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Introduction

Neutrophils play an important role in host defense against
pathogens. To perform their cytotoxic and phagocytic func-
tions, neutrophils are equipped with efficient machinery to
detect and migrate towards these pathogens. Upon encounter-
ing chemotactic stimuli, like complement factors (i.e. C5a) or
bacterial metabolites (i.e. fMLP), neutrophils will rapidly poly-
merize their F-actin cytoskeleton, polarize and migrate in the
direction of the chemotactic source.1,2

Several hematologic syndromes are characterized by
impaired neutrophil chemotaxis. Patients with mutations in
Rac2, an essential signaling component that is required for
actin remodeling, display impaired neutrophil chemotaxis and
subsequently suffer from recurrent infections.3-6 Also patients
suffering from Shwachman-Diamond syndrome (SDS) display
neutrophil chemotaxis defects.7-11

SDS is characterized by exocrine pancreas defects and neu-
tropenia, often accompanied by thrombocytopenia and ane-
mia.8,12,13 Most SDS patients have mutations in the SBDS gene
located at chromosome 7, which is currently the only known

affected gene in SDS.14 The earliest studies on chemotaxis
defects in SDS patients were published in the late 1970s11,15

and were confirmed in later studies.7-9 At the cellular and
molecular level, Stepanovic et al. showed that directed, but not
random movement of SDS neutrophils is impaired and
Wessels et al. showed in Dictyostelium Discoideum that GFP-
SBDS was localized in the pseudopod during chemotaxis.
This suggests a role for SBDS in the polarization and migra-
tion process.10,16 Nevertheless, the molecular defects contribut-
ing to impaired chemotaxis in human SDS neutrophils
remained unexplored. 

Our previous study revealed that neutrophil chemotaxis
towards C5a, IL-8 and PAF was disturbed in most SDS
patients.8 To investigate the underlying molecular defect, we
examined human neutrophils and PLB-985 cells for SBDS co-
localization with the F-actin cytoskeleton and subsequently
examined chemoattractant-induced F-actin polymerization
dynamics in SDS neutrophils. We observed that SBDS co-
localizes with F-actin and Rac2 in cellular protrusions and that
F-actin dynamics are disturbed. Also, cellular F-actin polariza-
tion, which is a prerequisite for directional movement is
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Shwachman-Diamond syndrome is a hereditary disorder
characterized by pancreatic insufficiency and bone marrow
failure. Most Shwachman-Diamond syndrome patients
have mutations in the SBDS gene located at chromosome 7
and suffer from recurrent infections, due to neutropenia in
combination with impaired neutrophil chemotaxis.
Currently, the role of the actin cytoskeleton in Shwachman-
Diamond syndrome neutrophils has not been investigated.
Therefore, we performed immunofluorescence for SBDS
and F-actin on human neutrophilic cells. Additionally, we
examined in control neutrophils and cells from genetically
defined Shwachman-Diamond syndrome patients F-actin
polymerization and cytoskeletal polarization characteristics
upon chemoattractant stimulation. These studies showed
that SBDS and F-actin co-localize in neutrophilic cells and
that F-actin polymerization and depolymerization charac-
teristics are altered in Shwachman-Diamond syndrome neu-

trophils as compared to control neutrophils in response to
both fMLP and C5a. Moreover, F-actin cytoskeletal polar-
ization is delayed in Shwachman-Diamond syndrome neu-
trophils. Thus, Shwachman-Diamond syndrome neu-
trophils have aberrant chemoattractant-induced F-actin
properties which might contribute to the impaired neu-
trophil chemotaxis. 
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delayed in SDS neutrophils. 
This is the first study revealing a molecular defect,

namely defective F-actin cytoskeletal remodeling, which
may contribute to impaired chemotaxis in SDS patients.

