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ABSTRACT
Background
Pegylated granulocyte colony-stimulating factor (G-CSF) has recently been introduced as a new
compound for mobilization of CD34+ hematopoietic stem and progenitor cells. In this study, we
compared the molecular and functional characteristics of CD34+ cells mobilized by pegylated
G-CSF with those mobilized by unconjugated G-CSF.

Design and Methods
Gene expression of immunomagnetically enriched CD34+ cells from leukapheresis products of
patients who were given pegylated-G-CSF or unconjugated G-CSF was analyzed using Affymetrix
HG Focus microarrays and quantitative reverse transcriptase polymerase chain reaction. Flow
cytometry and fluorescence activated cell sorting was conducted to assess the CD34+ subset
composition and to obtain Lin–, CD34+, CD38– hematopoietic stem cells. Cell cycle assays and
clonogenic assays were performed for functional corroboration.

Results
Pegylated G-CSF and unconjugated G-CSF mobilized CD34+ and hematopoietic stem cells with
different molecular phenotypes and functional properties. The CD34+ cells mobilized by pegy-
lated G-CSF had higher expression levels of genes indicative of early hematopoiesis, including
HOXA9, MEIS1 and GATA3. We found lower expression of genes characteristic of erythroid and
later stages of myeloid differentiation and a lower functional burst-forming unit
erythroid/colony-forming unit-granulocyte-macrophage ratio. Consistently, greater numbers of
hematopoietic stem cells and common myeloid progenitors and fewer megakaryocyte-erthro-
cyte progenitors were found in the pegylated-G-CSF-mobilized CD34+ cells. Additionally, sorted
pegylated-G-CSF-mobilized hematopoietic stem cells displayed higher expression of HOXA9 in
comparison to G-CSF-mobilized hematopoietic stem cells. In line with the gene expression
data, CD34+ cells mobilized by pegylated G-CSF, as well as sorted hematopoietic stem cells,
showed a significantly greater cell cycle activity.

Conclusions
Stimulation with pegylated-G-CSF or G-CSF results in different expression of key regulatory
genes and different functional properties of mobilized hematopoietic stem cells as well as their
progeny, a finding that might be relevant for the application of these cells in blood stem cell
transplantation.
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Introduction 

Peripheral blood stem and progenitor cells are widely
utilized for autologous and allogeneic grafts as they pro-
vide rapid and sustained hematologic reconstitution fol-
lowing high dose chemotherapy. In order to obtain a suf-
ficient harvest, stem cells can be mobilized into the
peripheral blood using cytokines, cytotoxic chemotherapy
or a combination of both.1 Currently, granulocyte colony-
stimulating factor (G-CSF) is the most favored cytokine
administered for peripheral blood stem cell mobilization
because of its great efficacy and lack of serious toxicity.
Recently, a modified form of recombinant human G-CSF
has been introduced. This new compound is pegylated fil-
grastim (Peg-G-CSF) which has a 12-fold longer serum
half-life than the unconjugated drug. Attachment of a
polyethylene (glycol) moiety to recombinant human G-
CSF reduces renal excretion and masks proteolytic cleav-
age sites resulting in elevated G-CSF serum levels for up to
14 days after a single injection.2-4

Following conventional cytotoxic chemotherapy, it has
been observed that leukocyte recovery is more rapid and
the occurrence of CD34+ cells in the peripheral blood ear-
lier after administration of Peg-G-CSF in comparison to
unconjugated G-CSF.5,6 The molecular causes underlying
these different mobilization kinetics are unclear and the
molecular characteristics and composition of Peg-G-CSF-
mobilized stem and progenitor cells has not been studied
so far. However, it has been previously demonstrated that
Peg-G-CSF-mobilized CD34+ cells and G-CSF-mobilized
ones have different functional properties. Peg-G-CSF
mobilization of CD34+ cells resulted in enhanced expan-
sion of tolerogenic antigen-presenting cells and augmenta-
tion of regulatory T-cell activity following transplantation
and thus promoted tolerance.7, 8 In this study, we investi-
gated the impact of Peg-G-CSF and unconjugated G-CSF
at normalized cumulative doses on transcriptomal pheno-
type, subset composition and functional properties of
CD34+ cells and Lin–, CD34+, CD38– hematopoietic stem
cells. 

