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Prognosis of childhood acute myeloid leukemia (AML) has improved significantly over
the past decades, from nearly no child surviving to a present probability of cure of
approximately 60%. However, this can only be achieved using very intensive
chemotherapy which results in relatively high rates of treatment related deaths and
significant late effects. This review summarizes current and future classification of
pediatric AML, ongoing phase III studies, and subgroup-directed treatment. In addi-
tion, the possibilities for more precise risk-group stratification which would allow more
tailored and further refined subgroup-directed treatment are discussed. These include
minimal residual disease monitoring, pharmacogenomics and the detection of AML-
specific molecular abnormalities. Finally, we discuss the opportunities for innovative
therapy in pediatric AML, such as the use of novel analogues, monoclonal antibody-
mediated drugs, and receptor tyrosine kinase inhibitors. Given the enormous
increase in our understanding of the underlying biology of AML, and the development
of many new targeted drugs, it should be possible to achieve high-quality cure in near-
ly all children and adolescents with AML within the next few decades.
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ABSTRACT

PROGRESS IN HEMATOLOGY

The prognosis of children and adoles-
cents with acute myeloid leukemia
(AML) has improved significantly over

the past decades. Nowadays, up to 65% of
pediatric AML patients experience long-term
survival.1 This has been achieved not only by
the more effective use of anti-leukemic
agents, but also by improvements in support-
ive care and by better risk-group stratifica-
tion. Current risk-group classification is main-
ly based on cytogenetics and early response
to treatment. Such early response is measured
either by minimal residual disease (MRD) or,
more often, by bone marrow response during
or after the 1st course of chemotherapy.
Therapy nowadays consists of a limited num-
ber of intensive courses of chemotherapy
based on cytarabine and an anthracycline.
While most European pediatric AML groups
are abandoning stem cell transplantation in
first complete remission,2,3 the Children’s
Oncology Group (COG) and other groups
still advocate its use in most patients up-front,
except in good risk patients with t(8;21) or
inv(16) (personal communication, Dr. A. Gamis,
June 28, 2006). An important problem in the
treatment of pediatric AML remains the high

frequency of treatment related deaths as well
as the long term side-effects.4-6 This also ham-
pers further therapy-intensification, and most
investigators therefore feel that we have
reached a plateau in the number of patients
that can be cured with current chemotherapy
regimens. Our efforts should, therefore,
focus on clarifying the biology of pediatric
AML. This knowledge can be used for novel
classification and risk-group stratification. In
addition, it creates the potential for targeted,
i.e. more leukemia-specific, therapy. It is
anticipated that such therapies will increase
the cure-rate and also decrease the toxicity of
treatment of children with AML. A large
number of new agents are currently under
development, mainly in adults. Only the
most promising of these new drugs should be
adopted for pediatric studies, since the possi-
bility of testing new agents in pediatric oncol-
ogy is limited because of the small number of
available patients. However, international
collaboration between the various collabora-
tive pediatric AML treatment groups does
enable both drug development (through the
ITCC consortium: Innovative therapies for chil-
dren with cancer, www.itccconsortium.org),
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and phase III clinical studies. New intergroup phase III
protocols have been developed for rare distinct subtypes
of AML, such as myeloid leukemia of Down syndrome
and acute promyelocytic leukemia (APL). This review
summarizes the most important areas in which progress is
being made, with an emphasis on classification, current
phase III clinical studies, subgroup-directed therapy, mini-
mal residual disease monitoring and innovative drug treat-
ment of AML.

AML classification: what’s new?
Traditionally, AML is classified according to morpholo-

gy, which is described in the so-called FAB (French-
American-British) classification, as summarized in Table
1.7 In the more recent additions to this classification,
describing FAB M0 and M7, immunophenotyping is con-
sidered essential to the correct diagnosis of these sub-
types.8,9

