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Mesenchymal stem cells are adherent stromal cells, initially isolated from the bone marrow, characterized by their abil-
ity to differentiate into mesenchymal tissues such as bone, cartilage and fat. They have also been shown to suppress
immune responses in vitro. Because of these properties, mesenchymal stem cells have recently received a very high pro-
file. Despite the dramatic benefits reported in early phase clinical trials, their functions remain poorly understood.
Particularly, several questions remain concerning the origin of mesenchymal stem cells and their relationship to other
stromal cells such as fibroblasts. Whereas clear gene expression signatures are imprinted in stromal cells of different
anatomical origins, the anti-proliferative effects of mesenchymal stem cells and fibroblasts and their potential to differ-
entiate appear to be common features between these two cell types. In this review, we summarize recent studies in the
context of historical and often neglected stromal cell literature, and present the evidence that mesenchymal stem cells and
fibroblasts share much more in common than previously recognized.
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ABSTRACT

Introduction

The stem cell properties of bone marrow stroma were first
described by Friedenstein in 19681 and subsequent experi-
ments demonstrated their multipotent differentiation poten-
tial and immunosuppressive activity in the late nineties.2,3 The
apparently surprising immunosuppressive functions were fur-
ther substantiated by reports of their activity when transfused
intravenously into animal models of graft-versus-host disease
(GVHD), arthritis and encephalitis4,5,5-9 although some con-
cerns have been raised about their immunogenicity and sus-
ceptibility to malignant transformation.10,11 The results of early
phase clinical trials with mesenchymal stem cells (MSC) in
humans have been dramatic. In the first report, a nine year old
boy with steroid-resistant GVHD, an invariably fatal condi-
tion, responded to intravenous infusions of haploidentical ex
vivo expanded MSC12 and in subsequent Phase I and II trials 6
out of 8 and 39 out of 55 patients with steroid-resistant
GVHD responded to MSC treatment.13,14 Although GVHD
prevention in humans has been reported to be at the expense
of the desirable graft versus leukemia (GVL) effect,15 this was

not observed in other clinical studies in which MSC infusions
were exploited to reduce stem cell graft failure and GVHD.14,16

The potency of MSC immunotherapy in humans is certainly
encouraging. However, many important scientific questions
remain unanswered, especially regarding the identity of these
cells in relation to fibroblasts and the physiological relevance
of their immunoregulatory properties. 

Mesenchymal stem cells: the fibroblasts’ new
clothes?

MSC are currently defined as plastic adherent, multipoten-
tial fibroblast-like cells expressing CD73, CD105 and negative
for the hematopoietic markers CD14, CD34 and CD4517,18 but
these properties and markers are also shared by fibroblasts
(Table 1). Osteoblastic, chondrogenic, adipogenic differentia-
tion from fibroblasts has also been described.19-21 More recent-
ly, hepatocyte differentiation potential of adult human dermal
fibroblasts was demonstrated in an in vivo model of liver-
injured immunodeficient mice.21 The current definition sug-
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gested by the International Society of Cellular Therapy
(ISCT) is thus incapable of distinguishing MSC from
generic fibroblasts.17,18 More recent studies have
involved markers such as SSEA-1, SSEA-4 and GD2.22-24

These studies have established a hierarchy of mes-
enchymal differentiation and appear encouraging.
Despite these limitations, there has been widespread
speculation that MSC constitute a unique cell type dis-
tinct from fibroblasts.25

There is also a wealth of historical data on the
immunosuppressive properties of fibroblasts. In fact, it
had been comprehensively demonstrated some ten
years earlier that fibroblasts from various tissue sites
inhibit mitogen and allo-antigen stimulated T-cell prolif-
eration26-29 and IFNγ production30 in exactly the same
vein as more recent reports using MSC.3,31,32

MSC-mediated immunomodulation is promoted by
close contact but ultimately mediated by a number of
soluble factors including hepatocyte growth factor-1
(HGF-1), transforming growth factor-β (TGF-β),
indoleamine 2,3-dioxygenase (IDO), prostaglandin-E2
(PGE2) nitric oxide and insulin-like growth factor (IGF)
binding proteins.20,33-38 Similarly, PGE2 and IDO have
also been implicated in fibroblast-mediated T-cell sup-
pression.20,26,27 Furthermore, both MSC and fibroblast
suppressive effects are enhanced in the presence of
inflammatory cytokines such as IFNγ and TNFα.27,28,30-39

Pre-treatment of human fibroblasts and MSC with IFNγ
and TNFα up-regulates MHC Class II molecule expres-
sion but both cell types have poor capacity to activate
allo-responses.27,40 Different culture conditions, experi-
mental kinetics, species and cell populations used in the

in vitro assays may account for the variety of soluble fac-
tors identified as responsible for fibroblast and MSC-
mediated suppression but may also reflect a redundan-
cy or pleiotropy in the mechanisms employed by these
cells. However, nearly all studies suggest that an inflam-
matory microenvironment is a prerequisite for observ-
ing stromal-mediated suppressive effects.41