Design and Methods

Patients and cells
After informed consent, peripheral blood mononuclear

cells were obtained by density centrifugation from 16
patients with multiple myeloma. There were no statisti-
cally significant differences with regard to age, gender,
body weight, stage and subtype of disease, previous ther-
apy or disease status between the two groups subsequent-
ly given Peg-G-CSF or G-CSF. The patients’ characteristics
are given in more detail in Table 1. Following induction
therapy with a median of three (range, 2-6) cycles of 4310
mg/m2 idarubicin p.o. and 4320 mg/m2 dexamethasone
p.o., all patients received a total dose of 4 g/m2 cyclophos-
phamide administered on two consecutive days. Seven

patients received a single dose of 6 mg Peg-G-CSF (medi-
an; range, 6-12 mg) 5 days (median; range, 4-6 days) after
the end of chemotherapy. In the nine patients receiving
unconjugated G-CSF a single subcutaneous injection was
given once every day beginning 5 days (median; range, 4-
8 days) after cytotoxic chemotherapy. The cumulative G-
CSF dose administered was 6.2 mg (median; range, 4.3-
15.4 mg). On a per kilogram basis the relative G-CSF dose
was 109 µg (median; range, 76-197) in the Peg-G-CSF
group and 111 µg (median; range, 54-256) in the G-CSF
group. The dose on a per kilogram per day basis was 12 µg
(median; range, 6-23) and 10 µg (median; range, 4-15) for
the Peg-G-CSF group and G-CSF group, respectively. The
collection of peripheral blood stem cells by apheresis was
started in both groups of patients when a threshold con-
centration of 10 CD34+ cells/µL was reached in the periph-
eral blood. CD34+ cells were positively selected from
apheresis products using the midiMACS immunomagnet-
ic separation system (Miltenyi Biotec, Bergisch Gladbach,
Germany) as described elsewhere.9 Purities of CD34+ cell
preparations varied between 97.9% and 99.8%.

RNA isolation, cRNA labeling and hybridization to
microarrays

Total RNA (median: 6.0 µg; range, 1.5-35.5 µg) from iso-
lated CD34+ cells was used to generate biotin-labeled
cRNA (median: 27.2 µg; range, 4.8-105.3 µg) by means of
the Enzo BioArray HighYield RNA Transcript Labeling Kit
(Affymetrix Ltd, UK). Quality control of RNA and cRNA
was performed using a bioanalyzer (Agilent 2001 Bio-
sizing, Agilent Technologies). Following fragmentation,
labeled cRNA from samples of each individual patient was
hybridized to Affymetrix HG-Focus GeneChips (one array
per patient’s sample) covering 8793 genes and stained
according to the manufacturer's instructions. 

Quantification, normalization, and statistical analysis
Details on quality control, normalization and data

analysis, are given in the Online Supplementary Data.10,11
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Table 1. Patients’ characteristics.

Peg-G-CSF G-CSF 
Group Group

Age 55 years (43-66) 55 years (48-68)
Gender (male/female) 4 (44%)/ 5 (56%) 3 (43%)/ 4 (57%)
Body weight 70 kg (55-88) 70 kg (45-80)
IgG, A, LC 4 (44%), 5 (56%), 0 (0%) 5 (71%), 0 (0%), 2 (29%)
Stage I, II, III 0 (0%), 2 (22%), 7 (78%) 1 (14%), 0 (0%), 6 (86%)
Stage A, B 9 (100%), 0 (0%) 5 (71%) , 2 (29%)
Induction therapy (cycles) 3 (2-4) ID 3 (2-6) ID
Radiotherapy (total) 3 (33%) 0 (0%)
Extensive radiotherapy* 0 (0%) 0 (0%)
Remission status: PR, SD, PD 7 (78%), 1 (11%), 4 (57%), 1 (14%),

1 (11%) 2 (29%)

LC, light chains; PR, partial response; SD, stable disease; PD, progressive disease;
*means patients with radiotherapy of 7 or more vertebra and/or pelvis.
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Quantitative real-time reverse transcription polymerase
chain reaction (RT-PCR)

