forming more combined hematopoietic stem cell plus solid organ transplants? Bone Marrow Transplant 2003;31:633-42.

 Thomson AW, Lu L, Murase N, Demetris AJ, Rao AS, Starzl TE. Microchimerism, dendritic cell progenitors and transplantation tolerance. Stem Cells 1995;13:622-39.

CIITA or RFX coding region loss of function mutations occur rarely in diffuse large B-cell lymphoma cases and cell lines with low levels of major histocompatibility complex class II expression

Loss of major histocompatibility complex class II (MHCII) gene expression was associated with poor out-

come in diffuse large B-cell lymphoma (DLBCL) in several studies.¹⁻³ The mechanism for lost expression is unknown. MHCII gene expression is controlled by several transcription factors, including RFX (composed of *RFXB, RFX5*, and *RFXAP*), CREB, and NF-Y. These transcription factors interact with a master transactivator protein class II transactivator (CIITA) to form an enhanceosome complex.⁴ In the Bare Lymphocyte Syndrome (BLS), MHCII gene expression is absent due to small deletions or point mutations in the coding or splicing regions of either CIITA or an RFX subunit.⁵ This study investigated whether DLBCL with low MHCII expression had mutations similar to BLS.

DNA from 46 patient tumors, for which gene expression profiling was available, was obtained from the

Table 1. Mutations found in CIITA and RFX, organized 5' to 3' down the lengths of the genes. Bolded mutations indicate those which were interpreted as likely to affect expression or function of the mutated protein.

Gene	Site	Mutation	Mutation Type	SNP?	Alleles	Sample ID number	Sample type
CIITA	pIII	-136bpA->G	Non-coding	SNP	Excl.	38, 91, 255, 273, 322, 397, S7, LN2, 1030, 1043, Raji, RJ2.2.5 lines	MHCII-, MHCII ⁺ , PTCL, benign, MHCII ⁺ & - cell
CIITA	pIII	-136bpA->G	Non-coding	SNP	Poly	12, 19, 80, 122, 123, 129, 132, 134, 139, 166, 169, 249, 263, 277, 285, 298, 315, 435, S5, S6, LN1, 1112, 1113, 1114	MHCII⁻, MHCII⁺, Benign
*CIITA	1	deletion 5' UTR-130	Non-coding		Poly	172	MHCII+
*CIITA	1	deletion 5' UTR-41	Non-coding		Poly	435	MHCII+
CIITA	1	aa 11	Silent		Poly	38	MHCII-
CIITA	2	aa L45V	Mis-sense		Excl.	LN2	benign
CIITA	2	aa L45V	Mis-sense		Poly	12,397,1030,1112	MHCII⁻, MHCII⁺, benign
*CIITA	6+	intron 6+8G->T	Intronic		Poly	41,91,134,315	MHCII ⁻ , MHCII ⁺
CIITA	7	aa 197	Silent		Poly	58	MHCII-
*CIITA	9	aa P292S	Mis-sense		Poly	SUDHL4	MHCII ⁺ cell line
*CIITA	11 & 12	deletion 11 & 12	deletion		Excl.	RJ2.2.5	MHCII- cell line
CIITA	11	aa G500A	Mis-sense	SNP	Excl.	67,91,132,142,269,OCILy3,OCILy19,Raji	MHCII-, MHCII⁺, MHCII⁺cell lines
CIITA	11	aa G500A	Mis-sense	SNP	Poly	38, 58, 80, 123, 129, 152, 213, 255, 263, 273, 277, 285, 298, 406, tonsil, 1030, 1039, 1112, 1114, OCILy10, SUDHL6	MHCII-, MHCII⁺, benign, MHCII⁺ & - cell lines
*CIITA	11	aa A691D	Mis-sense		Poly	315, 397	MHCII+
CIITA	11	aa 777	Silent		Excl.	8, 273	MHCII-
CIITA	11	aa 777	Silent		Poly	15, 64, 80, 101, 119, 134, 166, 179, 203, 322, 397, 423, 1028, 1113	MHCII ⁻ , MCHII⁺, benign
CIITA	11	aa S781L	Mis-sense		Excl.	213	MHCII+
CIITA	11	aa S781L	Mis-sense		Poly	38, 41, 67, 80, 132, 142, 152, 255, 273, 1030, 1112, OCILy10, OCILy19	MHCII-, MHCII⁺, benign, MHCII⁺ & - cell lind
CIITA	11	aa V782A	Mis-sense		Excl.	213	MHCII+
CIITA	11	aa V782A	Mis-sense		Poly	38, 41, 67, 80, 132, 225, 273, 1030, 1112, OCILy10, OCILy19	MHCII ⁻ , MHCII⁺, benign, MHCII⁺ & - cell lind
CITA	11	aa 798	Silent	SNP	Excl.	25, 139, 140, 435, S5, S6	MHCII ⁻ , MHCII⁺
CIITA	11	aa 798	Silent	SNP	Poly	19, 38, 58, 65, 249, 255, 285, 322, S7, S8, 1030, 1112, DB, OCILy7	MHCII ⁻ , MHCII+, PTCL MHCII ⁻ , benign, MHCII+ & - cell lines
CIITA	11	aa 807	Silent		Excl.	269, LN2, OCILy3, Raji	MHCII ⁻ , benign, MHCII⁺ cell lines
CIITA	11	aa 807	Silent		Poly	41, 58, 67, 91, 123, 129, 142, 263, 277, 285, 298, 406, tonsil, 1039, 1114, OCILy19, SUDHL6	MHCII ⁻ , PMBL, MHCII ⁺ , MHCII ⁺ cell lines