More recently, karyotyping has become extremely
important for the classification of AML, since karyotypes
were found to be predictive of prognosis. The recent
World Health Organization (WHO) classification, which is
also summarized in Table 1, is therefore mainly based on
cytogenetics.10 This classification is not yet routinely
implemented in pediatric hematology/oncology. This may
be explained at least in part by the fact that several factors
specific for pediatric AML are not addressed in this classi-
fication. First of all, to allow a diagnosis of AML, the
threshold for the percentage of blasts was lowered from
30 to 20%. Therefore, pediatric cases formerly classified as
myelodysplasia, i.e. refractory anemia in excess of blasts
in transformation (RAEBt), are now formally classified as
AML. However, it has not been demonstrated in well-
designed clinical trials that such patients benefit from
intensive AML chemotherapy preceding stem cell trans-
plantation, and infact, the data from the European
Working Group on Myelodysplastic Syndrome (EWOG-
MDS) even suggest that this may not be the case.11 As
many cases of MDS in children are hypoplastic, intensive
chemotherapy may result in long-lasting aplasia and infec-
tious complications. A more practical approach  to differ-
entiate between AML and MDS, rather than a definition
based on strict blast percentages, is to assess disease pro-
gression with a wait-and-see policy, and to look for signs
indicative of AML such as hepato- and/or splenomegaly
and non-random genetic abnormalities.12 Secondly, the
WHO-classification does not recognize rare but important
subgroups in pediatric AML, such as infants with AML
FAB M7 and a translocation (1;22). In addition, children
with myeloid leukemia of Down syndrome are not men-
tioned as a separate entity in the WHO classification for
AML or myelodysplastic syndrome.12 Neither the WHO-
or the FAB-classification uses age criteria to classify AML.
However, although the underlying biology of certain well-
defined cytogenetic subgroups may not differ between
adults and children, there are striking differences between
the various age-groups in AML: (i) prognosis declines with

increasing age, from 50-70% survival in children,3,13-15 to
approximately 40-50% for younger adults, and only 10%
for older adults;16,17 (ii) this may be due to a different distri-
bution of risk-factors, since children have higher frequen-
cies of the good-risk cytogenetic subgroups defined as the
core binding factor (CBF) leukemias with either t(8;21) or
inversion(16), and acute promyelocytic leukemia (APL).
Children also have less frequently myelodysplasia, preced-
ing AML and have a lower frequency of P-glycoprotein
overexpression;18,19 (iii) host factors differ extensively.
Children usually tolerate chemotherapy better and treat-
ment doses can be higher. Even within the pediatric age
group there may be differences in the distribution of AML
subtypes, such as for FAB M5, which is the predominant
FAB-type in infants. 

Recent data suggest that, apart from the translocations
that interfere with transcription factors (referred to as type
2 abnormalities), other genetic abnormalities are of inter-
est in AML. For instance, mutations in receptor tyrosine
kinases, tyrosine phosphatases and in oncogenes such as
RAS, may be important as they confer a proliferative
advantage to these leukemias (referred to as type 1 abnor-

Table 1. FAB (French-American-British) and WHO (World-Health-
Organization) classification of acute myeloid leukemia.7-10

FAB classification

M0 AML with minimal differentiation
M1 Myeloblastic leukemia without maturation
M2 Myeloblastic leukemia with maturation
M3 Acute promyelocytic leukemia
M4 Acute myelomonocytic leukemia
M5 Acute monoblastic leukemia
M6 Acute erythroblastic leukemia
M7 Acute megakaryoblastic leukemia

WHO classification

AML with recurrent cytogenetic translocations
AML with t(8;21)(q22;q22), AML1(CBF-α)/ETO
Acute promyelocytic leukemia
AML with t(15;17)(q22;q12) and variants; PML/RARα
AML with abnormal bone marrow eosinophils: inv(16)(p13;q22)
or t(16;16)(p13;q22); CBF-β/MYH1
AML with 11q23 (MLL gene) abnormalities

AML with multilineage dysplasia
With prior MDS
Without prior MDS

AML with myelodysplastic syndrome, therapy related
Alkylating agent related
Epipodophyllotoxin related
Other types

AML not otherwise categorized
AML minimally differentiated
AML without maturation
AML with maturation
Acute myelomonocytic leukemia
Acute monocytic leukemia
Acute erythroid leukemia
Acute megakaryocytic leukemia
Acute basophilic leukemia
Acute panmyelosis with myelofibrosis
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malities, see Figure 1).20-24 In pediatric AML, the frequen-
cies of these abnormalities again differs from adult AML.
For instance, the frequency of FLT3 internal tandem dupli-
cations (FLT3/ITD) is 10-15% in children and 20-30% in
adults.22,25 The type 2 abnormalities are interrelated with
morphology and conventional cytogenetics, and certain
interesting new data emerge form these observations: (i)
the pediatric CBF leukemias have a high frequency of KIT-
mutations in exon 8 and 17 (40-50%).20 The true frequen-
cy may even be higher, as recently ITDs in KIT have been
described in exon 11 and 12;26 (ii) FLT3/ITD can be found
in 20-25% of pediatric cases with an otherwise normal
karyotype, and in 35% of children with APL, but is rare in
CBF-leukemias and in AML M5;22,24 (iii) PTPN11 mutations
seem to occur in approximately 20% of AML M5 in pedi-
atric patients from Southern Europe, but only 7% in
Northern Europe.23,27