RNA expression data were corroborated by real-time
RT-PCR using the ABI PRISM® 7900HT Sequence
Detection System Instrument (Applied Biosystems,
Applera Deutschland GmbH, Darmstadt, Germany). Total
RNA was reverse-transcribed as described previously.11

PCR was performed in a MicroAmp Optical 96-well
Reaction Plate (Applera) according to the instructions of
the manufacturer using commercially available assays-on-
demand. GAPDH mRNA served as an external control for
relative quantification. Relative gene expression levels are
presented as the difference of CT values of the target gene
and GAPDH (∆CT). For RT-PCR analysis of lin–CD34+

CD38– subsets, total RNA was isolated using the RNeasy
micro kit (Qiagen, Hilden, Germany) adding 20 ng of bac-
terial rRNA as a carrier according to the manufacturer’s
instructions.

Cell cycle assays
Cell cycle analysis using BrdU and 7-amino-actinomycin

D (7-AAD) staining was performed as described previous-
ly.12 Student's t-test was used to assess statistically signifi-
cant differences regarding cell cycle phases between the
two groups given Peg-G-CSF or G-CSF (p<0.05). 

Immunofluorescence-based cell sorting 
Flow cytometric analysis of CD34+ subsets and sorting

of Lin–, CD34+, CD38– hematopoietic stem cells was per-
formed as described previously.13 Cells were sorted and
analyzed using a double laser (488 nm/350 nm Enterprise
II +647 Spectrum) high-speed cell sorter (MoFlo MLS,
Cytomation). 

Semisolid clonogenic assays
Mononuclear cells and purified CD34+ cells were seeded

in semisolid ready-to-use methylcellulose growth medium
(MethoCult H4436, StemCell Technology, Vancouver,
Canada) at concentrations ranging between 23104 and
53104 MNC/mL and 53102 and 13103 CD34+ cells/mL as
described.14 Colony numbers (CFU-GM, BFU-E) were
counted after 2 weeks. Each experiment was performed in
duplicate. The Student's t-test was used to detect statisti-
cally significant differences (p<0.05). 

Results

In this study, we compared gene expression patterns,
subset composition and functional properties of peripher-
al blood-derived CD34+ cells and highly purified
hematopoietic stem cells obtained from patients with
multiple myeloma following mobilization with cyclo-
phosphamide and stimulation with either Peg-G-CSF or
G-CSF. Approaching the period of leukopenia following a
median time of 5 days after the end of chemotherapy,
seven patients were given a single injection of Peg-G-CSF

while nine patients received G-CSF on a daily basis result-
ing in an equal cumulative dose. Looking at a total of 8793
genes contained within the array we found that 339 genes
were differentially expressed with a q-value below 5%
and a fold change of at least 1.2. Comparing the two
groups of patients, 222 genes had a higher expression
level within the Peg-G-CSF-mobilized CD34+ cells and
117 genes had a lower one in comparison to the G-CSF-
mobilized CD34+ cells. Hierarchical cluster analysis on
the basis of the differentially expressed genes reflected
the distinct expression pattern of G-CSF and Peg-G-CSF-
mobilized cells and demonstrated the homogeneity of the
cell samples of each group (Online Supplementary Figure 1).
Microarray gene expression analysis was performed in
conformity with the latest consensus guidelines.15 The
complete gene expression data can be accessed online via
http://www.ncbi.nlm.nih.gov/geo/; accession no. GSE4688. A
selection of differentially expressed genes is assigned to
functional groups and shown in Online Supplementary
Table 1.

Peg-G-CSF-mobilized peripheral blood stem cells show a
gene expression pattern characteristic of immature pro-
genitors

In Peg-G-CSF-mobilized CD34+ cells, we found a gene
expression pattern reflecting a developmentally earlier
progenitor cell type. Accordingly, in Peg-G-CSF-mobilized
CD34+ cells significantly greater levels of the HOX family
of homeobox genes such as HOXA9, HOXA10 and their
positive regulator MLL as well as co-factor myeloid
ecotropic viral integration site 1 homolog (MEIS1) were
observed. On the other hand, genes associated with ery-
throid differentiation and late stages of myeloid matura-

