
The bone marrow of a normal individual produces
131011 platelets per day,1 i.e., about half of the
number of red cells (231011 per day). Platelets

derive from fragmentation of megakaryocytes through
a biogenetic process that involves long cytoplasmic
extensions called proplatelets.2 Megakaryocytes devel-
op from committed progenitors referred to as colony-
forming unit megakaryocyte (CFU-MK), a heteroge-
neous population of cells that are capable of prolifera-
tion.3 At a certain stage, CFU-MK stop proliferating and
enter endomitosis, thus becoming megakaryoblasts or
immature megakaryocytes. The process of endomitosis
involves DNA replication without cellular division, and
gives rise to a polyploid cell with a single polylobulated
nucleus, the typical pattern of a mature megakaryocyte.4

Megakaryocytopoiesis and platelet production are
mainly regulated by thrombopoietin although cytokines
such interleukin-11 and interleukin-6 may also play a
role.5 In particular, these latter cytokines would allow
the progenitors to relocate to a microenvironment that
is permissive and instructive for megakaryocyte matu-
ration and platelet production.6

The effect of thrombopoietin on megakaryocyto-
poiesis is mediated through its receptor, c-Mpl
(CD110),7 which is found on both megakaryocytes and
platelets, although at low levels on these latter. Since
thrombopoietin is produced at a constant rate by the
liver, its concentration is regulated – at least in part – by
binding to its receptor on circulating platelets. When
the platelet count decreases (e.g., as a result of anti-
body-mediated destruction), increased plasma levels of
thrombopoietin expand megakaryocytopoiesis and
platelet production. Conversely, when the platelet
count rises, more thrombopoietin binds to platelet c-
Mpl receptors and less ligand is available for mega-
karyocyte receptors, leading to slowed megakaryocy-
topoiesis. A number of clinical observations, however,
suggest that other regulatory mechanisms may operate.
In an elegant study,8 Skoda and co-workers showed
that the translation of thrombopoietin mRNA is physi-
ologically almost completely inhibited by the presence
of uAUG codons in the 5'-untranslated region. They
also found that a splice variant was more efficiently
translated than the two regularly spliced isoforms, sug-
gesting that regulation of alternative splicing may serve
as an additional control mechanism for thrombopoietin
production.

The platelet count may range from 1003109/L up to
4003109/L in healthy individuals, and only occasional
apparently normal subjects show values between 400
and 4503109/L. A platelet threshold count of 4503109/L
appears useful for making a diagnosis of thrombocyto-
sis in clinical practice, while values between 350 and
4503109/L require follow-up with sequential evalua-
tions.

Thrombocytosis can be classified into three major cat-
egories as shown in Table 1: i) hereditary or familial
thrombocytosis; ii) thrombocytosis associated with
myeloproliferative and/or myelodysplastic disorders
(clonal thrombocytosis), and iii) reactive (secondary)
thrombocytosis.9

Most patients with thrombocytosis have reactive
thrombocytosis. Indeed, in a retrospective German
study,30 643/732 (88%) patients with a platelet count of
more than 5003109/L were found to have secondary
thrombocytosis, mainly related to inflammatory condi-
tions. Primary thrombocytosis is mainly found in
myeloproliferative disorders, and particularly in essen-
tial thrombocythemia (Table 1). Somatic mutations of
JAK2 or MPL lead to more efficient translation of the
thrombopoietin signal and platelet production.

Interestingly, an activating germline mutation of MPL
has been found in families with essential thrombo-
cythemia.15,16 This mutation [MPL (S505N)] has also
been found as an acquired somatic mutation in patients
with essential thrombocythemia or primary myelofi-
brosis.21 This reinforces the concept that this is indeed a
causative mutation responsible for dysregulated platelet
production, irrespective of its congenital or acquired
nature.