Design and Methods 

Neutrophil isolation and cell culture
Blood was obtained after informed consent of healthy

volunteers (26-43 years) and SDS patients (2-29 years; all
with mutations 183-184 A>CT [K62X]/IVS2 258+2T>C
[C84fs]). The study was approved by the Medical Ethics
Committees of the AMC Hospital and the institutional
review board and was in accordance with the
Declaration of Helsinki. Neutrophils were isolated as
described.8

PLB-985 and GFP-Rac2 PLB-98517 cells were cultured
in RPMI/10% FCS/penicillin (200 µg/mL)/streptomycin
(200 µg/mL)/ L-glutamine (4 mM). PLB-985 cells were
differentiated with 0.5% dimethylformamide (DMF;
Sigma-Aldrich) for 5-7 days. 

Cellular spreading and immunofluorescence
Neutrophils or PLB-985 cells in Hepes medium (132

mM NaCl, 20 mM Hepes, 6mM KCL, 1 mM MgSO4, 1.2
mM K2HPO4, 1 mM CaCl2, 5 mM Glucose, 2.5%
human albumin (Cealb; Sanquin reagents)) were seeded
on fibronectin-coated coverslips and allowed to adhere
for 30 min. Cells were stimulated with 20nM fMLP,
fixed with 4% paraformaldehyde/PBS and processed for
immunofluorescence staining as described.18 Antibodies
used: SBDS (rabbit polyclonal), Phalloidin-Alexa488 or
BODIPY conjugated. Pictures were taken with a Zeiss
LSM510 microscope with a Zeiss 65x oil lens and
processed with LSM 510 software. 

F-actin polymerization and cellular polarization
Neutrophils (2×106/mL) in Hepes medium were stim-

ulated with 100nM fMLP or 40nM C5a. At indicated
time points 2×105cells were harvested and fixed with
buffer 1 (Intraprep Permeabilization Reagent Kit;
Immunotech), permeabilized with buffer 2 and stained
with Phalloidin-Alexa488 (Molecular Probes, Invitro-
gen). Cells were analyzed on LSRII (BD Biosciences)
flow cytometer for F-actin content. 

To determine F-actin polarization, neutrophils were
embedded with Mowiol 4-88 and analyzed by confocal
microscopy. For each experiment at least 50 cells per
time-point were analyzed in a blind fashion. 

Results and Discussion

SBDS co-localizes with F-actin and Rac2 in human
neutrophils

To investigate a possible link between SBDS and the
actin cytoskeleton, we performed immunofluorescence
stainings in neutrophils and PLB-985 cells, with an anti-
SBDS antibody that we have generated and which
specifically recognized SBDS (Online Supplementary
Figure S1A/B). In resting human neutrophils we observed

that SBDS is localized prominently to the nucleus and to
a lesser extent to the cytoplasm (Online Supplementary
Figure 1C). However, in these resting cells there is not
much polymerized F-actin cytoskeleton detectable (data
not shown) and therefore we set out to investigate SBDS
in relation to the F-actin cytoskeleton in activated neu-
trophilic cells. Human peripheral blood neutrophils were
allowed to adhere to fibronectin and were subsequently
stimulated with fMLP. These activated cells displayed F-
actin enriched cellular protrusions in which also SBDS is
located (Figure 1A). Also in non-transfected, differentiat-
ed neutrophilic PLB-985 cells, F-actin and SBDS showed
co-localization under adherent conditions (Figure 1B).
These data in human neutrophillic cells are consistent
with studies in the slime mold Dictyostelium discoideum, in
which GFP-SBDS localization to the pseudopods was
observed only under chemotactic conditions.16

Moreover, it suggests that SBDS pseudopod localization
is an evolutionary conserved process dependent on
chemotaxis.

Since Rac2 is an essential signaling component for
actin remodeling, we studied SBDS localization in GFP-
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Figure 1. SBDS co-localizes with F-actin and Rac2 in cellular exten-
sions of neutrophils. (A) Peripheral Blood neutrophils (B) differen-
tiated PLB-985 cells and (C) differentiated PLB-985 GFP-Rac2
cells were allowed to adhere to fibronectin-coated glass coverslips
and stimulated with 20 nM fMLP for several minutes. After adhe-
sion and induced spreading, cells were fixed and stained for SBDS
and F-actin. SBDS co-localizes with F-actin and Rac2 in cellular
extensions. White bar indicates 10 µM. 

