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Hepcidin at the nexus of various regulatory pathways  

Momentarily four putative upstream regulatory pathways that control liver hepcidin 

production have been described: i) iron store-related regulation, ii) erythropoietic activity 

driven regulation, iii) inflammation related regulation), and  iv) a mandatory signaling 

pathway. All are found to interact with liver cells to initiate the production of sufficient 

hepcidin for a proper maintenance of iron homeostasis. In Figure 3 we depict a model of 

pathways involved in hepcidin regulation that builds upon recently acquired insights, in 

general derived from mice studies and in vitro cell culture work. The model is focused on 

three relevant sites involved in hepcidin regulation: kidney, bone marrow and liver cells. 

Notably, the iron efflux regulation in macrophages by hepcidin, just as skeletal muscles which 

express high levels of hemojuvelin are kept out of this picture.  

 
i) Iron Store-related Regulation 

Information on the amount of iron in depot is communicated by a “store regulator” 1. How 

this stores regulator acts upon the hepcidin producing liver cells is unclear, although in vitro 

work on interactions between transferrin and the membrane proteins HFE, and transferrin 

receptor (TfR) 1 and 2 has lead to a hypothetical model in which circulating iron bound to 

transferrin, affects the formation of a complex of TfR2, and HFE on the surface of liver cells. 

This regulation mechanism is clarified in figure 3 and the corresponding legend. This 

complex is capable of increasing the hepcidin production by a thus far unknown intracellular 

signaling pathway2,3.  
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ii) Erythropoietic activity-driven regulation 

An erythropoietic activity derived regulator is proposed to act as the communicator between 

the erythron and the liver1. In case of hypoxia or anemia, low oxygen pressure (pO2) levels 

induce hypoxia inducible factor (HIF)-1α stabilization in kidney cells, which results in 

erythropoietin (EPO) production of the kidney. EPO increases the erythropoietic activity and 

thus the need for iron of the bone marrow, resulting in a fast iron mobilization from the 

stores. This results in an increased duodenal iron absorption by diminishing the circulating 

hepcidin concentration regardless the status of the iron stores. This suggests that the 

erythropoietic activity derived regulation interacts with the store regulator by means of a 

humoral factor which controls the induction of hepcidin. Different candidates for this role 

have been proposed like soluble transferrin receptor (sTfR)4 and recently Growth 

Differentiation Factor (GDF)-15 5. 

 

iii) Inflammation-related regulation 

A third upstream regulator of hepcidin is controlled by infection and inflammation. This 

“inflammatory regulator” pathway has lately been shown to be predominantly induced by 

interleukin (IL)-6 followed by Janus kinase (JAK)/Signal transducer and activator of 

transcription (STAT)-3 signalling6-8. It is suggested that this pathway might act more 

independently from the other pathways9-14 although results lack consensus on this matter15. 

Interactions between inflammation and HJV/BMP regulation through STAT-3 and SMADs 

as a result of TGF-β cell signalling16-18, illustrate the complexity of the signalling cascades 

involved in hepcidin regulation19,20.  
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iv) Mandatory signalling pathway 

A recent report hypothesized that the functional effect of both the store regulator and 

erythroid regulator fully depends on the activity of an additional pathway that is controlled by 

the glycosylphosphatidylinositol (GPI)-linked cell associated hemojuvelin (HJV). HJV has 

been suggested to maintain a mandatory regulation pathway by Bone Morphogenetic Protein 

(BMP)/SMAD signalling21 in which SMAD4 seems to be essential22. Disruption of this 

pathway by HJV mutations cripples the functionality of both store and erythropoietic activity 

related regulation23, hereby claiming a critical role in hepcidin production. Next to the 

membrane-linked HJV, the presence of a soluble form was reported to be detectable in 

human serum13. This soluble HJV (sHJV) is suggested to be a cleavage product of the 

membrane-anchored protein, and in some way under control of circulating iron13. In addition, 

in vitro experiments have shown that recombinant soluble hemojuvelin is capable of 

suppressing hepcidin mRNA expression. Together these data suggest an iron controlled 

binding competition between membrane-bound and sHJV that result in the control of 

hepcidin production24,25. However, many details of this mandatory hepcidin signaling 

pathway and its nexus with other regulatory pathways are still unknown.  

