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A clonal stem cell disorder characterized by defective ribosome biogenesis
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In 1974 Herman van den Berghe et al.1 reported a dis-
tinct hematologic disorder associated with acquired
deletion of the long arm of chromosome 5 [del(5q)].

This novel nosological entity was described in more
detail one year later by Sokal, van den Berghe, and co-
workers.2 Patients with del(5q) had macrocytic anemia
with oval macrocytes, normal to slightly reduced white
blood cell counts, and normal to elevated platelet
counts. With respect to the bone marrow, there was
erythroid hypoplasia but “the most striking abnormality
concerned the megakaryocytes and especially their nuclei,
which were generally small, round or oval, and nonlobulat-
ed”.2 These morphological abnormalities are illustrated
in Figure 1. Until that time, the only specific chromoso-
mal abnormality in hematologic disorders was the
Philadelphia chromosome associated with chronic

myeloid leukemia.3,4 Sokal et al.2 concluded that del(5q)
represented a novel specific chromosomal abnormality
associated with refractory anemia, although they had
no explanation to connect the abnormal chromosome 5
with the hematologic manifestations.

The 5q- syndrome
Subsequent studies showed that a chromosome 5q

deletion can be found in different myeloid disorders,
and underscored the need to define the 5q- syndrome
properly. Boultwood and Wainscoat5 proposed the fol-
lowing simple definition of the 5q- syndrome: primary
myelodysplastic syndrome (MDS) with del(5q) as the
sole karyotypic abnormality and without excess of
blasts. In their experience, patients with the 5q- syn-
drome so defined had macrocytic anemia, a normal or

 



increased platelet count, hypolobular megakaryocytes,
and a low risk of transformation to acute myeloid
leukemia. By studying these patients, Boultwood and
co-workers6 found that the common deleted region of
the 5q- syndrome was the approximately 1.5-
megabase interval at 5q31-q32 flanked by D5S413 and
the GLRA1 gene. This region is distinct from that of
the 5q deletion at 5q31 of malignant myeloid disorders
such as acute myeloid leukemia or therapy-related
MDS.7,8

In 2001 the World Health Organization (WHO) pub-
lished a new classification for hematopoietic and lym-
phoid neoplasms that recognized the MDS with isolat-
ed del(5q) – the 5q- syndrome – as a unique, narrowly
defined entity.9 According to the WHO classification,
additional cytogenetic abnormalities or 5% or more
blasts in the blood or marrow excludes the diagnosis
of 5q- syndrome. Indeed, a subsequent study showed
that within MDS patients with del(5q), those with
excess of blasts and those with an additional chromo-
somal abnormality have a significantly shorter overall
survival than patients with isolated del(5q).10 In this
issue of the journal, Wang et al.11 report on studies of
genome-wide analysis of copy number changes and
loss of heterozygosity in patients with MDS with
del(5q). Their findings show a clear distinction
between patients with 5q- syndrome and other MDS
patients with del(5q). Unlike these latter, 5q- syn-
drome patients had no additional copy number
changes, a finding that may indicate relatively genetic
stability. These observations further support the defi-
nition of a separate entity of MDS with isolated 5q
deletion that has been proposed both by Boultwood
and Wainscoat5 and the WHO classification.9

Since isolated del(5q) is associated with good prog-
nosis in primary MDS, proper recognition of this chro-
mosomal abnormality is of fundamental importance.
In this issue of the journal, Mallo et al.12 report findings
of a study showing that fluorescence in situ hybridiza-
tion (FISH) improves the detection of deletion 5q31-

q32 in patients with MDS without cytogenetic evi-
dence of del(5q). They correctly conclude that FISH of
5q31 should be performed in cases of a suspected 5q-
syndrome in which the cytogenetic study has shown
no metaphases. 

The 5q- syndrome as a clonal stem cell disorder
The molecular basis for the 5q- syndrome has been

the subject of extensive investigation for decades,5 but
major advances have been made only recently. There
is no question that the 5q- syndrome is a clonal disor-
der.13 It is, however, unclear how a clonal proliferation
of hematopoietic stem cells can occur in a MDS. In
myeloproliferative disorders, a somatic gain-of-func-
tion mutation of JAK2 provides hematopoietic cells
with less propensity to apoptosis and a growth advan-
tage determining clonal proliferation (Figure 2A).14 By
contrast, in paroxysmal nocturnal hemoglobinuria
(PNH) the clonal expansion of the PNH clone depends
on the existence of one or more additional external
environmental factors that damage normal hematopoi-
etic stem cells and spare the PNH cells, thus exerting a
selective pressure in favor of these latter (Figure 2B).15–17

Since myelodysplastic clones are defective with
respect to both differentiation and maturation, it is
unlikely that clonal myelodysplastic stem cells can
have a growth advantage over normal hematopoietic
stem cells. Thus, the most likely model for clonal pro-
liferation of myelodysplastic stem cells is that of con-
ditional selection:17 as in PNH, this dual pathogenesis
would involve both the existence of stem cells with a
somatic mutation and a failure of normal bone mar-
row. This latter may reasonably involve autoimmune
mechanisms.