In other families with a similar condition, however,
the molecular mechanism is a gain-of-function muta-
tion in the thrombopoietin gene (THPO) that leads to
increased thrombopoietin production.10-13 The THPO
mutations identified so far alter the 5’-untranslated
region of the THPO mRNA, which contains upstream
open reading frames (uORF) that inhibit mRNA transla-
tion. All mutations remove the inhibitory uORF and
lead to increased translation of the THPO mRNA, caus-
ing overproduction of thrombopoietin and platelets.
This represents a remarkable example of a novel molec-
ular mechanism of disease that we defined “translation-
al pathophysiology”.31

In this issue, Liu and co-workers14 describe studies on
a large Polish family with hereditary thrombocythemia
associated with a de novo splice donor mutation in
THPO involving increased thrombopoietin production.
Interestingly, megakaryocyte morphology in these
patients differs from that in patients with sporadic
essential thrombocythemia associated with JAK2 or
MPL mutations. These patients have symptoms of
impaired microcirculation and require aspirin therapy,
but do not require cytoreductive therapy for prevention
of thrombosis. Likely, they lack the increased platelet
and leukocyte activation which is found in essential
thrombocythemia associated with JAK2 (V617F).32

Indeed, activating THPO mutations have not been
detected in patients with sporadic thrombocythemia,33

and are, therefore, unlikely to be causative somatic
mutations.
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As indicated by Skoda and Prchal,34 studies of families
with myeloproliferative disorders can contribute greatly
to our understanding of the molecular basis of sporadic
conditions. However, we must clearly distinguish
between familial disorders associated with germline
mutations (as those reported in Table 1) and familial
myeloproliferative disorders associated with somatic
mutations of JAK2 or MPL.35 What is inherited in these
latter is not the JAK2 or MPL mutation, but rather a
genetic predisposition to its acquisition, as remarkably
indicated by the two families described by Pietra and
co-workers.36
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Table 1. Conditions associated with thrombocytosis.

Familial thrombocytosis associated with germline mutations of THPO or MPL

Hereditary thrombocythemia associated with germline activating mutations in the thrombopoietin (THPO) gene (autosomal dominant
disorder)10-14

Familial essential thrombocythemia associated with a germline activating mutation in the thrombopoietin receptor (MPL) gene [MPL
S505N - autosomal dominant disorder)15,16

Thrombocytosis associated c-Mpl Baltimore (functional MPL K39N polymorphism unique to individuals of African-American descent,
conforming to a pattern of autosomal dominance with incomplete penetrance)17

Thrombocytosis associated with myeloproliferative and/or myelodysplastic disorders (clonal thrombocytosis associated with somatic
mutations of JAK2, MPL and additional currently unknown genes)

Essential thrombocythemia [associated with the somatic JAK2 (V617F) mutation in 50 to 60% of patients,18 somatic mutations of MPL
(W515L, W515K, S505N)19-21 in less than 5% of patients, and unknown mutant genes in the remaining patients]

Polycythemia vera [mainly associated with low burdens of the somatic JAK2 (V617F) mutation, rarely found in association with somatic
mutations of JAK2 exon 12 mutations]22, 23

Primary myelofibrosis [associated with the somatic JAK2 (V617F) mutation in 50 to 60% of patients, somatic mutations of MPL
(W515L, W515K, S505N)19–21,24 in 5% of patients or more, and unknown mutant genes in the remaining patients]

Refractory anemia with ringed sideroblasts associated with marked thrombocytosis [somatic mutations of JAK2 and MPL]25-28

Myelodysplastic syndrome with isolated del(5q) (5q- syndrome whose hematologic features are likely related to haploinsufficiency of
several genes of chromosome 5q31-q3229

Chronic myeloid leukemia

Reactive (secondary) thrombocytosis

Acute and chronic inflammatory and infectious disorders, including malignancy (associated with excessive endogenous
cytokine production)

Iron deficiency

Acute blood loss

Post-splenectomy

Hemolytic anemia
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