continuing to next page.

ion Mutation Type 10* insertion in e1 16 Silent 24 Silent	SNP? 1	Alleles Excl. Poly	Sample ID number 8 er	Sample Type MHCII ⁻
16Silent24Silent	1			MHCII-
24 Silent		Poly	CT	
			65	MHCII-
		Poly	25, S7, S8	MHCII⁺, PTCL, MHCII⁻
55 Silent	SNP	Excl.	213	MHCII⁺
55 Silent	SNP	Poly	38, 41, 67, 80, 132, 152, 255, 1030, 1112, OCILy10, OCILy19	MHCII⁻, MHCII⁻, benign, MHCII⁻ & - cell lines
92 Silent	SNP	Excl.	41, 67, 142, 213, LN2, OCILy19, Raji	MHCII ⁻ , MHCII ⁻ , benign, MHCII ⁻ cell lines
92 Silent	SNP	Poly	80, 132, 139, 255, 298, OCILy3	MHCII⁻, MHCII⁺, MHCII⁻ cell lines
92S Mis-sense		Poly	139	MHCII-
00Q Mis-sense	SNP	Poly	1043	Benign
53V Mis-sense, splicing?		Poly	169	MHCII⁺
69S Mis-sense		Poly	25	MHCII⁺
ncates		Poly	129	MHCII⁺
57 Silent		Excl.	213	MHCII+
57 Silent		Poly	132, 152, 169, 273, 311, 397	MHCII⁻, MHCII⁺
	92Silent92Silent92SMis-sense00QMis-sense63VMis-sense, splicing?69SMis-sense8+AT incatesSilent	92 Silent SNP 92 Silent SNP 92S Mis-sense 00Q Mis-sense SNP 63V Mis-sense, splicing? 69S Mis-sense 8+AT incates 6 aas 5057 Silent	92SilentSNPExcl.92SilentSNPPoly92SMis-sensePoly00QMis-senseSNPPoly63VMis-sense, splicing?Poly69SMis-sensePoly8+AT incatesPoly507SilentExcl.	92 Silent SNP Excl. 41, 67, 142, 213, LN2, OCILy19, Raji 92 Silent SNP Poly 80, 132, 139, 255, 298, OCILy3 92S Mis-sense Poly 139 00Q Mis-sense SNP Poly 63V Mis-sense, splicing? Poly 169 84-AT Poly 129 057 Silent Excl. 213