Haploinsufficiency of genes mapping to chromosome
5q31-q32 and aberrant ribosome biogenesis

The mechanisms responsible for failure of normal
bone marrow in MDS patients are currently unknown.
By contrast, recent observations indicate that haploin-
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Figure 1. Peripheral blood
smear and bone marrow aspi-
rate from a patient with 5q-
syndrome. (A) Oval macrocytes.
(B) Numerous platelets. (C) and
(D) Megakaryocytes with round,
non-lobulated nuclei. Courtesy
of Rosangela Invernizzi.



sufficiency for one or more of the genes mapping to the
common deleted region at 5q31-q32 (a dosage effect
resulting from the loss of a single allele of a gene) is
likely the pathophysiological basis of the 5q- syn-
drome.18 Candidate genes showing haploinsufficiency
included the tumor suppressor gene SPARC and RPS14,
this latter encoding a component of the 40S ribosomal
subunit. Germline mutations in other genes controlling
ribosome biogenesis – RPS19 and RPS24 – have been
found in patients with Diamond-Blackfan anemia, a
congenital disorder characterized by erythroid hypo-
plasia.19,20 In a very elegant study, Ebert et al.21 recently
found that partial loss of function of RPS14 pheno-
copies the 5q- syndrome in normal hematopoietic pro-
genitor cells, and that forced expression of RPS14 res-
cues the disease phenotype in bone marrow cells from
patients with 5q- syndrome. Their observations sug-
gest that defective erythropoiesis in the 5q- syndrome
is caused by a defect in ribosomal protein function. In
another recent study, Pellagatti et al.22 indeed found that
patients with the 5q- syndrome have defective expres-
sion of genes involved in ribosome biogenesis and in
the control of translation, suggesting that the 5q- syn-
drome represents a disorder of aberrant ribosome bio-
genesis. This abnormality cannot, however, explain the
growth advantage of 5q- hematopoietic cells.
Haploinsufficiency of the SPARC gene, encoding a pro-
tein with antiadhesive properties,23 might result in
increased adhesiveness of 5q- cells to their bone mar-
row niche, but experimental evidence supporting this
hypothesis is lacking. We, therefore,  believe that a dual
pathogenesis model likely operates also in patients
with 5q- syndrome (Figure 2B). Were this to be true,
5q- cells would rescue the patient from bone marrow
aplasia as cells carrying a mutant PIG-A do in PNH.

Lenalidomide treatment of myelodysplastic syndrome
with del(5q): benefits and risks

Patients with the typical 5q- syndrome have a rela-
tively good prognosis with a low risk of leukemic evo-
lution. However, their anemia tends to worsen with
time. Many of these patients have elevated serum ery-
thropoietin levels, as do other patients with erythroid
hypoplasia and a reduced rate of erythropoietin uti-
lization,24 and do not, therefore, respond to recombi-
nant human erythropoietin.25 Thus, until recently reg-
ular red cell transfusions and iron chelation26 repre-
sented the standard treatment for severely anemic
patients with 5q- syndrome.

In December 2005 the US Food and Drug
Administration (FDA) approved the use of lenalidomide
“for the treatment of patients with transfusion-dependent ane-
mia due to low- or intermediate-1-risk myelodysplastic syn-
dromes associated with a deletion 5q cytogenetic abnormality
with or without additional cytogenetic abnormalities”. Studies
by List et al.27,28 had shown that lenalidomide is indeed
able to induce a cytogenetic remission and to abolish
transfusion requirement in a substantial portion of
patients with MDS and del(5q). The drug was not devel-
oped for the treatment of this condition, and its mecha-
nism of action is unclear. Nonetheless, lenalidomide
inhibits growth of del(5q) erythroid progenitors in vitro,23

