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Introduction

Differentiation of B-cells to plasma cell (PC) requires repro-
gramming of gene expression, mediated by a transition in
transcription factor network. B-cell lymphoproliferative disor-
ders can be related to stages of this process.1 A key component
which remains to be assessed is activation of the transcription
factor X-box binding protein 1 (XBP1), a terminal event dur-
ing differentiation. 

An initiating event during differentiation is silencing of
Paired box gene 5 (PAX5). Loss of PAX5 unravels B-cell identi-
ty2 and may facilitate high-level expression of XBP1.3,4

Repression of PAX5 is mediated by the transcriptional repres-
sor B-lymphocyte induced maturation protein 1 (BLIMP1 also
known as PRDM1).5 Both BLIMP1 and XBP1 are essential for
PC differentiation6,7 and may act sequentially with Blimp1
required for induction of Xbp1.8 However a preplasmablast
secretory stage of differentiation is observed in the presence
of defective Blimp1 expression.9,10

XBP1 is a key component of the unfolded protein response
(UPR).11 This stress response triggered by accumulation of
unfolded protein in the ER, balances adaptive and apoptotic
fates.12 During the UPR splicing of 26 nucleotides from XBP1
mRNA results in a reading frame shift, giving rise to an active
form of XBP1 XBP1(S).13,14 The essential role for Xbp1 in PC
differentiation, and immunoglobulin synthesis reflects a
requirement for XBP1(S)15,16 and expansion of the secretory
apparatus.8 XBP1(S) has eluded direct assessment in human
tissue, a critical issue for our understanding of the UPR,
humoral immunity and malignancies derived from differenti-
ating B-cells and PCs. 

Design and Methods

XBP1(S) monoclonal antibody
XBP1(S) cDNA was cloned into pIRES2-Myc-EGFP and

XBP1(S) carboxy-terminus (amino-acids 165-367) was cloned
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The transcription factor XBP1 (X-box-binding protein 1) is
essential for plasma cell (PC) differentiation and
immunoglobulin secretion. XBP1 is widely expressed, but
its activity is precisely controlled by mRNA splicing in
response to endoplasmic reticulum (ER) stress. It is the
active form of XBP1, XBP1(S), which is required for PC dif-
ferentiation. The relationship between XBP1(S) expression
and PC differentiation in human tissue and its expression
in hematologic malignancies has eluded assessment. With
a novel antibody, we now define XBP1(S) expression in a
large series of normal and neoplastic lymphoid tissues. We
establish that XBP1(S) provides a specific marker of
advanced plasma differentiation and in lymphoid malig-
nancies is restricted to PC-derived neoplasms and plas-
mablastic diffuse large B-cell lymphomas. XBP1(S) expres-

sion delineates heterogeneity amongst plasmablastic dif-
fuse large B-cell lymphomas, identifying a distinct tumor
sub-group. Furthermore, our results establish a direct and
practical means of assessing ER stress in human tumors.

Key words: plasma cell, lymphomas, XBPS1(s), monoclon-
al antibody.

Citation: Maestre L, Tooze R, Cañamero M, Montes-Moreno S,
Ramos R, Doody G, Boll M, Barrans S, Baena S, Piris MA, and
Roncador G. Expression pattern of XBP1(S) in human B-cell
lymphomas. Haematologica 2009; 94:419-422. 
doi:10.3324/haematol.2008.001156

©2009 Ferrata Storti Foundation. This is an open-access paper. 

ABSTRACT

©Fer
ra

ta
 S

to
rti

 F
ou

nd
at

ion



L. Maestre et al.

| 420 | haematologica | 2009; 94(3)

into pGEX-6P1 (Promega). Anti-XBP1(S) monoclonal
antibody (clone 143F) isotype IgG2a/κ was produced as
described,17 with GST-XBP1(S)-carboxy-terminus as
immunogen.

Tissue samples and tissue microarrays
TMAs were prepared containing samples of normal

tissue and 679 pre-treatment lymphoma biopsies (CNIO
Tissue Bank) diagnosed according to WHO classification
criteria.18

B-cell tumors: chronic lymphocytic leukemias/small
lymphocytic lymphoma (B-CLL/SLL) n=21, mantle cell
lymphoma (MCL) n=14, follicular lymphoma (FL) n=29,
Burkitt’s lymphoma (BL) n=18, marginal zone lym-
phoma (splenic, extranodal and nodal) (MZL) n=25,
DLBCL n=268, plasmablastic DLBCL n=25, lymphoplas-
macytic lymphoma (LL) n=9 and myeloma/plasmacy-
toma n=40.