Peg-G-CSF vs unconjugated G-CSF in PBSC mobilization

Figure 1. Confirmation of microarray expression data by RT-PCR.
Fold changes determined by microarray analysis are represented
by white columns, fold changes determined using RT-PCR are
shown by gray columns. Fold changes >0 indicate higher expres-
sion following Peg-G-CSF mobilization, fold changes <0 indicate
higher expression after G-CSF stimulation. The data on the y axis
are plotted as log base 2.
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tion along the granulocytic lineage were expressed at 2- to
16-fold lower levels in Peg-G-CSF-mobilized CD34+ cells
compared to G-CSF-mobilized ones. These genes includ-
ed β-globin and the global erythroid regulator and tran-
scription factor Kruppel-like factor 1 (KLF1),16 defensins α
1,3 and 4 and C/EBP β and δ as well as matrix metallopro-
teinases 8 and 9. In turn, PAWR (Par-4 receptor), a regula-
tor of Wilm’s tumor gene 1 (WT1)17 and HOXA518 both of
which are inhibitors of erythroid differentiation, showed a
significantly higher expression level in Peg-G-CSF-mobi-
lized cells. 

Compared to G-CSF stimulation, Peg-G-CSF mobilizes a
greater proportion of hematopoietic stem cells and
common myeloid progenitors but fewer megakaryocyte-
erythrocyte progenitors

To address the question of whether the distinct expres-
sion patterns could result from a different progenitor sub-
set composition (hematopoietic stem cells, common
myeloid progenitors, granulocyte monocyte progenitors,
megakaryocyte erythrocyte progenitors) in the peripheral
blood after stimulation by either G-CSF or Peg-G-CSF, we
examined five G-CSF-mobilized and five Peg-G-CSF-
mobilized CD34+ cell samples with regard to their subset
composition. Peg-G-CSF-mobilized samples contained a
greater proportion of hematopoietic stem cells (17.8%;
SD: 2.1% vs. 14.1%; SD: 1.8%; p=0.038) and a higher frac-
tion of common myeloid progenitors (40.9%; SD: 1.1%
vs. 28.7%; SD: 4.4%; p=0.008) compared with G-CSF-
mobilized samples (Figure 2). In contrast, we found a sig-
nificantly lower prportion of megakaryocyte erythrocyte
progenitors (12.9%; SD:3.0% vs. 21.8%; SD:1.4%;
p=0.005) in Peg-G-CSF-mobilized cells. These data
demonstrate that the subset composition of Peg-G-CSF-
mobilized cells is different from that of G-CSF-mobilized
cells and partially explains the more immature transcrip-
tional profile with less proneness to erythroid differentia-
tion. 

Peg-G-CSF-mobilized PBSC favor granulocytic over
erythroid colony formation

We hypothesized that the observed higher expression
levels of genes important for early myeloid progenitors
and, correspondingly, the greater proportion of common
myeloid progenitors, combined with lower expression of
erythropoiesis-related genes and the smaller proportion of
megakaryocyte erythrocyte progenitors in Peg-G-CSF-
mobilized CD34+ cells are relevant for the colony-forming
potential of these cells. To address this question, we uti-
lized semisolid methylcellulose assays to determine clono-
genic growth. Mononuclear cells as well as purified CD34+

cells obtained from patients who had received Peg-G-CSF
were associated with significantly lower mean BFU-
E/CFU-GM ratios than CD34+ cells from patients given G-
CSF (p=0.038 and p=0.016, respectively) (Figure 3A and B). 

Peg-G-CSF-mobilized peripheral blood stem cells
express higher levels of proliferation-associated genes

We found seven differentially expressed genes involved
in cell cycle regulation (Online Supplementary Table 1). Six
of them are known to drive cell cycle progression and one
gene causes G0/G1 cell cycle arrest.19-23 The cell cycle pro-
moting genes including cyclins, kinases, and small G-pro-
tein superfamily members were expressed at 1.3- to 1.7-
fold higher levels in Peg-G-CSF-mobilized CD34+ cells
compared to their G-CSF-mobilized counterparts. On the
other hand, the expression level of the hematopoietic cell-
specific inhibitory cell cycle modulator membrane span-
ning four protein family group member A3 (MS4A3)20 was

