
in impaired routing of KIT and sustained activation, sim-
ilar to KIT activating mutations in CBF leukemias. 

No other AML-specific mutations, such as those affect-
ing FLT3, NRAS, KRAS, CEBPA and NPM1, were present
in the CBL mutant AML cases. Interestingly, however,
CBL mutant t(8;21) AML case #2549 also carried a KIT
D816 mutation. In this AML, impaired function of the
CBL protein would potentially result in prolonged consti-
tutive activation of KIT.

Our results demonstrate that CBL mutations are rare in
AML. However, the strong association of these muta-
tions with CBF leukemias suggests that there may be a
co-operative activity of mutant CBL with the CBF-related
fusion proteins CBFB-MYH11 and AML1-ETO in CBF
leukemogenesis, most likely by impaired ubiquitination
of KIT.
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Genetic variation in genes expressed in the
germinal center and risk of B cell lymphoma
among Caucasians

The germinal center reaction is integral to B-cell mat-
uration, where class switch recombination (CSR) and
somatic hypermutation (SHM) are targeted to the
immunoglobulin (Ig) locus to facilitate antibody diversi-
ty.1 Selection against B cells with auto-reactive or low
affinity antigen receptors promotes the generation of
highly effective B cells.

SHM is initiated following deamination of cytidine to
uracil, resulting in U:G mismatches.2 Direct removal of
uracil by uracil-DNA glycosylase (UNG) can lead to
mutation if DNA is replicated across these non-inform-
ative abasic sites. Uracil-containing mispairs can also be
recognized by mismatch repair (MMR) and base exci-
sion repair (BER) machinery, key components of which
include MLH1, MSH2, PMS2 and XRCC1.2 Excision of
a repair patch and DNA re-synthesis using error-prone
DNA polymerases promotes mutation.2 MMR also
functions in CSR where mismatches are recognized by
the MSH2/MSH6 heterodimer, ultimately resulting in
the DNA double strand breaks integral to class switch-
ing.2

Reciprocal translocations involving the Ig locus arising
during VDJ recombination or CSR are a hallmark of B-
cell lymphomas, and can lead to the activation of proto-
oncogenes such as MYC, CYCLIN D1, BCL6 and BCL2.
Point mutations occur in genes outside the
immunoglobulin locus, including BCL6 and FAS.3,4

These data suggest that translocations and mutations in
B-cell lymphomas can arise via mis-targeting of the CSR
and SHM machinery specifically during the germinal
center reaction, and may allow cells to bypass the nor-
mal processes regulating cell proliferation, differentia-
tion and apoptosis.

We hypothesized that genetic variation in genes
expressed in B cells during the germinal center reaction,
and which are components of CSR, SHM or B-cell selec-
tion, may affect the risk of developing lymphoma. We,
therefore, examined the frequency of nine common
polymorphisms with putative functionality (allele fre-
quency >0.02) in six genes (PMS2, UNG, XRCC1,
MSH2, MLH1 and FAS) in 884 patients with lymphoma
and 1,019 population controls. Six hundred and forty-
nine Caucasian cases of B-cell non-Hodgkin’s lym-
phoma (NHL), 235 Caucasian cases of Hodgkin’s lym-
phoma (HL) and 1,019 Caucasian controls were recruit-
ed to a study conducted in the north and southwest of
England between January 1998 and July 2003.5 The
study was approved by the UK Multicentre Research
Ethics Committee and all participants gave informed
consent according to the Declaration of Helsinki.

DNA was genotyped using allelic discrimination sin-
gle nucleotide polymorphism (SNP) assays (TaqMan,
Applied Biosystems (ABI), Warrington, UK). Genotype
clusters were ascertained independently by two
researchers and genotypes designated only when there
was consensus. Assay accuracy was verified in 30 ran-
domly selected patient samples by direct DNA sequenc-
ing (100% concordance). Among the controls, all geno-
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types were in Hardy-Weinberg equilibrium, with the
exception of MLH1 -93 G>A (p=0.02), although our
data are similar to genotype frequencies for Caucasian
populations presented on the NCBI dbSNP database
(http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs=1800734;
accessed 11/02/08). Odds ratios (ORs) and 95% confi-
dence intervals (CIs) were calculated using uncondition-
al logistic regression using all controls in an unmatched
analysis adjusting for age, sex and region of residence,

and the likelihood ratio test was used to investigate
interactions. Homozygosity for the UNG 1082 A vari-
ant was significantly associated with a decreased risk of
B-cell NHL (OR 0.43, 95% CI 0.20-0.92; Table 1). There
was some suggestion that this risk varied by gender (test
for interaction: χ2 = 6.45, p=0.01), with a decreased risk
among female (OR (GA/AA vs. GG) 0.70, 95% CI 0.50-
0.97), but not male carriers of the A allele (OR (GA/AA
vs. GG) 1.23 95% CI 0.91-1.66). Compared to controls,
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Table 1. Number of cases and controls, adjusted odds ratios, and 95% confidence intervals by B-cell non-Hodgkin’s lymphoma and
Hodgkin’s lymphoma for polymorphisms in genes expressed in the germinal center amongst Caucasians.