Recently, novel mutations of nucleophosmin (NPM1)
have been discovered. NPM1 is involved in the arf-p53
tumor suppressor pathway, and NPM1 mutations can be
found in 5-10% of pediatric AML cases, but up to 20-30%
in the subgroup with a normal karyotype.28-30 This is a
lower frequency than that is found in adults, where NPM1
mutations can be found in 50-60% of normal karyotype
patients and confer a favorable prognosis.31 Children with
AML usually present with NPM1 mutations in their
leukemic cells (mainly type B mutations) that differ from
those found in adults (mainly type A mutations). This may
indicate differences in leukemia pathogenesis between
adults and children.32 NPM1 mutations are frequently
associated with mutations in the FLT3 gene, and loose
their favorable prognostic impact when a FLT3 mutation is
present in the same sample.31,33 Pediatric data from the
COG show that mutated patients did not have an
improved outcome, although there was a trend for better
prognosis in the normal karyotype subgroup.30 Combined
FLT3 and NPM1 pediatric data are not yet available.  Apart
from NPM1 mutations and FLT3/ITDs, several new genet-
ic abnormalities have been identified in normal karyotype
AML, such as mutations in CEPBα, which occur in up to
20% of adult normal karyotype AML and are associated
with favorable prognosis.34 Other abnormalities, all associ-
ated with poor outcome, include the MLL-partial tandem
duplication,35 and overexpression of the ERG36 and BAALC
genes.37 However, for most of these abnormalities only
very limited pediatric data are available.  

Clearly, much progress has been made in understanding
the genetic abnormalities underlying the various subtypes
of AML, and new classification schemes will have to con-
sider this new information.38,39

Ongoing phase III trias in pediatric AML
Recently published results of pediatric phase III trials are

summarized in Table 2. In these studies, mainly performed
in the previous decade, most groups achieved survival
rates of between 40 and 60%, with the best outcome
reported by the MRC group (5-year overall survival of

68%).3 However, the MRC AML 10 and 12 studies applied
a relatively high cumulative dosage (roughly 550 mg/m2,
when utilizing the most arbitrary conversion factor of 1:5
to convert dosages of idarubicin and mitoxantrone to the
cumulative dosage of anthracyclines) of anthracyclines,
and cumulative dosages above 300 mg/m2 are well-known
for their increased risk of cardiac toxicity.40 Therefore, it
would be interesting if late cardiac toxicity data became
available from patients treated in the MRC studies, since
this may allow us to re-evaluate the excellent anti-
leukemic results that were reported using these proto-
cols.40 In the POG-9421 study, the concept of MDR-rever-
sal by adding cyclopsorin A was tested but did not show
better responses. This was possibly due to the low expres-
sion of P-glycoprotein in pediatric AML.18,19 The ongoing
phase III clinical studies in pediatric AML address several
important new issues, as summarized in Table 3. Several
conclusions can be drawn from an analysis of these stud-
ies. First of all, three different and relatively new drugs are
being investigated in phase III collaborative group studies,
i.e. gemtuzumab ozogamicin (GO, Mylotarg®), 2-chloro-
deoxyadenosine (2-CDA, Cladribine®) and liposomal
daunorubicin (DNX, DaunoXome®). Interestingly, GO is
studied in all 3 phases of treatment, i.e. in induction, con-
solidation and in a minimal residual disease setting.
Secondly, some of the aims reflect not just an attempt to
increase anti-leukemic efficacy, but also to reduce toxicity,
especially late cardiac toxicity. Both the current random-
ized MRC-consolidation question and the randomized use
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Figure 1. Distribution of the various type-1 above and type-2
genetic abnormalities in pediatric acute myeloid leukemia, based
on data from the literature.20,21,27,138,139
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of liposomal daunorubicin in the AML-BFM study and the
international Relapsed AML 2001/01 study are examples
of this. Finally, the concept of subgroup-directed therapy
is applied by administering 2-CDA in high risk patients in
the AML-BFM study, as well as in the St. Jude trials.
Although relatively small numbers are involved, it has
been reported that FAB M5 AML blasts in particular are
significantly more sensitive to 2-CDA, both in vitro and in
vivo.41,42