MSC-mediated inhibition of monocyte differentia-
tion into dendritic cells42,43 has also been previously doc-
umented using fibroblasts.44 This effect is dependent on
interleukin 6 (IL-6)44,45 and involves cell cycle arrest.46

More recently, direct comparison between adult fibrob-
lasts from various tissues and bone marrow MSC
showed similar in vitro immunosuppressive poten-
cy.20,41,47 Both MSC and fibroblasts induce cell cycle
arrest, prevent apoptosis and support the survival of T
cells.41,48 Although this could be a fundamental process
to maintain memory T cells, it may have a negative
effect when MSC are used in the clinical setting leading
to the preservation of pathogenic memory T cells with
future adverse consequences. 

Both fibroblasts and MSC may be isolated using tis-
sue culture adherence from many tissue sites including
adipose tissue, placenta, skin, thymus, periosteum,
muscle, synovium, synovial fluid, fetal liver and blood,
and cord blood.49-51 Bone marrow-derived MSC and
fibroblasts from various anatomical sites have been
shown to have distinct gene expression profiles52 (Collin
M, unpublished data). However, it is also well recognized
that fibroblasts from different tissues possess site-spe-
cific molecular identity and topographical memory due
to differential expression of homeobox (HOX) genes.53

Figure 1. Stromal cells modulate diverse biological processes. Stromal cells are actively involved in all of the above processes although
subsets with specialized functions within the heterogeneous site-specific population remain to be defined 

Hematopoiesis
HSC survival, differentiation
and engraftment85

Immunosuppression
Inhibition of T and B cell proliferation, 
NK cell function, monocyte 
differentiation into DC20,31-39,41-43

Tumor survival
Inhibition of tumor apoptosis, 
neoangiogenesis and ECM remodeling75-77

Tissue fibrosis
Leuco-stromal interaction
potentiates chronic inflammation
and fibrosis, inhibiton of 
myelofibroblast apoptosis68,71

Wound healing
Myelofibroblast differentiation
and resolution of inflammation67

Parenchymal cell regulation
Growth factors and anatomical 
reference code83,84

Central tolerance
T-cell recruitment and migration
in the thymus59,60
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Although subtle and interesting niche-specific differ-
ences may exist between stromal cells, there is no evi-
dence that these alter the general immunosuppressive
and differentiation properties that have been described
for these cells.

The naked fibroblast

Fibroblasts exist in virtually every organ in the human
body. They are defined as adherent cells, which are not
endothelium, epithelium or hematopoietic in origin, and
which have the capacity to synthesize and remodel the
extracellular matrix. In addition to their presumed role as
scaffolding support, fibroblasts have been directly
shown to play roles in regulating self-tolerance, organ
development, wound healing, inflammation and fibrosis
(Figure 1).54-57

Central and peripheral immunological tolerance
Fibroblasts have at least two recognized supportive

roles in central tolerance. Firstly, thymic fibroblasts sup-
port the proliferation of thymic epithelial cells through
the release of FGF-1, FGF-7 and FGF-10.58,59 Secondly,
they are directly involved in the recruitment of early T-
cell precursors60 and migration of developing T cells
through the thymic medulla and cortex.59 Furthermore, a
recent study has elegantly described a startling role for
lymph node stroma in maintaining peripheral tolerance.
Antigen presentation by lymph node stromal cells was
shown to be functionally similar to medullary thymic
epithelial cells leading to active deletion of self-reactive
peripheral T cells.61 Marrow stromal cells are crucial for
B-cell development62,63 and more recent studies have
shown that MSC under particular circumstances, can
promote the survival of B cells64 and stimulate B-cell anti-
body production.65,66

Wound healing and tissue repair 
Tissue injury and wounding are accompanied by

changes in the extracellular matrix, mechanical stress
and inflammation in the surrounding microenviron-
ment. These changes result in the activation of fibrob-
lasts which express contractile bundles and α-smooth
muscle actin and differentiate into myofibroblasts.