©Fer
ra

ta
 S

to
rti

 F
ou

nd
at

ion



Rac2 PLB-985 cells generated previously in our laborato-
ry,17 which were treated in a similar manner as human
neutrophils. These cells revealed that SBDS co-localizes
with both GFP-Rac2 and F-actin-enriched cellular
regions (Figure 1C). This is an interesting observation,
since both Rac2 and SBDS deficient neutrophils display
chemotaxis defects, which in the Rac2 deficient neu-
trophils is due to both diminished F-actin polymeriza-
tion and impaired cell orientation and polarization
under chemotactic conditions.3,6 It is noteworthy that
Rac2 deficiency results in a clinically more severe phe-
notype than SDS due to combined adhesion and
NADPH oxidase defects,3 while SBDS deficient neu-
trophils only display impaired chemotaxis properties.8

Nevertheless, our co-localization data raise the interest-
ing possibility that SBDS and Rac2 functions in chemo-
taxis may be inter-dependent in neutrophils, although
further studies are required to investigate this in more
detail. In conclusion, under adherent and/or migratory
conditions SBDS protein co-localizes with F-actin and
Rac2 in cellular protrusions in neutrophilic cells.

Chemoattractant-induced F-actin polymerization
characteristics in Shwachman-Diamond syndrome
neutrophils are disturbed

To study F-actin polymerization characteristics in
SDS patient cells, we determined fMLP and C5a-
induced F-actin polymerization at various time points
by flow cytometric analysis in the neutrophil popula-
tion. Prior to chemoattractant stimulation, the basal
level of F-actin polymerization was similar in control
and patient neutrophils. Rapidly after fMLP stimulation
(15 seconds) the amount of F-actin in the neutrophils
increased dramatically. Thereafter, F-actin is rapidly
depolymerized, with a delay (plateau phase) between
30 and 60 seconds after fMLP stimulation in the control
neutrophils. These observations are similar to studies
previously published by others on the characteristics of
F-actin polymerization in neutrophils.19 In the SDS neu-
trophils, the fMLP-induced F-actin polymerization was
consistently higher (Figure 2A). Moreover, we observed
that the delay in depolymerization between 30 to 60
seconds after fMLP stimulation was not pronounced in
SDS neutrophils. C5a stimulation of SDS neutrophils
resulted in a similar induction of F-actin polymerization
as compared to control cells (Figure 2B). However, the
plateau phase in F-actin depolymerization after stimula-
tion was completely absent. To gain more insight into
the underlying mechanisms future studies that will
investigate the possible affected signaling pathways
involved in regulating F-actin (de)polymerization in SDS
neutrophils are required. Nevertheless, based on our
observations it can be concluded that fMLP and C5a-
induced F-actin polymerization characteristics in SDS
neutrophils are disturbed.

F-actin polarization in Shwachman-Diamond
syndrome neutrophils is delayed

Besides F-actin polymerization, neutrophil polariza-
tion plays an important role in chemotaxis. Immediately
after chemoattractant stimulation, neutrophils will
polarize their actin cytoskeleton to participate in direct-

ed movement towards the chemoattractant. To investi-
gate this response at the level of individual cells, we
analyzed control and SDS-patient neutrophils by confo-
cal microscopy. In resting state, neutrophils have low to
undetectable levels of F-actin (Figure 3A, left panel)
Chemoattractant stimulation induces within seconds a
cortical F-actin ring that will rapidly thereafter start
polarizing in several directions (Figure 3A, middle
panel). Next, neutrophils will become polarized in one
direction (Figure 3A, right panel). Resting control neu-
trophils contained a faint ring of F-actin. Within 15 to 30
seconds after fMLP stimulation most neutrophils dis-
played a cortical F-actin ring and/or multi-or bipolarized
F-actin enrichments (Figure 3B). After 60 seconds of
fMLP stimulation, approximately half of the control
neutrophils were clearly polarized in one direction and
at later time points, more neutrophils became uni-polar-
ized at the expense of the bi- or multi-polarized cells. 

