced PKB phos-
phorylation was not inhibited upon short exposure to
rapamycin at the same time point (Figure 6C). These obser-
vations suggest that the effects of rapamycin might be due
to differential regulation of PKB and mTOR signaling.

Discussion

Although mTOR signaling has been demonstrated to
play an important role in a plethora of cellular processes, a
role in the regulation of myelopoiesis remains relatively
unexplored. In this study, we investigated the role of
mTOR in the regulation of myelopoiesis utilizing a human
ex vivo granulocyte differentiation system. Our results
show that rapamycin-sensitive mTOR signaling plays an
important role in the regulation of expansion of
hematopoietic progenitors during myelopoiesis in a stage-
specific manner.

mTOR is known to be a regulator of cell cycle progres-
sion and proliferation.”® In B and T lymphocytes,
rapamycin induces Gi-phase arrest and can, therefore, be
used as a potent anti-proliferative drug.” In most other cell
types, however, rapamycin reduces the proliferation rate
by delaying cell cycle progression. For example, prolifera-
tion of human endothelial progenitors, epithelial cells,
osteoblasts and myoblasts is inhibited by rapamycin."”*
Our data demonstrate that mTOR activity is also required
for the proliferation of hematopoietic progenitors during
myelopoiesis. Progenitor expansion in the presence of
rapamycin was significantly reduced, as measured by °H-
thymidine incorporation experiments (Figure 1B) and single
cell proliferation assays (Figure 4). Cell cycle analysis of
myeloid progenitors showed that rapamycin did not signif-
icantly alter cell cycle distribution (data not shown), suggest-
ing that the observed inhibition of proliferation was due to
a delay in cell cycle progression rather than an arrest in
Go/G: phase. mTOR mediates cell growth at the transla-
tional level through phosphorylation of p70S6K and 4E-
BP1, two essential regulators of ribosome biogenesis and
translation initiation. Ectopic expression of p70S6K and
elF4E in quiescent U20S osteosarcoma cells, which are

stimulated with serum to enter the Gi phase, accelerates
entry into the S phase, whereas reduction of p70S6K
expression with RNAI or expression of a dominant-nega-
tive 4E-BP1 mutant inhibits the rate of S phase entry.” In
addition, ectopic expression of e[F4E or rapamycin-resist-
ant mutants of p70S6K partially rescues the rapamycin-
induced delay in cell cycle progression, indicating that
p70S6K and elF4E are important mediators of mTOR-
dependent cell division.* It has been demonstrated that
mTOR regulates the translation of proteins involved in
G/S transition during cell cycle progression, including
retinoblastoma protein, cell-cycle inhibitors of the Cip/Kip
family p21, p27, and cyclin D or E**Thus, it is likely that
mTOR also regulates hematopoietic progenitor expansion
at the translational level by regulating translation of cell-
cycle modulating proteins.

Recently, Fingar et al. demonstrated that rapamycin not
only delays proliferation, but is also involved in regulation
of cell size. Although rapamycin-treated osteosarcoma cells
are significantly smaller in size, proliferation is not com-
pletely blocked,” indicating that cell division does not
require a fixed size. It has been suggested that both cell size
and proliferation can be regulated by the same mTOR-
dependent downstream effectors.®® A reduction of, for
example, S6K1 expression in osteosarcoma cells has been
demonstrated both to delay proliferation and to reduce cell
size.* However, a reduction in energy sources results in an
inhibition of cell size in yeast, but does not block cell divi-
sion.” In addition, the cell size of rat neuronal cells varies
depending on the level of extracellular growth factors,
whereas proliferation is unaltered.” Moreover, deletion of
p70S6K in mouse myoblasts mimics the inhibitory effect of
rapamycin on cell size but not on proliferation.” Our data
demonstrate that mTOR activity is essential for prolifera-
tion of myeloid progenitors, whereas cell-size appears not
to be regulated by mTOR (Figure 3), indicating that in cer-
tain cell lineages cell cycle and cell size are controlled by
multiple independent signal transduction pathways.

Analysis of different progenitor cells revealed that
rapamycin differentially affects the diverse populations.
Inhibition of mTOR activity significantly decreased prolif-
eration of CD34" Lin® hematopoietic cells, whereas prolif-
eration of CD34" Lin’, hematopoietic stem cells, common
myeloid progenitor and granulocyte-macrophage progeni-
tor populations was unaffected (Figure 5B-E). These obser-
vations suggest that the response of hematopoietic progen-
itors to rapamycin is dependent on the stage of differentia-
tion. It is likely that the observed resistance to rapamycin
of the early hematopoietic progenitors is due to these cells
being less dependent on the mTOR pathway compared to
the more committed CD34'Lin® hematopoietic cells.
Correspondingly, a recent analysis of TSC1-deficient mice
revealed that constitutive mTORC1 activation induces
severe multilineage defects including anemia and progeni-
tor expansion.” These data, combined with our results,
suggest that correct regulation of mTOR activity is critical
for optimal progenitor expansion. Zeiser et al. recently
showed that regulatory T cells and conventional T cells also
display differential expansion kinetics upon exposure to
rapamycin. Expression of phosphatase and tensin homolog
deleted on chromosome 10 (PTEN), a negative regulator of
the PISK/PKB/mTOR pathway, was found to remain high
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in regulatory T cells but not in conventional T cells during
stimulation, which may explain the difference in suscepti-
bility to rapamycin between these T-cell populations.”
Furthermore, our results suggest that the effect of
rapamycin on progenitor expansion during granulopoiesis
might be due to differential regulation of PKB and mTOR
activity (Figure 6). It has, for example, been demonstrated
that modulation of PKB activity regulates the sensitivity of
glioblastoma cells to the mTOR inhibitors rapamycin and
CCI-779 by expression of cyclin D1 and c-myc, two pro-
teins found to be essential for cell cycle transit.”
Furthermore, we have previously demonstrated that PKB
activity is indeed critical for expansion of hematopoietic
progenitors during myelopoiesis.’ Although regulation of
PKB activity is believed to be mediated by mTORC2,
which is insensitive to rapamycin, Sarbassov et al. demon-
strated that treatment with rapamycin can result in either
increased or decreased levels of PKB phosphorylation,
depending on the cell type.* A possible explanation for
this could be that, although rapamycin cannot inhibit
mTORC2, it can associate with free mTOR, thereby pre-
venting the association with Rictor and assembly of the
mTORC2 complex.® Alternatively, differential expression
of PTEN or other components of the PI3K/PKB/mTOR
pathway, such as Raptor, may explain the difference in
susceptibility of distinct hematopoietic progenitors to
rapamyecin.

Constitutive activation of PI3K and its downstream
effectors PKB and mTOR has also been implicated in the
pathogenesis of a variety of hematopoietic malignancies,
including acute myeloid leukemia.*” It has been demon-
strated that tumors displaying enhanced expression or acti-
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