SNP Controls B-cell NHLa HLa

(N=1019) Cases ORb 95% CI Cases ORb 95% CI
(N=649) (N=235)

UNG 1082 T>A (rs1018783)c

TT 655 (67.3) 422 (68.1) 1 (ref) 143 (66.2) 1 (ref)
TA 287 (29.5) 189 (30.5) 1.01 0.80-1.26 67 (31.0) 1.15 0.81-1.63
AA 31 (3.2) 9 (1.4) 0.43 0.20-0.92 6 (2.8) 1.08 0.42-2.81
TA+AA 318 (32.7) 198 (31.9) 0.95 0.76-1.18 73 (33.8) 1.14 0.81-1.60

XRCC1 399 G>A (rs25487)c

GG 366 (38.4) 277 (44.2) 1 (ref) 67 (34.2) 1 (ref)
GA 456 (47.9) 266 (42.4) 0.77 0.62-0.96 94 (48.0) 1.05 0.73-1.51
AA 131 (13.7) 84 (13.4) 0.84 0.61-1.16 35 (17.8) 1.41 0.87-2.30
GA+AA 587 (61.6) 350 (55.8) 0.78 0.64-0.96 129 (65.8) 1.12 0.79-1.59

PMS2 622 G>A (rs1805324)c

GG 924 (95.8) 604 (95.3) 1 (ref) 216 (96.4) 1 (ref)
GA 41 (4.2) 30 (4.7) 1.11 0.68-1.81 8 (3.6) 0.91 0.40-2.07
AA 0 0 - 0
GA+AA 41 (4.2) 30 (4.7) 1.11 0.68-1.81 8 (3.6) 0.90 0.40-2.05

PMS2 511 A>G (rs2228007)c

AA 868 (94.9) 594 (94.4) 1 (ref) 153 (96.8) 1 (ref)
AG 47 (5.1) 35 (5.6) 1.05 0.67-1.65 5 (3.2) 0.73 0.28-1.93
GG 0 0 - 0
AG+GG 47 (5.1) 35 (5.6) 1.05 0.67-1.66 5 (3.2) 0.75 0.28-1.99

MSH2 IVS1 +8 C>G (rs2303426)c

GG 351 (37.0) 217 (35.0) 1 (ref) 73 (33.3) 1 (ref)
GC 455 (48.0) 312 (50.3) 1.11 0.88-1.39 118 (53.9) 1.26 0.89-1.79
CC 143 (15.0) 91 (14.7) 1.00 0.73-1.37 28 (12.8) 1.03 0.62-1.72
GC+CC 598 (63.0) 403 (65.0) 1.08 0.87-1.34 146 (66.7) 1.21 0.87-1.70

MSH2 IVS12 -6 T>C (rs2303428)c

TT 758 (80.3) 491 (80.9) 1 (ref) 166 (81.0) 1 (ref)
TC 173 (18.3) 111 (18.3) 0.98 0.75-1.29 39 (19.0) 1.08 0.71-1.64
CC 13 (1.4) 5 (0.8) 0.58 0.20-1.67 0 
TC+CC 186 (19.7) 116 (19.1) 0.96 0.74-1.24 39 (19.0) 1.00 0.66-1.51

MLH1 -93 G>A (rs1800734)c

GG 610 (64.8) 375 (62.4) 1 (ref) 137 (65.9) 1 (ref)
GA 310 (32.9) 205 (34.1) 1.06 0.85-1.32 65 (31.2) 1.01 0.71-1.43
AA 22 (2.3) 21 (3.5) 1.52 0.81-2.84 6 (2.9) 1.26 0.43-3.67
GA+AA 332 (35.2) 226 (37.6) 1.09 0.88-1.35 71 (35.3) 1.02 0.72-1.43

FAS -1377 G>A (rs2234767)c

GG 701 (78.5) 454 (79.3) 1 (ref) 171 (80.7) 1 (ref)
GA 181 (20.2) 112 (19.6) 0.98 0.75-1.28 38 (17.9) 0.85 0.56-1.29
AA 12 (1.3) 6 (1.1) 0.66 0.24-1.80 3 (1.4) 1.72 0.40-7.35
GA+AA 193 (21.5) 118 (20.7) 0.96 0.74-1.24 41 (19.3) 0.89 0.59-1.33