Tailored and subgroup therapy in pediatric AML risk
groups

Most pediatric collaborative study groups use risk-strat-
ified therapy, based on a combination of cytogenetics and
early treatment response. Early treatment response is usu-
ally determined using the day 15 bone marrow, or by
achieving complete remission after 1 course of chemother-
apy. This does not apply to patients with APL, as they are
being treated with ATRA which induces differentiation
and blasts disappear relatively slowly.43 The MRC studies
showed that, in contrast to other subgroups, slow early
response in the CBF-leukemias does not compromise
overall survival,  and therefore does not need to be consid-
ered in these studies.3

An overview of current risk group classification used in
the various collaborative groups is given in Table 4,
demonstrating similarities but also discrepancies in risk-
group classification. In the cytogenetic classification, the
CBF leukemias and APL are generally considered a favor-
able risk.3,44 In addition, some study groups, i.e. the Nordic
Society for Pediatric Hematology and Oncology
(NOPHO) and St. Jude Children’s Research Hospital, con-
sider the subgroup of AML patients with a t(9;11) as favor-
able.45,46 Although patients with t(8;21) are generally con-
sidered good-risk, their relapse rate is actually  at best

average1, and a good outcome is more likely to be
explained by a high salvage-rate after relapse.47,48 Children
with monosomy 7 or del(7q) are generally considered to
have a poor prognosis, although a recent retrospective
pediatric intergroup analysis confirmed the earlier finding
in adults and children reported by Grimwade et al. that
patients with del(7q) in fact have an intermediate progno-
sis.49,50 Myeloid leukemia of Down syndrome is considered
a favorable AML subgroup and is discussed separately
below. 

There is clear evidence that FLT3 length mutations are
associated with a poor prognosis in children with AML.21,22

Based on these data, several groups have decided to strat-
ify patients with a FLT3/ITD to the high-risk group.
However, recent data suggest that the presence of a
FLT3/ITD by itself does not indicate an unfavorable prog-
nosis in pediatric AML, but rather the allelic ratio (AR)
between mutant and wild-type FLT3.51 Meschinchi et al.
reported that patients with an AR below or equal to 0.4
had a similar prognosis to patients without FLT3/ITD,
while patients with an AR>0.4 had very poor outcome.
Interestingly, the point-mutations which occur in the
kinase domain of the FLT3 gene in almost 7% of patients
have not been associated with poor clinical outcome.51 So
far, no studies have been reported in which flt3 inhibitors
have been tested in pediatric AML patients.

Recent studies suggest that C-KIT mutations also confer
poor outcome, especially within the subgroup of core-
binding factor leukemias, although Boissel et al. report that
KIT– mutations were not predictive in the inv(16) sub-
group.20,52,53 So far this has not been applied to risk-group
classification, and larger and prospective studies in pedi-
atric AML are needed to confirm the prognostic signifi-
cance of KIT– mutations. 

Table 2. Recently published results of mature phase III clinical trials in pediatric AML.

Study group Protocol n Time period Follow-up time pEFS pOS Ref.

AEIOP AIEOP LAM 92 160 1992-2001 5 years 54% 60% Pession et al.140

AML-BFM SG AML-BFM 93 471 1993-1998 5 years 51% 60% Creutzig et al.141

CCG CCG 2891 294 1989-1995 3 years 27% 39% Woods et al.134

Standard timing 8 years − 34%
CCG 2891 295 1989-1995 3 years 42% 51%

Intensive timing 8 years − 49%
DCOG AML-92/94 78 1992-1998 5 years 42% 42% Kardos et al.13

EORTC EORTC 58921 177 1993-2000 5 years 49% 62% Entz-Werle et al.142

LAME LAME 89/91 309 1988-1996 6 years 48% 60% Perel et al.143

MRC AML12 529 1995-2002 5 years 58% 68% Gibson et al.3

NOPHO AML 93 219 1993-2000 7 years 49% 64% Lie et al.144

POG POG 9421 565 1995-1999 3-years 36% 54% Becton et al.18

PPLLSG AML 98 104 1998-2002 5-years 47% 50% Dluzniewska et al.145

St. Jude Children’s AML 91 62 1991-1997 5-years 44% 57% Ribeiro et al.146

Research Hospital
Tokyo CCSG AML13/14 216 1991-1998 5-years 56% 62% Tomizawa et al.147