 

Transcriptional regulation 

Several transcription factors are reported as important for the Hepcidin promoter function 

such as C/EBPα26, hepatic nuclear factor (HNF4α)26, upstream stimulatory factor (USF)27 

and p5328 and probably cooperate to allow opening of the chromatin at the hepcidin locus and 

initiation of transcription. 

Simultaneously, some of these factors are also mentioned in association with metabolic 

syndrome29, alcohol metabolism-mediated oxidative stress30 and hypoxia31. Involvement of 

the von Hippel-Lindau (VHL)/HIF-axis is recently reported32 as possible regulation pathway 
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related to erythropoietic activity. So far, nothing is known of the signaling pathway 

responding to the HFE-TfR2 interactions and its interference with ubiquitous or hepatic-

specific transcription factors indicating that our understanding of this last step in hepcidin 

gene regulation is far from complete. Taken together, what once was considered as a 

regulation system with only a few roads now appears to be part of a complex regulatory 

network in which hepcidin is in fact a protein that has numerous irons in the fire.  
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Supplemental Table 
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Hepcidin values in the various pathological conditions of mice and man. 
A. Pathological conditions Hepcidin# Human Animal Reference 

Elevated iron stores/ iron overload ↑ U 
mRNA 

 
 

mRNA (mice) 

1-3 
2,4 

1,4,5 
     

Iron deficiency/ hypoxia ↓↓ S 
U 

 
 

mRNA (mice) 

6 
2,3,6 
7,8 

     

Increased and/or ineffective erythropoiesis † ↓↓ S 
U 

mRNA 

 
 
 

mRNA (mice) 

6 
6,9-11 
11,12 

13,14-18 
     

Anemia of chronic disease/ inflammation/infection ↑ / ↑↑ S 
U 

mRNA 

 
 
 

mRNA (mice) 

6,19 
1-3,6,20 

2,21 
1,5,7,21-24 

     

Severe obesitas (BMI > 40 Kg/m2 ) ↑ mRNA  25 

     

Alcohol abuse  ↓ mRNA  
mRNA (rat) 

26 
26,27 

     

Liver disease‡ ↑ / N / ↓ mRNA  28 

 

 
† After phlebotomy or in iron loading anemia’s. ‡ Depending on status of inflammation, iron loading or fibrosis 
stage. § OMIM, Online Mendelian Inheritance in Man. # ↓↓, strongly decreased; ↓, mildly decreased; N, normal; 
↑, mildly increased; ↑↑, strongly increased. n.d., not detectable.  
U, Urine; S, Serum 

B.Hereditary               
Hemochromatosis 

Gene OMIM 
type§ 

Hepcidin# Human Animal Reference 

       

  Classic HFE 1 ↓ S 
U 

mRNA 

 
 
 

mRNA (mice) 

6 
2,3,6 
29 

30-33 
       

  Juvenile       

     HJV-related HJV 2a ↓↓ S 
U 

 
 

mRNA (mice) 

6,34 
6,34,35 
36,37 

     Hepcidin-related HAMP 2b n.d. U  
mRNA (mice) 

9 
30,38 

       

  TfR2-related TFR2 3 ↓ U  
mRNA (mice) 

39 
40-42 

       

  Ferroportin disease       

     “Loss of function”  
           phenotype 

SLC40A1 4 ↑ S 
U 

mRNA 

 6 
6,9 

33,43 
     “Gain of function”  
           phenotype 

SLC40A1 4 N U 
mRNA 

 44 
33,43 
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