and likely inhibits del(5q) hematopoietic cells in vivo, at
least in those patients who achieve cytogenetic remis-
sions.28 It still remains to be established why treatment
results in a quick recovery of red cell production while
it is associated with long-lasting neutropenia and
thrombocytopenia in many cases. We proposed that
these divergent effects may be consistent with an anti-
cytokine activity of the drug, which would favor ery-
thropoiesis while inhibiting granulocytopoiesis and
megakaryocytopoiesis.29
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Figure 2. Two different models of clonal stem cell proliferation. (A) Growth advantage of mutant hematopoietic cells. In polycythemia
vera, JAK2 (V617F) occurs in a hematopoietic stem cell and causes a selective expansion of its myeloid-lineage cell progeny, giving rise
to a clone that is heterozygous for the mutation. In some patients, as a second step, a mitotic recombination occurs in a hematopoiet-
ic cell that is heterozygous for JAK2 (V617F). The daughter cell that is homozygous for the mutation gives rise to a subclone that expands
and may progressively replace the heterozygous clone. (B) Conditional selection of clonal hematopoietic cells. In PNH, two events are
required for clonal expansion of PNH cells.17 One is the existence of a hematopoietic stem cell carrying a somatic mutation of the PIG-
A gene; the other is a condition of cellular selection likely due to failure of normal bone marrow. This latter might involve autoimmune
mechanisms. The dual pathogenesis of model (B) is more likely to be responsible for the clonal proliferation of hematopoietic cells that
occurs in MDS, e.g., in the 5q- syndrome.



In a commentary29 to the first study on the use of
lenalidomide in patients with MDS,27 we concluded
that, although this treatment was promising, its feasi-
bility and adverse effects needed to be defined more
precisely in prospective studies. An European, multi-
center, randomized, double-blind, placebo-controlled,
three-arm study is currently evaluating the efficacy
and safety of two doses of lenalidomide versus place-
bo in transfusion-dependent subjects with low- or
intermediate-1-risk MDS associated with del(5q)
(http://www.clinicaltrials.gov/ct/show/NCT00179621).
The outcome of one of the patients enrolled in this
study is reported in Figure 3 to illustrate the remark-
able efficacy of lenalidomide in some patients with
5q- syndrome. It should be noted, however, that
lenalidomide treatment of patients with MDS and
del(5q) is challenging for clinicians and requires con-
siderable hematologic know-how, especially because
it may be associated with long-lasting grade 3-4 neu-
tropenia and/or thrombocytopenia.28

Lenalidomide was designated as an orphan medici-
nal product in MDS by the European Medicines
Agency (EMEA) on March 8, 2004. On January 24,
2008, the EMEA Committee for Medicinal Products
for Human Use (CHMP) adopted a negative opinion,
recommending the refusal of marketing authorization

for lenalidomide, intended for the treatment of anemia
due to MDS, more specifically for treatment of trans-
fusion-dependent patients with MDS associated with
del(5q) and with a low to intermediate risk of pro-
gressing to leukemia or death.30 Following the appli-
cant’s request for a re-examination of the opinion, the
CHMP confirmed the refusal of the marketing author-
ization on May 30, 2008. The CHMP concluded that
the safety of lenalidomide was difficult to assess, and
that, in particular, it was difficult to determine
whether treatment with this drug increased the risk of
progression to acute myeloid leukemia. In conclusion,
the CHMP was of the opinion that the benefits of
lenalidomide in the treatment of anemia of MDS with
del(5q) did not outweigh its potential risks.

Since lenalidomide in unlikely to be mutagenic, a
potential mechanism determining leukemic evolution
might be selective pressure. Considering the model
reported in Figure 2B and assuming that lenalidomide
suppresses the 5q- clone (as in vitro23 and in vivo28 obser-
vations suggest) and allows restoration of normal
hematopoiesis, a prerequisite for response is that nor-
mal residual hematopoietic cells are present in the
patient’s bone marrow. The absence of a sufficient
number of such stem cells would involve development
of marrow aplasia with severe pancytopenia following

Editorials & Perspectives

| 970 | haematologica | 2008; 93(7)

Figure 3. Response to lenalidomide in a 40-year old man with 5q- syndrome. This man developed severe anemia, a regular need for blood
transfusion, and transfusion iron overload. His serum erythropoietin concentration was greater than 1000 mU/mL and he had no compati-
ble family donor. This patient was enrolled in the CC-5013-MDS-004 study (ClinicalTrials.gov Identifier: NCT00179621) in 2006, and initially
received placebo. A few weeks later, he developed severe autoimmune hemolytic anemia (which may occur in the 5q- syndrome10), and
required prednisone (PDN) treatment; he developed leukocytosis and thrombocytosis, and then responded to PDN treatment with regression
of immune hemolysis and a reduction of transfusion requirements. After 16 weeks of placebo treatment, this patient received lenalidomide,
5 mg/day; subcutaneous administration of granulocyte colony-stimulating factor was required to treat neutropenia during the first weeks of
therapy. A normal hemoglobin (Hb) level was achieved after 14 weeks, and a peak of 16.8 g/dL after 20 weeks: at this point, with a com-
plete cytogenetic response, as determined by FISH of chromosome 5q31, lenalidomide treatment was discontinued, and phlebotomy thera-
py was started. Reappearance of 5q- cells and a slight decline in Hb level induced us to restart lenalidomide, and this resulted in a second
complete cytogenetic response as determined by FISH and in successful completion of the phlebotomy program: in about 1 year, serum fer-
ritin concentration decreased from 2740 ng/mL to 303 ng/mL. Lenalidomide administration was then discontinued again, and peripheral
blood counts are fully normal at the time of writing this report (June 2008). This young man, who was unable to work, is currently enjoying
a normal life. 