Figure 2. Different patterns of hematopoietic stem and progenitor
cells in the peripheral blood of patients stimulated with either Peg-
G-CSF (left) or G-CSF (right). A. Immunomagnetic selection of CD34+

cells followed by multicolor flow cytometry was utilized to analyze
hematopoietic stem and progenitor cell subsets. After gating on
viable cells and lineage-depletion subfractions of hematopoietic
stem cells (Lin–, CD34+, CD38–), common myeloid progenitors (Lin–,
CD34+, CD38+, IL-3Ra+, CD45RA–), granulocyte monocyte progenitors
(Lin–, CD34+, CD38+, IL-3Ra+, CD45RA+), and megakaryocyte erythro-
cyte progenitors (Lin–, CD34+, CD38+, IL-3Ra–, CD45RA–) were deter-
mined. Percentages related to Lin– cells are indicated. Dot plots of
one representative experiment out of five are shown. B. Bar chart
displaying medians of all experiments performed. White columns
represent Peg-G-CSF-mobilized cells and gray columns represent G-
CSF-mobilized cells. Standard deviations are indicated. The percent-
age for Lin– cells is related to total CD34+ cells while the percentages
for hematopoietic stem cells, common myeloid progenitors, granulo-
cyte monocyte progenitors and megakaryocyte erythrocyte progen-
itors are related to Lin–, CD34+ cells.
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1.5-fold lower in Peg-G-CSF-mobilized CD34+ cells. We
did, however, find a higher expression level of cyclin D3 in
G-CSF-mobilized cells. This might be due to lineage-
dependent overexpression, as cyclin D3 is upregulated
through erythroid-megakaryocytic differentiation.22 In
summary, the gene expression pattern suggests higher cell
cycle activity in Peg-G-CSF-mobilized cells.

Peg-G-CSF-mobilized peripheral blood stem cells have a
greater cycling activity 

In order to examine whether the higher expression lev-
els of proliferation-associated genes in Peg-G-CSF-mobi-
lized cells are functionally relevant, we performed cell
cycle analyses. In line with the gene expression data we
saw a significantly greater proportion of actively cycling
CD34+ cells (S-phase) in the samples from patients given
Peg-G-CSF than in those given G-CSF. The percentage of
Peg-G-CSF-mobilized CD34+ cells in G0/1 phase was signif-
icantly smaller (Figure 4). Checking for functional differ-
ences also in hematopoietic stem cells (Figure 5B,C) we
found a greater proportion of Lin–, CD34+, CD38–

hematopoietic stem cells in G2/M phase (p=0.05) among
Peg-G-CSF-mobilized cells (median 25.7%; range, 21.9-
29.4%; SD 5.3) than in G-CSF-mobilized cells (median
9.4%; range, 8.3-10.5%; SD 1.6). A higher percentage of
hematopoietic stem cells mobilized by G-CSF was in G0/1

phase (median 90%; range, 88.8-91.1%; SD 1.6) when
compared to Peg-G-CSF-mobilized cells (median 72.8%;
range, 69.0-76.5%; SD 5.3; p=0.05). On average, twice as
many hematopoietic stem cells mobilized by Peg-G-CSF
were in S-phase (median 0.6%; range, 0.5-0.7%; SD 0.1)
compared to those mobilized by G-CSF (median 0.3%;
range, 0.1-0.5%; SD 0.3). However, this difference was not

statistically significant (p=0.3). In conclusion, Peg-G-CSF
fosters cell cycle activity in CD34+ cells as well as in Lin–,
CD34+, CD38– cells in accordance with the gene expres-
sion data. 