T/NK-cell tumors: peripheral T-cell lymphoma (PTCL)
n=21, anaplastic large cell lymphoma (ALCL) n=4, T-
angioimmunoblastic lymphoma n=10, mycosis fun-
goides/Sézary syndrome n=5 and T-cell lymphoblastic
lymphoma/leukemia n=3. Use of human tissue was
approved by the CNIO and Research Ethics Committee
(UK) reference number 07/Q1206/47.

Cell lines
Myeloma cell lines (RPMI-8226, SK-MM-2, KARPAS-

640, NCI-H929 and LP-1), DLBCL cell line (OCI-LY3)
and U937 human histiocytic lymphoma were from
DSMZ, Germany. HEK 293T cells were transfected with
pIRES2-MycXBP1(S) as described.6

Antibodies
BCL6 (clone GI191E/A8, CNIO), BLIMP1 (clone ROS6,

CNIO or rabbit-polyclonal19), MUM-1/IRF4 (Santa Cruz
Biotechnology), CD138 (Dako), CD38 (Dako) PAX5
(Santa Cruz Biotechnology), GAPDH (clone 26A, CNIO)
and ACTIN (clone AC15, Sigma). 

RT-PCR, Western blot, and immunostaining
RT-PCR for XBP1 splicing and Western blotting were

as described.19,20 A Bond automated system (Leica) was
used for XBP1(S) immunostaining of TMA sections.
Double immunoenzymatic labeling was as described.6 In
all immunostained paraffin sections, PCs provided an
internal positive control. Multi-color immunofluores-
ence (MCIF) was performed on human tonsil tissue as
described21 (see also Online Supplementary Appendix).

XBP1(S) scoring
Cases were scored semi-quantitatively by two inde-

pendent observers (MC and SMM): negative (< 10%
positive tumor cells), weak (10% to 50% positive tumor
cells) and positive (>50% positive tumor cells).

Results and Discussion

To track ER stress responses and address the relation-
ship between XBP1 activation and PC differentiation in
human tissue and lymphoid malignancies, we have

raised an XBP1(S) specific monoclonal antibody which
works in paraffin immunohistochemistry. To confirm
specificity of this antibody we examined XBP1(S) pro-
tein expression and XBP1 mRNA splicing in U937 cells
undergoing an UPR after treatment with dithiothreitol
or thapsigargin.19 The expected correlation was observed
with detection of a specific band at 54 kDa by Western
blot following XBP-1 mRNA splicing (Figure 1A).
Specificity was further confirmed by detection of a spe-
cific band in cells transfected with XBP1(S) expression
vector and myeloma cell lines (Figure 1B). The OCI-LY3
cell line was used as a negative control.

In human tonsil, XBP1(S) protein was detected in
nuclei of PCs within germinal centers (GC) and subep-
ithelial areas, and in a minor percentage of small lym-
phocytes lacking PC phenotype (Figure 1C). Double
immunoenzymatic staining showed that XBP1(S) was
expressed in CD138 positive PCs (Figure 1C). A small
number of XBP1(S) positive and CD138 negative cells,
with centrocyte-like morphology, were observed in GC
light zones. There was no evidence of XBP1(S) expres-
sion in T cells (data not shown). These observations are in
agreement with previous studies of mRNA expression
that identified unspliced XBP1 in all B-cell subsets, while
XBP1(S) mRNA was restricted to PCs and centrocytes.22

XBP1(S) was expressed in all reactive PC populations
in other organs, but XBP1(S) varied amongst individual
PCs. While most expressed substantial levels of XBP1(S),
occasional PCs had low expression or were negative
(Figure 1D). The fact that XBP1(S) expression is not uni-
form is consistent with the adaptive role XBP1(S) plays,
the short half-life of XBP1(S),13 and a close correlation
between XBP1 splicing and active ER stress. 

Next the relationship of XBP1(S) to PAX5 and BLIMP1
expression was directly examined. As expected, XBP1(S)
was predominantly co-expressed with BLIMP1 in the
absence of PAX5. Occasional cells weakly co-expressed
PAX5 with both BLIMP1 and XBP1(S). Significantly, a
rare but distinct population of cells co-expressed
XBP1(S) and PAX5 in the absence of BLIMP1 (Figure 1E
and Online Supplementary Figure S1). 

To establish the pattern of expression of XBP1(S) pro-
tein in human lymphomas we analyzed TMAs represen-
tative of B- and T-cell lymphomas (Figures 1F-I and
Figure 2A). XBP1(S) protein was preferentially expressed
in diseases characterized by plasmacytic differentiation
such as previously described23 in myeloma/plasmacy-
tomas (40/40 positive cases) (Figure 1F), and in lympho-
plasmacytic lymphomas (9/9 positive cases) (Figure 1G).
Amongst DLBCLs, expression was confined to the plas-
mablastic sub-type (16/25) (Figures 1H and I). Extended
immunophenotyping further defined the relationship of
XBP1(S) expression to differentiation in plasmablastic
DLBCLs (Figures 2B and C). All cases were BLIMP1 and
IRF4/MUM-1 positive and most were PAX5 and BCL6
negative. The 9 XBP1(S) negative cases were only par-
tially CD38 positive and were CD138 negative. In con-
trast, XBP1(S), positive plasmablastic DLBCL were uni-
formly CD38 and CD138 positive. 