The *symbol indicates mutations that could possibly explain loss of MHCII expression, but were considered unlikely. In the next column, "Site," the exons are referred to by number while a number followed by "+" indicates an intron."PIII" indicates promoter III of the 5'UTR of CIITA exon 1. Under "Mutation," the notation for coding regions indicates the amino acid (aa) number preceded by the original aa and followed by the one coded for by the mutation. Mutation notation for 5'UTRs are shown as the base count from the start codon with original and changed base. Mutation notation for intron mutations are shown as the base count from the end of the previous exon with original and changed base. Single nucleotide polymorphisms (SNPs) were defined as single nucleotide changes (if previously reported) or polymorphisms (if not). Under "Alleles," for mutations with no other sequence seen the result is listed as "exclusive" while if the mutated sequence was seen along with wild type the result is listed as "polymorphic." DLBCL samples from the LLMPP data set have retained their 1-3 digit numbers, which referred to the numbering in the original paper' Other DLBCL samples are referred to by MHCII status (MHCII+ or MHCIF). The remaining samples are either designated by their cell line name, or as a benign (tonsil or lymph node LN) or a Tcell sample (peripheral Tcell lymphoma or PTCL).

Lymphoma and Leukemia Molecular Profiling Project (LLMPP).¹ These cases had been previously reviewed by a panel of expert hematopathologists and each contained a minimum of 70% tumor. Twenty-three were from *de novo* DLBCL in the lowest 10% of MHCII expression, 4 were in the 10-25% range, and 4 were transformed or relapsed DLBCL in the lowest 10%. Fifteen LLMPP cases were *de novo* MHCII⁺ samples in the upper 25-100% of expression. Fourteen additional samples were sequenced, including 1 MHCII⁺ DLBCL, 1 MHCII- DLBCL, and 2 MHCII-peripheral T-cell lymphomas (PTCL), unspecified. MHCII status for these samples was determined by immunohistochemistry. Seven reactive lymph nodes and 3 tonsils were considered positive controls. Ten cell lines (7 MHCII⁺, 3 MHCII⁻) were also sequenced.

continuing by previous page.

Six PCR reactions using the Multiplex PCR kit (Qiagen, Valencia, CA, USA) analyzed the coding regions of all 4 genes (primer sequences and conditions available on request) using the Multiplex PCR kit (Qiagen). Amplified DNA was purified with the Qiaquick PCR Purification Kit (Qiagen) and sequenced. Possible mutations were confirmed by sequencing the opposite strand. Gap software was used to compare sequences to NCBI genomic sequences. In 3 samples (129, 172, 435), 2 divergent overlapping sequences appeared. For these, the relevant amplicon from a separate, non-multiplex PCR was cloned into the pGEM-T Easy vector (Promega, Madison, WI) and sequenced. Significant mutations were those resulting in a non-conserved change in amino acid sequence or change in a splice site and were not seen as the only allele in a known MHCII⁺ sample. Mutations were considered non-significant if they were silent mutations that caused no change in amino acid sequence, conserved mutations

that caused no change in class of amino acid, or exclusive mutations in a sample known to express MHCII. Results summarized in Table 1. Only 3 mutations were considered unequivocal causes of loss of MHCII expression, by virtue of being present exclusively in MHCII-samples and by encoding mutations which would exclude required known functional regions of the coded proteins. In one case (in MHCII-DLBCL sample 8), an exclusive insertional mutation was identified in CIITA exon 11, 5' of the codon for aa 810. This insertion would result in a truncated CIITA protein lacking C-terminal sequences necessary for function, including a nuclear localization sequence and the leucine rich repeat (LRR) regions.^{6,7} An exclusive Q252stop mutation was detected in exon 3 of RFXAP in one of the MHCII- PTCL samples (sample S8), which created a termination codon that would truncate RFXAP at aa252. This mutation would clearly disrupt RFXAP function, for the sequences of RFXAP C-terminal of aa 252 are required for productive MHCII transcription.⁸ A large deletion in exons 11 and 12 of CIITA was observed in the RJ2.2.5 line, a γ radiation induced MHCII-derivative of Raji that expresses a CIITA mRNA containing an 1811 base deletion at bp1122-2933. This deletion produced a truncated protein of 353 aa because of a frameshift at aa335 and a translational stop codon, creating a non-functional CIITA protein.9

In RFX5, 3 potentially significant mutations included a G to C mutation at +4 in intron 5 (sample 435), P409R in 2 samples (samples S8, D8), and an R470stop mutation identified in a PTCL MHCII-sample (sample S8) that encoded a truncation mutant. Other mutations were considered non-significant.