Elevated expression levels of HOXA9 and GATA3 in Peg-
G-CSF-mobilized hematopoietic stem cells

After having found that the distinct gene expression pro-
files of Peg-G-CSF- and G-CSF-mobilized CD34+ cells are
also reflected by differences in subset composition and
functional properties, we next addressed the question of
whether differential gene expression in CD34+ cells might
also be a result of Peg-G-CSF- versus G-CSF-induced tran-
scriptional changes in early hematopoietic stem cells. We
sorted Lin–, CD34+, CD38– hematopoietic stem cells from
seven G-CSF-mobilized and seven Peg-G-CSF-mobilized
mononuclear cell samples and performed RT-PCR analysis
for β-globin, KLF1, GATA3 and HOXA9. Strikingly, we
found a significantly higher expression level of HOXA9
(p=0.02) in Peg-G-CSF-mobilized hematopoietic stem cells
in comparison with G-CSF-mobilized ones. For GATA3
there was a clear trend towards higher expression in Peg-
G-CSF-mobilized, hematopoietic stem cells, but the differ-

Figure 3. Clonogenic assays of mononuclear cells (A) and purified
CD34+ cells (B) of patients mobilized by either Peg-G-CSF (left) or
G-CSF (right). Mononuclear cells from apheresis products of
patients mobilized with either Peg-G-CSF (n=7) or G-CSF (n=7)
were seeded in semisolid ready-to-use methylcellulose growth
medium containing stem cell factor, granulocyte-monocyte,
colony-stimulating factor, interleukin-3, interleukin-6, and ery-
thropoietin (A). To corroborate these results with purified CD34+

cells, seven G-CSF-mobilized and four Peg-G-CSF-mobilized sam-
ples were immunomagnetically selected and plated as described
for the monuclear cells (B). Colony numbers (colony-forming units
granulocyte/macrophage, CFU-GM; burst-forming units erythrocyte
BFU-E) were scored after 2 weeks. Diamonds represent the BFU-
E/CFU-GM ratio of each clonogenic assay and bars represent the
respective median ratio. Medians of the BFU-E/CFU-GM ratio are
given in the diagram. The p value is indicated.

A B

Figure 4. A. Cell cycle assays of hematopoietic stem and progeni-
tor cells in the peripheral blood of patients mobilized by either
Peg-G-CSF (white columns) or G-CSF (grey columns). Cell cycle
analysis using BrdU and 7 amino-actinomycin D staining was per-
formed after 3 hours of cell culture in RPMI 1640 media contain-
ing fetal calf serum, interleukin-3, interleukin-6 and stem cell fac-
tor and labeling with BrdU. After permeabilization and staining
with fluorochrome-conjugated anti-BrdU antibodies and 7-amino-
actinomycin D, flow cytometric analysis was performed. Student's
t test was used to assess statistically significant differences
regarding cell cycle phases between the two groups (p<0.05). The
G0/G1 phase of the cell cycle is displayed, on the left side, the S
phase on the right. B. Histogram plots of one representative exper-
iment of four using Peg-G-CSF- (left) and G-CSF-mobilized CD34+

cells (right) are shown. The percentages of cells in the G0/G1 phase
and S phase are indicated.
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ence was not statistically significant (Figure 5A). In con-
trast to the situation in the overall CD34+ cell population,
the β-globin gene and KLF1 were not differentially
expressed in the Lin–, CD34+, CD38– hematopoietic stem
cell subset suggesting that they might be affected at later
developmental stages. Taken together, these findings
demonstrate that, compared to G-CSF stimulation, stimu-
lation with Peg-G-CSF not only leads to mobilization of
CD34+ cells with distinct subset compositions but also to
different expression levels of transcriptional key regulators
in Lin–, CD34+, CD38– hematopoietic stem cells. 

Discussion

Here, we compared the effects of stimulation with Peg-
G-CSF and unconjugated G-CSF on mobilized hematopoi-
etic stem cells as well as their progeny. In Peg-G-CSF-
mobilized CD34+ cells, we found a gene expression pat-
tern reflecting a developmentally earlier progenitor cell
type, including the HOX family of homeobox genes,
MEIS1 and MLL. These genes are expressed at high levels
in hematopoietic stem and immature progenitor cells, thus
suggesting a greater proportion of early, uncommitted
stem and immature progenitor cells within the CD34+ cell
population.24-29 Differences in the expression levels of these
genes between Peg-G-CSF and G-CSF-mobilized cells
were relatively small (see Online Supplementary Table 1).
Nevertheless, we and others have previously shown that
even modest differences in the expression levels of tran-
scription factors involved in hematopoiesis can lead to
altered gene expression with a substantial influence on
stem cell differentiation and function.30-33