Similar to control cells, SDS neutrophils contained a
faint ring of F-actin prior to fMLP stimulation and dis-
played a cortical F-actin ring and bi- or multi-polarized
cells 15 to 30 seconds after fMLP stimulation (Figure
3C). However, the amount of uni-polarized cells only
slowly increased thereafter. In contrast to the control
neutrophils, approximately half of the population was

SDS neutrophils and actin dynamics 
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Figure 2. C5a and fMLP-induced actin polymerization in SDS neu-
trophils. (A) Average fold induction in F-actin content in the con-
trol and SDS neutrophils after (A) 100 nM fMLP stimulation (n=7)
and (B) 40 nM C5a stimulation (n=4). Error bar indicates SEM.
Blue line represents control samples and the dark red line indi-
cates SDS patient samples. 
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uni-polarized 360 seconds after fMLP stimulation.
Hence, the SDS neutrophils display a delayed cellular
polarization of the F-actin cytoskeleton. Our observa-
tions provide a molecular explanation that is consistent
with previously published studies which showed that
SDS neutrophils have impaired directed movement

towards fMLP and more lateral pseudopod formation in
the presence of fMLP as compared to control neu-
trophils.10 This lack of orientation probably contributes
to random migration at the expense of directed migra-
tion and could be related to altered F-actin polymeriza-
tion and polarization dynamics as we observed in our
studies. 

In the studies reported here we have addressed the
molecular properties of the F-actin cytoskeleton in SDS
neutrophils and showed that F-actin polymerization and
polarization properties are disturbed as compared to
control neutrophils. It remains to be further investigated
how the SBDS protein is involved in regulating the F-
actin cytoskeleton. Several studies have shown that
SBDS is able to bind to ribosomal RNA and has a role in
ribosome maturation.16,20-22 The ribosome or RNA-relat-
ed function of SBDS does not have to exclude a possible
role in chemotaxis or F-actin cytoskeletal dynamics.
Several studies have shown that Zipcode-Binding-
Protein (ZBP) family members, mRNA binding proteins,
are required to transport mRNAs to specific cellular loca-
tions. β-actin mRNA has been shown to be transported
to the cell periphery and locally translated, and it was
proposed that this contributed to actin remodeling in the
migration process.23 Perhaps SBDS could play a related
function for β-actin mRNA transport required for F-actin
remodeling and polymerization. 

Based on our immunofluorescence studies, another
interesting possibility that deserves further investigation
is that SBDS and Rac2-mediated F-actin regulation might
be inter-dependent. Future protein-protein interaction
studies, which were beyond the scope of this study,
could reveal whether there is a direct interaction
between members of the Rac2 and/or other signaling
pathways and the SBDS protein. 

Altogether, we have shown here for the first time that
neutrophils from SDS patients have altered F-actin poly-
merization and polarization properties, which may well
contribute to the observed impaired neutrophil chemo-
taxis in these patients. 
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Figure 3. Intracellular polarization of the actin cytoskeleton is
delayed in Shwachman-Diamond syndrome neutrophils (A)
Representative pictures of neutrophils stained with phalloidin-
Alexa488. We discriminate 3 F-actin situations, (1) non-polarized
and non-polymerized F-actin (left panel), (2) polymerized F-actin in
a cortical ring or not clearly polarized (middle panel) and (3) poly-
merized F-actin in a polarized fashion (right panel) (B-C) Average
percentage of cells with the polarized F-actin phenotype described
above (B) control (n=4) and (C) SDS patient (n=4). Error bar indi-
cates SEM. 
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