Following a request by the author, Celgene Corporation, sponsor of the CC-5013-MDS-004 study, approved the presentation of this case
report for this perspective article.



the suppression of the 5q- clone that sustained blood
cell production. Moreover, should a more abnormal
subclone pre-exist and be unresponsive to lenalido-
mide, this subclone might emerge and lead to a more
aggressive hematologic disorder.

As European hematologists who take care of
patients with MDS we are experiencing a problemati-
cal situation. Almost none of the drugs used in the
treatment of patients with MDS (including erythro-
poiesis-stimulating agents) have an approved indica-
tion for these disorders in Europe. With few effective
therapeutic options available, it is not easy for us to
renounce a drug that can provide results such as those
illustrated in Figure 3. On the other hand, the concerns
of the EMEA CHMP are fully understandable, as our
main duty as physicians is primum non nocere.

Celgene Corporation informed EMEA that it will
continue to make lenalidomide available for patients
included in clinical trials or compassionate use pro-
grams. The CHMP made the following statement for
patients currently receiving lenalidomide: “If you are in
a clinical trial or compassionate use program and need more
information about your treatment, contact the doctor who is
giving it to you”.30 As a doctor, I have no certainties,
some hopes, and many doubts on this subject now,
and find it extremely difficult to provide patients with
accurate information about lenalidomide treatment. I
believe it is imperative for us to identify those patients
who could benefit from treatment with a low risk of
adverse effects: transfusion-dependent patients with a
typical 5q- syndrome5 likely fit into this category. By
contrast, the efficacy of lenalidomide in MDS patients
with del(5q) who have pancytopenia (neutropenia and
thrombocytopenia in addition to anemia – a feature of
patients with long-lasting disease), excess of blasts or
additional chromosomal aberrations is questionable.
More importantly, adverse effects are more likely to
occur in these latter cases, mainly because few normal
residual stem cells may be present. We hope that
results of the ongoing multicenter, placebo-controlled
study (NCT00179621) may help to clarify, at least in
part, the current uncertainties on the use of lenalido-
mide in MDS patients with del(5q).

The author reported no potential conflicts of interest, in
particular no financial relationship with pharmaceutical
companies selling drugs employed in the treatment of
myelodysplastic syndromes. 

Key words: myelodysplastic syndrome, 5q- syndrome, dele-
tion 5q, clonality, RPS14, ribosome biogenesis, lenalidomide.
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The classic Philadelphia-chromosome negative
chronic myeloproliferative disorders (MPDs),
recently renamed as myeloproliferative neo-

plasms, that include polycythemia vera (PV), essential
thrombocythemia (ET) and primary myelofibrosis
(PMF), had been largely neglected among hematologic
neoplasms until early 2005 when the first recurrent
molecular abnormality was described, consisting of a
G>T point mutation at nt1849 in JAK2 and resulting in
a valine to phenylalanine substitution at residue 617
(V617F).1-4 Then, the discovery of mutations in MPL,
represented by a W>L or W>K shift at codon 515,5 and
of variable molecular abnormalities (point mutation,
insertion, deletion) in JAK2 exon 126 was also reported.
Almost all patients with PV have a somatic genetic
defect in JAK2 that is represented by the V617F allele in
90-95% of cases and by abnormalities in exon 12 in
roughly 2%, while they are spared by MPL mutations;
on the other hand, only 60% of patients with ET or
PMF harbor the JAK2V617F mutation and 3-7% exhibit
the MPLW515L/K mutation. While other infrequent
mutations in MPL can also occur,7 exon 12 abnormali-
ties have not yet been reported in PMF or ET patients.
The presence of any of these molecular abnormalities,
that point to a clonal myeloproliferation, stands as a
major diagnostic criterion in the revised classification of
myeloid neoplasms of the World Health Organization.8

They are gain-of-function abnormalities that conferred
growth-factor independence to cells transduced with
mutant allele and induced a myeloproliferative disease
when expressed in murine transplant models.9

It was unexpected to find a single mutated allele asso-
ciated with more than one disease, notwithstanding the
fact that the different MPDs are strictly related to each
other and show substantial phenotypic mimicry. There
are possible explanations for this. One is that the unique
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