AIEOP: Associazone Italiana di Ematologia e Oncologia Pediatrica; AML-BFM SG: AML Berlin-Frankfurt-Münster Study Group; CCG Children’s Cancer Group
(now with POG the Children’s Oncology Group); DCOG: Dutch Childhood Oncology Group; EORTC: European Organization of Research and Treatment of Cancer;
LAME: Leucémie Aiquë Myéloblastique Enfant; MRC: Medical Research Council; NOPHO: Nordic Society of Pediatric Hematology and Oncology; POG: Pediatric
Oncology Group (now with CCG the Children’s Oncology Group); PPLSG: Polish Pediatric Leukemia/Lymphoma Study Group. 
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Myeloid leukemia of Down syndrome
Children with Down syndrome have an increased risk

of developing leukemias,54 not only myeloid leukemia but
also acute lymphoblastic leukemia (ALL). The myeloid
leukemias differ from regular pediatric AML and are con-
sidered a single entity.55 They are therefore referred to as
Myeloid Leukemia of Down syndrome.12 They are character-
ized by (i) a predominance of the FAB types M0, M6 and
mainly M7, (ii) onset before the age of 5 years, (iii) a low
white blood cell count at diagnosis, (iv) the presence of
mutations in the GATA1 gene, which encodes a
hematopoietic transcription factor β and (5) a frequent pre-
phase with thrombocytopenia or myelodysplasia.56,57 This
pre-phase needs to be differentiated from the transient
leukemia which may be diagnosed in  children with
Down syndrome in the neonatal period.58 This transient
leukemia disappears spontaneously in most infants, but
approximately 20% of them present later with myeloid
leukemia of Down syndrome.59 Furthermore, some chil-
dren with transient leukemia die from disease-related
complications.60 An important new question is whether
the progression from transient leukemia to later AML can
be prevented with chemotherapy prophylaxis. Several
studies have been set up in the pediatric community to
investigate this further. In the past, children with myeloid
leukemia of Down syndrome were often not offered cur-
ative treatment. However, studies performed in the eight-
ies showed that these patients were curable with chemo-
therapy.61,62 In vitro studies by us and others demonstrated
an enhanced sensitivity to anticancer drugs of AML blasts
from children with Down syndrome.63,64 Because children

with Down syndrome also have an increased risk of treat-
ment related mortality, treatment intensity needs to be
carefully balanced against toxicity. Currently, excellent
results have been obtained with moderate intensity treat-
ment protocols without stem-cell transplantation.57 This
also led to the initiative of an International Pediatric AML
Group protocol for children with myeloid leukemia and
Down syndrome which will start enrolling patients in the
near future.

Acute promyelocytic leukemia
Low-risk and high-risk APL patients can be distin-

guished by white blood cell count at initial diagnosis.43,65

APL is the point of reference for targeted treatment in
hematologic malignancies, as all-trans retinoic acid
(ATRA) induces differentiation of APL cells by targeting
pml-rara.66,67 ATRA is usually added to chemotherapy in
induction because, this reduces early mortality, especially
by decreasing the bleeding tendency which is typical for
APL.68 In the case of high white blood cell counts, early
chemotherapy in addition to ATRA decreases the inci-
dence of the ATRA syndrome. This syndrome is charac-
terised by fever, weight gain, respiratory distress and pleu-
ral and pericardial effusions, and occurs in approximately
10% of children with APL treated with ATRA.43 It is cur-
rently unknown whether prolonged use of ATRA will fur-
ther improve the prognosis for children with APL.43

High cumulative dosages of anthracyclines are very effec-
tive in APL, and in adults it has been debated whether APL
can be treated with ATRA and anthracycline monothera-
py.69 However, it is unknown whether this can be applied to

Table 3. Clinical study questions and/or specific treatment in certain phases in ongoing, actively recruiting phase III clinical trials in pedi-
atric AML (excluding acute promyelocytic leukemia and myeloid leukemia of Down syndrome).