In contrast, genes associated with erythroid and later
stages of myeloid differentiation were expressed at lower
levels. Of these genes, defensins a 1, 3 and 4 play a piv-
otal role in neutrophil defense mechanisms34,35 and tran-
scription factors C/EBP b and d are crucially involved in
the maturation of cells commited to the myeloid line-
age.36-38 Accordingly, matrix metalloproteinases 8 (MMP8)
and 9 (MMP9) were expressed at lower levels. MMP8 is a
gene under C/EBP family control and expressed late in the
myeloid maturation pathway.38 Its family member MMP9
promotes differentiation at an earlier stage. MMP9 acts
on hematopoietic stem cells via release of soluble kit lig-
and and induces transition from a quiescent to a prolifer-
ative stage, thereby favoring differentiation.39 In line with
the gene expression profile, analysis of the CD34+ subset
composition of Peg-G-CSF-mobilized cells showed signif-
icantly greater proportions of hematopoietic stem cells
and common myeloid progenitors, and a lower propor-
tion of megakaryocyte erythrocyte progenitors. For func-
tional corroboration of these findings we performed
clonogenic assays and found a significantly lower BFU-
E/CFU-GM ratio after plating of Peg-G-CSF-mobilized
CD34+ cells compared to cells mobilized by unconjugated
G-CSF. This finding is indicative of a higher proportion of

myeloid progenitor cells and a smaller proportion of pro-
genitor cells committed to the erythroid lineage within
the Peg-G-CSF-mobilized CD34+ cells and demonstrates
the functional relevance of the observed differential gene
expression profiles and progenitor subset composition.
Higher levels of  expression of genes functionally impor-
tant for hematopoietic stem cells were found not only in
the CD34+ cells but also in highly purified hematopoietic
stem cells after mobilization with Peg-G-CSF, suggesting
enhanced long-term repopulating ability.28,40 This might
explain the results of a recent clinical trial in which the
authors found significantly greater leukocyte, reticulocyte

Figure 5. Quantitative real-time RT-PCR for HOXA9 and GATA3
mRNA and cell cycle assays of hematopoietic stem cells mobilized
by either Peg-G-CSF (left) or G-CSF (right). A. Highly enriched Lin–,
CD34+, CD38– hematopoietic stem cells mobilized by either Peg-G-
CSF or G-CSF were subjected to two independent quantitative real-
time RT-PCR series for HOXA9 and GATA3. ∆CT values were calculat-
ed by subtracting the CT value of the reference gene from the CT

value of target genes. The data on the y axis are plotted as 2-CT.
Peg-G-CSF-mobilized hematopoietic stem cells are represented by
white columns, G-CSF-mobilized cells are shown by gray columns.
The higher the 2-CT value of the target gene, the greater the expres-
sion level of this gene. Cell cycle analysis using BrdU and 7 amino-
actinomycin D staining was performed after 3 hours of cell culture
in RPMI 1640 media containing fetal calf serum, interleukin-6,
interleukin-3 and stem cell factor and labeling with BrdU. After per-
meabilization and staining with fluorochrome-conjugated anti-BrdU
antibodies and 7-amino-actinomycin D, flow cytometric analysis was
performed. B. To specifically analyze the hematopoietic stem cell
subset, a gate was set on Lin–, CD34+, CD38– cells (black arrow) uti-
lizing multi-color flow cytometry. C. One representative experiment
out of three for cell cycle analysis of Lin–, CD34+, CD38– cells is
shown. 
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and platelet counts on day 100 after initial engraftment
following transplantation of Peg-G-CSF-mobilized auto-
grafts compared to grafts mobilized by unconjugated G-
CSF.41 Of interest, the number of Peg-G-CSF mobilized
CD34+ cells transplanted was even smaller than the num-
ber of G-CSF-mobilized cells (p=0.0575). Hence, it was
assumed that different biological functions of Peg-G-CSF-
mobilized cells may have accounted for these observa-
tions.41 Looking at the engraftment kinetics of the patients
whose mobilized stem and progenitor cells were ana-
lyzed here in our study, we also found significantly high-
er white blood cell count on day 100 post-transplantation
in patients given Peg-G-CSF. At that time the median
white cell count was 6.0×103/µL after transplantation of
Peg-G-CSF mobilized cells compared to 3.3×103/µL after
transplantation of G-CSF mobilized cells (p=0.03). Platelet
counts and hemoglobin levels were also higher, although
not statistically significantly so. However, due to the
small sample size, these observations need to be substan-
tiated in larger, randomized clinical trials. Of interest,
mobilization of greater proportions of hematopoietic
stem cells with superior long-term repopulating capacity
have also been described for other mobilizing agents such
as CXCR4 antagonists and GROβ, either used as single
agents or in combination with G-CSF.42-44 Apart from the
superior long-term repopulating capacity, these cells also
show accelerated short-term hematopoietic recovery. At
first glance, this finding seems surprising as one would
expect that more mature hematopoietic progenitor cells
rather than immature primitive hematopoietic stem cells
would contribute to accelerated short-term hematopoiet-
ic recovery.45 However, other studies also found that not
only long-term marrow recovery but also rapid short-
term recovery depends on hematopoietic stem cells.46-48