Thus our data demonstrate that in the B-cell lineage
UPR activation is predominantly restricted to cells
expressing BLIMP1 with repressed PAX5. However nei-
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Figure 1. Characterization of anti-
XBP1(S) monoclonal antibody and
XBP1(S) expression patterns in nor-
mal tissue. (A) XBP1(S) protein is
detected during the UPR following
induced XBP1 mRNA splicing. U937
cells were left untreated or subject
to an UPR with dithiothreitol (DTT)
or thapsigargin (Tg) for indicated
times, RT-PCR for XBP1 mRNA
splicing (top) and Western blot with
anti-XBP1(S) or anti-Actin mono-
clonal antibodies (bottom). In addi-
tion to the specific band at 54kDa,
a non-specific band at 50kDa was
detected in U937 cells (not shown).
(B) Specificity of the XBP1(S) mono-
clonal antibody is further demon-
strated by detection of a single 54
kDa band in transfectants and
myeloma cell lines. Western blot of
total protein extract from HEK cells
transfected with XBP1(S) or GCET1
expression vector as indicated as
well as myeloma cell lines and one
DLBCL (OCI-LY3) cell line. 

Figure 2. XBP1(S) expression in lymphoproliferative disorders. (A) Immunohistochemical analysis of XBP1(S) protein expression in lym-
phoma subtypes. (B) Schema illustrating distribution of markers across B cell to plasma cell differentiation. (C) Immunohistochemical
analysis of plasmablastic DLBCLs, purple indicates positive expression. The first nine rows represent XBP1(S) negative cases character-
ized predominantly by absence of PAX5, BCL6 and CD138 and expression of MUM1/IRF4, BLIMP1 and CD38. The next 16 cases repre-
sent XBP1(S) positive plasmablastic DLBCLs. Note the predominace of CD38 and CD138 expression in these cases compared with
XBP1(S) negative cases.

(C) In tonsil XBP1(S) protein is strongly expressed by plasma cells present in germinal centers, and in subepithelial areas. Double immu-
noenzymatic staining reveals that the majority of XBP1(S) positive cells (brown) co-express CD138 (red). (Insert) Higher magnification
of plasma cells in subepithelial area. (D) At higher magnification varied levels of XBP1(S) expression are evident amongst individual
plasma cell. (E) Simultaneous detection of PAX5, BLIMP1 and XBP1(S) in human tonsil by MCIF demonstrates predominant co-expres-
sion of XBP1(S) (green) and BLIMP1 (red) in the absence of PAX5 (blue). (F, G, H, I) Immunostaining of lymphoid neoplasms for XBP1(S).
Myeloma/plasmacytoma (F), lymphoplasmacytic lymphomas (G) and representative examples of XBP1(S) positive (H) and negative (I)
plasmablastic DLBCL. 
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Plasmablastic DLBCL 25 9 0 16 16 (64%)
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Myeloma/Plasmacytoma 40 0 4 36 40 (100%)

Hodgkin’s disease

T-cell neoplasms
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Peripheral T-cell lymphoma 21 21 0 0 0 (0%)
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ther the presence of BLIMP1 nor loss of PAX5 is essential
to allow XBP1(S) expression in B-cells in vivo. This may
be consistent with a proposed phase of PAX5 functional
inactivation observed in the effective absence of Blimp1
expression.9 Whether such XBP1(S) expressing B cells
survive to give rise to functional PCs is uncertain. These
patterns are paralleled in DLBCL in which XBP1(S) is
restricted to the plasmablastic sub-type. Moreover, our
results further delineate heterogeneity amongst these
neoplasms. XBP1(S) expression identifies disease with
advanced PC differentiation, which may be more close-
ly related to myeloma than DLBCL,24 raising the question
of alternate treatment choices for this sub-group. 

In the UPR, adaptive and apoptotic pathways are fine-
ly balanced.12 XBP1 splicing mediates a major adaptive
pathway and identifies cells undergoing an active stress
response. Our antibody provides a direct practical tool
for assessing this in patient samples. Existing and novel

treatment strategies aimed at myeloma and other secre-
tory tumors in part act through destabilizing the balance
of the UPR.25 We propose that application of our anti-
body in the diagnostic process may help predict
response to such treatments.
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