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While sickle cell disease and other chronic heredi-
tary and acquired hemolytic anemias are con-
sidered hypercoagulable states, a unifying

mechanism explaining the hemostatic activation has been
elusive.1 Patients with sickle cell disease exhibit increased
thrombin and fibrin generation,2,3 increased tissue factor
activity,4 increased basal and stimulated platelet activa-
tion,3,5-8 and manifest clinical thrombotic complications,
including pulmonary emboli, in situ pulmonary thrombo-
sis, and stroke.9-16

In their study published in this issue of the journal,
Ataga et al. examine the associations of measures of pul-
monary hypertension, defined by increases in the estimat-
ed pulmonary artery systolic pressure by transthoracic
Doppler echocardiography, with measures of coagulation
activation, inflammation and endothelial activation in 76
patients with sickle cell disease.17

Surprisingly, monocyte counts and markers of inflam-
mation were not associated with hemostatic indices,
while measures of hemolytic rate (hemoglobin, total and
indirect bilirubin, and lactate dehydrogenase) correlated
with indices of hypercoagulability. In fact, hemoglobin
levels were inversely correlated and lactate dehydroge-
nase values directly correlated with all measures of hemo-
static activation, including thrombin-antithrombin com-
plex (TAT), prothrombin fragment F1+2, D-dimer,
sCD40L (a marker of platelet activation), and soluble
VCAM-1 (a marker of endothelial activation).

These results are similar to those of our recent studies
exploring the mechanisms of platelet activation in sickle
cell disease. Using flow cytometric assessment of platelet
glycoprotein IIbIIIa and cell surface P-selectin expression,
Villagra et al. found that platelets were activated in steady
state sickle cell disease.8 Similar to the findings of Ataga et
al., the platelets were further activated in patients with
pulmonary hypertension, and this activation correlated
directly with measures of hemolytic rate, such as low
hemoglobin and high reticulocyte counts. From a mecha-
nistic standpoint, direct exposure of platelets to cell free
hemoglobin in vitro resulted in activation. While platelet
activation was inhibited by nitric oxide donors as expect-
ed, the nitric oxide inhibitory effect was abolished by
inclusion of pathophysiologically relevant levels of cell
free hemoglobin in the platelet-nitric oxide donor mix-
ture.8

These studies are consistent with our increased knowl-
edge of a novel mechanism of disease, hemolysis associ-
ated endothelial dysfunction and vasculopathy.18-21 During
normal physiology, endothelial-derived nitric oxide is pro-
tected from the scavenging effects of intracellular hemo-

globin via the formation of nitric oxide diffusional barriers
in the unstirred layer around the erythrocyte membrane
and the cell free zone that forms along endothelium in
laminar flowing blood.22-26 These combined diffusional
barriers reduce the reaction rate of nitric oxide with oxy-
and deoxy-hemoglobin by up to 1,000 fold. Furthermore,
robust scavenging and vascular protection systems exist to
detoxify plasma hemoglobin via the haptoglobin, CD163,
hemoxygenase, biliverdin reductase, and p21WAF-1/CIP-1 path-
way.21 During intravascular hemolysis, these diffusional
barriers are disrupted and the scavenging systems over-
whelmed, resulting in the accumulation of cell free plasma
hemoglobin which quenches nitric oxide and generates
reactive oxygen species. In addition, arginase I is released
from the red blood cell during hemolysis and metabolizes
arginine, the substrate for nitric oxide synthesis, further
impairing homeostasis.20

In addition to regulating vascular tone and inhibiting
endothelial adhesion molecule expression, nitric oxide has
potent antithrombotic effects. Via cGMP-dependent sig-
naling, nitric oxide inhibits platelet activation.8,27-29 Nitric
oxide has also been shown to inhibit tissue factor expres-
sion,30,31 although there are conflicting data on this.32

Besides nitric oxide scavenging by plasma hemoglobin,
hemolysis is also associated with phosphatidylserine
exposure on red cells which can activate tissue factor and
form a platform for coagulation.33,34

Interestingly, this pathway may mechanistically explain
the link between splenectomy (surgical and autosplenec-
tomy) and pulmonary hypertension and thrombosis.35-42

An important function of the spleen is to clear senescent,
oxidized and phosphatidylserine-exposing red cells and
thus limit intravascular cell microvesiculation, hemolysis
and phosphatidylserine exposure.33,43,44 Increases in the
plasma concentration of cell free hemoglobin and red cell
microparticles after splenectomy could paradoxically
increase nitric oxide scavenging, vascular injury and
thrombosis, despite increasing hemoglobin levels.
Interestingly, since priapism is also now recognized as a
complication of hemolytic anemia and low nitric oxide
bioavailability,45-53 an increase in intravascular cell free
plasma hemoglobin and red cell microparticles after
splenectomy could also explain the observed develop-
ment of priapism after splenectomy.54,55

The study by Ataga et al.17 now clearly links multiple
indices of hypercoagulability with both hemolysis and
progressive vasculopathy, characterized by pulmonary
hypertension. We, therefore, propose that the thrombo-
philia and hemostatic activation common to most
hemolytic conditions,56-59 including paroxysmal nocturnal
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hemoglobinuria, sickle cell, thalassemia, red cell mem-
brane disorders, red cell enzymopathies, thrombotic
thrombocytopenic purpura, malaria, cardiopulmonary
bypass, transfusion of aged blood, and alloimmune
hemolysis, may be explained by the very feature they all
share, intravascular hemolysis (Figure 1). Evaluation of
this hypothesis may help identify novel approaches for
these numerous conditions, including nitric oxide donors,
nitrite (which can harness hemoglobin as an nitric oxide
generator),60-63 hemoglobin scavengers, and anti-hemolytic
therapies.64
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Figure 1. Hemolysis-associated hemostatic activation. Intravascular hemolysis releases hemoglobin into plasma which quenches NO and
generates reactive oxygen species (directly via fenton chemistry or via induction of xanthine oxidase and NADP oxidase). In addition,
arginase I is released from the red blood cell during hemolysis and metabolizes arginine, the substrate for NO synthesis, further impair-
ing NO homeostasis. The depletion of NO is associated with pathological platelet activation and tissue factor expression. Hemolysis and
splenectomy are also associated with phosphatidylserine exposure on red cells which can activate tissue factor and form a platform for
coagulation. 
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