In this context, it may be asked whether platelet recov-
ery is impaired after transplantation of Peg-G-CSF-mobi-
lized cells due to a significantly smaller proportion of
megakaryocyte erythrocyte progenitors. Looking at the
engraftment kinetics after transplantation of the grafts
analyzed here, neither short-term nor long-term thrombo-
cytopenia was observed. However, this finding also needs
to be confirmed in larger randomized clinical trials. Peg-G-
CSF-mobilized cells had a higher cell cycle activity com-
pared to their G-CSF mobilized counterparts, consistent
with the gene expression profile. Initially, this finding was
puzzling since Peg-G-CSF-mobilized CD34+ cells con-
tained a greater proportion of hematopoietic stem cells,
which are generally considered quiescent and even these
Peg-G-CSF-mobilized Lin–, CD34+, CD38– cells showed a
greater proportion of cells in the S and G2/M phases of the
cell cycle. However, Shojaei et al. have recently demon-
strated a higher reconstitution ability of hematopoietic
stem cells with increased cycling frequency,49 which is in
line with our data. 

Searching for the underlying mechanism that may
account for the different transcriptional and functional
phenotypes of Peg-G-CSF-mobilized cells, it has been pre-

viously shown in a murine G-CSF receptor knock-out
model that Peg-G-CSF and G-CSF exert their pharmaco-
logical effects via the same G-CSF receptor.50 Thus, the dif-
ferent effects of G-CSF and Peg-G-CSF do not seem to be
related to activation of different receptors. Neither
absolute CD34+ cell count/µL peripheral blood nor total
CD34+ cell yield seems to be differentially affected by Peg-
G-CSF and G-CSF as we found no significant differences
after mobilization with Peg-G-CSF and G-CSF, in line with
data reported previously for steady state- and cytotoxic
mobilization.51,52 Of note, CD34+ subset composition after
Peg-G-CSF and G-CSF mobilization described here was
not addressed in those studies referenced above.

Interestingly, in a recent randomized clinical trial the
effect of continuous intravenous administration vs. daily
single subcutaneous doses of G-CSF on CD34+ cell mobi-
lization was examined.53 The authors found that CD34+

cell peak concentrations were reached 2 days earlier fol-
lowing continuous intravenous G-CSF administration
compared to daily subcutaneous injections. These find-
ings and the mobilization kinetics observed following
the administration of Peg-G-CSF suggest that the time-
course of stimulation (pulsatile versus continuous), rather
than a dose-related mechanism, might account for the
distinct effects of Peg-G-CSF and G-CSF on stem and
progenitor cells. 

In conclusion, stimulation with Peg-G-CSF versus G-
CSF, despite the same active compound, leads to altered
gene expression of key regulatory genes and different
functional properties of mobilized hematopoietic stem
cells as well as their progeny. This, combined with a dif-
ferent subset composition of Peg-G-CSF-mobilized CD34+

stem and progenitor cells, may account for the distinct
functional properties and differentiation patterns
observed. These findings might explain the recently
reported different clinical properties and engraftment
kinetics of Peg-G-CSF-mobilized cells after autologous
transplantation. 
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