FAS -670 G>A (rs1800682)c

AA 277 (29.2) 183 (29.4) 1 (ref) 57 (26.5) 1 (ref)
AG 477 (50.2) 297 (47.8) 0.96 0.76-1.23 108 (50.2) 1.04 0.71-1.53
GG 196 (20.6) 142 (22.8) 1.14 0.85-1.52 50 (23.3) 1.16 0.73-1.83
AG+GG 673 (70.8) 439 (70.6) 1.01 0.81-1.27 158 (73.5) 1.08 0.75-1.54

aNHL: non-Hodgkin’s lymphoma; HL: Hodgkin’s lymphoma. bOdds ratios adjusted for age, sex and geographical region were estimated using unconditional logistic regression. cTest for
Hardy-Weinberg equilibrium among controls: UNG 1082 T>A χ2=0.004, p=0.95; XRCC1 399 G>A χ2=0.34, p=0.56; PMS2 622 G>A χ2=0.46, p=0.50; PMS 511 A>G χ2=0.64, p=0.43; MSH2
IVS1 +8 C>G χ2=0.05, p=0.82; MSH2 IVS12 -6 T>C χ2=0.75, p=0.39; MLH1 -93 G>A χ2=5.78, p=0.02; FAS -1377 G>A χ2=0.01, p=0.93; FAS -670 G>A χ2=0.09, p=0.77. Samples did not
amplify for 8 cases and 46 controls for UNG 1082 T>A; 61 cases and 66 controls for XRCC1 399 G>A; 26 cases and 54 controls for PMS 622 G>A; 97 cases and 104 controls for PMS 511 A>G;
45 cases and 70 controls for MSH2 IVS1 +8 C>G; 70 cases and 73 controls for MSH2 IVS12 -6 T>C; 73 cases and 75 controls for MLH1 -93 G>A; 98 cases and 123 controls for FAS -1377 G>A;
and 47 cases and 69 controls for FAS -670 G>A. 



homozygotes for the UNG 1082 A genotype were
under-represented in all subtypes of B-cell NHL (Table
2). No association was observed between UNG 1082
T>A and HL in total (Table 1), or when stratified by
Epstein-Barr virus (EBV) status (data not shown).

UNG is a key component of SHM where it mediates
the removal of uracil arising as a consequence of cyti-
dine deamination in DNA.2 Aberrant targeting of SHM
machinery in the germinal center leading to mutation
and translocation has been proposed as a mechanism
involved in lymphomagenesis.4 Supporting this theory,
mice null for Ung (Ung -/-) have a greater than 20 fold
increase in the incidence of B-cell lymphoma compared
to Ung proficient mice, which is thought to result pri-
marily from inappropriate targeting of SHM in the ger-
minal center and concomitant mutation outside the Ig
locus. Humans with a constitutional mutation in UNG
also exhibit abnormalities in B-cell development, as
illustrated by attenuated CSR manifesting as an accu-
mulation of IgM and low levels of IgA, IgE and IgG.6

The findings presented here suggest an association
between B-cell NHL and a polymorphism in UNG,
although at present the functionality of the 1082 T>A
SNP is unknown. 

Carriers of the XRCC1 399 A allele were significantly
under-represented in B-cell NHL cases compared to con-
trols (Table 1). Under-representation of heterozygotes
and homozygotes for the A allele extended across
DLBCL, FL, mantle cell and marginal zone lymphomas
but was not statistically significant (Table 2). The signif-
icance of these findings is unclear given that previous
studies have shown that XRCC1 399 was not associat-
ed with risk of NHL.7-9 For PMS2, MSH2, MLH1 and
FAS, associations were not observed with B-cell NHL or
its subtypes, or HL stratified by EBV status, either when
considering each polymorphism alone (Table 1) or with
limited constructed haplotypes (data not shown). This
study used a large collection of lymphoma cases and
controls to test for association between genetic variants
in genes expressed in B cells during the germinal center

reaction and risk of lymphoma, specifically those
involved in SHM, CSR and B-cell selection. The poly-
morphisms investigated here are by no means exhaus-
tive and others expressed in the germinal center may
define risk alleles for lymphoma or its subtypes. A num-
ber of statistical tests were conducted and so it is possi-
ble that the associations may be due to chance. Other
studies are required to confirm our findings in particular
our decreased risk with UNG 1082 T>A which may be
restricted to females. This may be best achieved in the
context of multi-center collaborative initiatives, such as
the InterLymph consortium,10 where the accrual of large
case numbers will allow risk alleles to be more confi-
dently identified. 
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