Myofibroblasts participate in wound healing through
migration, proliferation and contraction necessary to
restore homeostasis in damaged tissue. Return to normal
physiology requires resolution of the inflammation
accompanying the injury,57 a process traditionally
thought to occur passively from the fizzling out of inflam-
matory signals. However, current evidence clearly
demonstrates the importance of the local stromal net-
work in mediating active inflammatory cell clearance.67

Tissue fibrosis
Inappropriate tissue repair and continued insult can

result in chronic inflammation and eventually lead to
fibrosis. At the cellular level, accumulation and persist-
ence of myofibroblasts during tissue repair and healing
has been proposed as a leading cause of fibrosis.68 This
process is associated with the transformation of granula-

tion tissue into a hypertrophic scar with excessive pro-
duction of ECM and rarification of the microvasculature.
Fibrosis is modulated by a dynamic ‘leuco-stromal inter-
action’, a notion supported by the observation that car-
bon tetrachloride-mediated liver fibrosis is reduced in
immunodeficient rag–/– mice following liver injury69 and
after selective macrophage depletion during advanced
liver fibrosis.70 Recently, myofibroblasts in fibrotic tissue
have been shown to acquire resistance to Fas-induced
apoptosis by T lymphocytes,71 a process that normally
accompanies tissue repair. In addition, fibrosis-related
pathological myofibroblasts promote their own survival
by expressing Fas molecules and killing surrounding
lymphocytes.71

Tumor survival and metastases
The protective and facilitative role of stroma in tumor

growth was first described by pathologists as desmopla-
sia, a typical feature of many solid tumors.72 Tumor stro-
ma is predominantly comprised of myofibroblasts, often
referred to as carcinoma associated fibroblasts (CAF).73

The restrictive role of myofibroblasts in wound healing
is taken over by growing tumors. Breast tumors with a
wound-response gene signature are associated with an
increased risk of progression and metastases.74 Injection
of a mixture of CAF or MSC with breast cancer cells into
immunocompromised mice showed that both stromal
cell types were capable of accelerating cancer growth
and invasiveness.75,76 CAF provide nutritional support by
the secretion of growth factors, promoting neoangiogen-
esis and ECM remodeling to facilitate tumor invasion
and metastasis.77 The distribution of tumor metastases is
also not random showing clear organ preferences for the
various cancer types for certain receptive stromal environ-
ments.78 Recently, mutations and loss of heterozygosity
in the tumor suppressor gene TP53 in the stromal com-
partment adjacent to breast carcinoma was found to be
associated with lymph node metastases presenting a
compelling case for stroma-facilitated cancer progres-
sion.79 However, other animal studies have reported
anti-tumor effects with bone marrow and skin-derived
stromal cells and this may be related to the ability of the
tumor to recruit and activate different stromal cell func-
tions.80-82

Parenchymal and stem cell regulation
The functional diversity and positional identity of

fibroblasts may act to regulate local parenchymal cells in

M.A. Haniffa et al. 

Table 1. Characteristics of fibroblasts and mesenchymal stem cells.
Fibroblast MSC

Distribution Ubiquitous
Phenotype Identical
Frequency Common Rare in BM
Growth potential Identical
Transdifferentiation *Bone, fat, cartilage
Immunoregulation (in vitro) Similar potency
Immunosuppressive clinical use Untested Yes

*Differentiation capacity of both cell types extends beyond the mesodermal lineage.
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several ways. Firstly, fibroblasts could act as a source of
growth factors such as fibroblast growth factor (FGF),
keratinocyte growth factor (KGF) and leukemia
inhibitory factor (LIF) for cell survival; a property that
has been exploited in the laboratory with the use of
fibroblast feeder layers to expand parenchymal and
stem cells.83 Secondly, fibroblasts may provide a co-ordi-
nate system of positional reference points for site-spe-
cific epithelial-mesenchymal interactions critical for the
development, differentiation, patterning and renewal of
the adjacent epithelia such as in the skin, lung, gastroin-
testinal, genitourinary systems and the thymus.84 In
addition, stromal cells also provide the appropriate
niche for stem cell maintenance and differentiation.
One of the best-studied examples of stem cell-niche reg-
ulation is the orchestration of HSC survival and differ-
entiation by bone marrow stroma.85 However, stromal
cells are heterogenous with specialized niche functions
confined to particular subsets. This was recently
demonstrated in vivo where only CD146 expressing
bone marrow stromal cells were found to be capable of
conferring a hematopoietic microenvironment when
transplanted to heterotopic sites.86

Future speculation and conclusion

The plethora of recent studies on MSC has to some

extent recapitulated what had been previously
described over ten years ago for fibroblasts. Present def-
initions of MSC and fibroblasts emphasize generic
properties of these cells and fail to distinguish subsets of
stromal cells with specialized niche functions. The lack
of appropriate markers means we are currently unable
to functionally dissect the important differences within
the extended fibroblast family. Are there common mes-
enchymal progenitors throughout the body or are these
progenitors specialized and site specific? What is clear is
the ubiquitous presence and functional heterogeneity of
fibroblasts.

The physiological significance of stromal cell
immunoregulation has also been poorly recognized
despite the overwhelming evidence for their varied role
in maintaining immune equilibrium and in pathology.
The consequences of these findings emphasize the need
to recognize the common ground between the fields of
fibroblast and MSC biology in order to redefine and dis-
sect the complex family of stromal cells.
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