In summary, mutations in RFX and CIITA were infre-

quent in MHCII-DLBCL. These cases were clinical samples with heterogeneous cell populations and thus it is possible that mutations were under-identified. However, the most likely mechanism for loss of MHCII expression in DLBCL remains specific, co-ordinated downregulation of MHCII transcription, which could potentially be restored through therapeutic intervention.

Lisa M. Rimsza,⁴ Wing C. Chan,² Randy D. Gascoyne,³ Elias Campo,⁴ Elaine S. Jaffe,⁵ Louis M. Staudt,⁵ Jan Delabie,⁶ Andreas Rosenwald,⁷ and Shawn P. Murphy⁸

¹Department of Pathology, University of Arizona, Tucson, Arizona, USA; ²Dept. of Pathology, University of Nebraska, Omaha, Nebraska, USA; ⁸Department of Pathology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; ⁸Department of Pathology, University of Barcelona, Barcelona, Spain; ⁵Metabolism Branch, National Cancer Institute, Bethesda, Maryland, USA; ⁶Department of Pathology, Radium Hospital, Oslo, Norway; ⁷Department of Pathology, University of Würzburg, Würzburg, Germany; ⁸Departments of Obstetrics and Gynecology, Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA

Funding: grant from the American Cancer Society, #RSG0605501L1B. The authors have no relevant conflicts of interest to disclose.

Correspondence: Lisa Rimsza, MD, Department of Pathology 1501 N. Campbell Ave, Box 245043, Tucson, AZ 85724-5043 USA. Phone: international +520.6268396. Fax: international +520-626-6081. E-mail: lrimsza@email.arizona.edu

Citation: Rimsza LM, Chan WC, Gascoyne RD, Campo E, Jaffe ES,Staudt LM, Delabie J, Rosenwald A, Murphy SP. CIITA or RFX coding region loss of function mutations occur rarely in diffuse large B-cell lymphoma cases and cell lines with low levels of major histocompatibility complex class II expression. Haematologica 2009; 94:596-598. doi:10.3324/haematol.2008.000752

References

- Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 2002;346:1937-47.
 Rimsza LM, LeBlanc ML, Unger JM, Miller TP, Grogan That and the survival s
- Rimsza LM, LeBlanc ML, Unger JM, Miller TP, Grogan TM, Persky DO, et al. Gene expression predicts overall survival in paraffin-embedded tissues of diffuse large B-cell lymphoma treated with R-CHOP. Blood 2008;112:3425-33.
- 3. Chang KC, Huang GC, Jones D, Lin YH. Distribution patterns of dendritic cells and T cells in diffuse large B-cell lymphomas correlate with prognoses. Clin Cancer Res 2007;13:6666-72.
- 4. Ting JP, Trowsdale J. Genetic control of MHC class II expression. Cell 2002;109 Suppl:S21-S33.
- 5. Nekrep N, Fontes JD, Geyer M, Peterlin BM. When the lymphocyte loses its clothes. Immunity 2003;18:453-7.
- 6. Harton JA, Ting JP. Class II transactivator: mastering the art of major histocompatibility complex expression. Mol Cell Biol 2000;20:6185-94.
- Brown JA, Rogers EM, Boss JM. The MHC class II transactivator (CIITA) requires conserved leucine charged domains for interactions with the conserved W box promoter element. Nucleic Acids Res 1998;26:4128-36.
- 8. Long AB, Ferguson AM, Majumder P, Nagarajan UM, Boss JM. Conserved residues of the bare lymphocyte syndrome transcription factor RFXAP determine coordinate MHC class II expression. Mol Immunol 2006;43:395-409.
- class II expression. Mol Immunol 2006;43:395-409. 9. Brown JA, He XF, Westerheide SD, Boss JM. Characterization of the expressed CIITA allele in the class II MHC transcriptional mutant RJ2.2.5. Immunogenetics 1996;43:88-91.