Phase  Collaborative Question
of treatment group

Induction BFM Randomized comparison of idarubicin versus liposomal daunorubicin
COG Randomized addition of GO to induction regimen
MRC/DCOG Randomized comparison of FLAG-Ida versus ADE
St. Jude Randomized comparison between low and high dose cytarabine during induction. Poor responders are treated 

with a 2nd block containing GO
Consolidation BFM Randomized addition of 2-CdA to consolidation, in high-risk patients only

COG Addition of GO to consolidation chemotherapy (extension of initial randomization, meaning patients either get GO 
(at both induction and consolidation) or no GO at all

MRC/DCOG Randomized comparison of anthracycline based consolidation versus high-dose cytarabine courses, and the addition
of a 5th course of chemotherapy (the latter by the MRC only)

NOPHO Randomized post-consolidation addition of GO in minimal residual disease setting, for all non-SCT patients
St. Jude MRD stratified consolidation with GO for MRD-positive patients and 2-CdA for inv(16) and t(9;11) cases.
Several groups Non-randomized risk-group stratified chemotherapy

CNS-directed therapy BFM Randomized comparison of 12 versus 18 Gy cranial irradiation
Maintenance BFM All patients to receive 1 year of maintenance therapy 

ELAM IL-2 in patients without allo-SCT
Other groups No maintenance

Stem cell transplantation Several groups Genetic assignment to MSD- or MUD-SCT for intermediate and/or high-risk patients
AIEOP Genetic assignment of autologous versus allogeneic SCT in all HR patients

Information was provided by several colleagues representing their study groups, as mentioned in the acknowledgements. GO: gemtuzumab ozogamicin; ADE: cytara-
bine, daunorubicin and etoposide; FLAG-Ida: fludarabine, cytarabine, granulocyte colony stimulating factor and idarubicin; 2-CdA: 2-chloro-deoxyadenosine; SCT: stem
cell transplant; MRD: minimal residual disease; APL: acute promyelocytic leukemia; MSD: matched sibling donor; MUD: matched unrelated donor.
For collaborative group names: see Tables 2 and 4. 
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pediatric APL, especially since we want to avoid higher
dosages of anthracyclines (>300 mg/m2) which may result
in significant cardiotoxicity.40,70 The so-called International
Consortium for childhood APL recently developed an inter-
group protocol for children with APL. ATRA will be used in
all phases of treatment, and the cumulative doses of anthra-
cyclines is limited to 355 mg/m2 in low risk, and 405 mg/m2

in high-risk patients. Gemtuzumab ozogamicin will be
used in the salvage regimen.71

Quantitative molecular monitoring of minimal residual
disease is recommended in APL, and molecular persisting
or residual disease should be treated before full-blown
relapse occurs.72,73 There is no clear-cut clinical evidence to
support this, as it is unknown whether early treatment in
an MRD-setting leads to a better outcome than treatment
at frank relapse. However, there is sufficient evidence that

molecular persisting disease after consolidation or rising
RQ-PCR levels indicating molecular relapse will evolve to
frank disease, and it makes sense to treat APL before clin-
ical problems such as coagulation disorders become evi-
dent. Initiating treatment when there is still a relatively
low tumor burden also reduces the risk of secondary
mutations and clonal evolution. Several studies suggest
the effectiveness of ATRA combined with arsenic trioxide
without conventional chemotherapy.74 However, experts
recently reported that it is too early to conclude that this
should replace current ATRA and conventional
chemotherapy-based protocols, until randomized studies
are available.75 As far as children are concerned we need
to have more data regarding safety and efficacy in adult
AML before routinely introducing arsenic in up-front APL
protocols.

Table 4. Current risk group stratification in several pediatric AML collaborative group treatment protocols (excluding acute promyelocyt-
ic leukemia and myeloid leukemia of Down syndrome), and percentages of the total group of patients per risk-group.

Protocol Standard risk (SR) % of patients Medium risk (MR) % of patients High risk (HR) % of patients
in SR in MR in HR

AIEOP-LAM t(8;21)  18% − − All other patients 82%
2002/01 or inv(16)/t(16;16)#

and CR after course 1

BFM-AML FAB M1/M2 with 30% − − All patients with FLT3/ITD, 70%
2004 Auer rods or FAB and all patients who are not 

M4Eo+ or t(8;21) standard risk
or inv(16)* and
blasts on day 15 <5% 
and absence of FLT3/ITD

COG AAML0531 t(8;21), inv(16) 25% All others 57% -7, -5, 5q-; bone marrow M3  18%
or t(16;16) (>15% of blasts) after course 1,

except for those with good
risk cytogenetics

ELAM 2002 t(8;21)* (not 14% All others 81% -7, 5q-, t(9;22), t(6;9) 5%
eligible for SCT in CR1)

JPLSG AML-05 t(8;21), inv(16), 40% All others 40% -7, 5q-, t(9;22), t(16;21), 20%
or t(16;16)" FLT3-ITD, no CR after course I

MRC/DCOG t(8;21) and 30% All other patiënts 55% >15% blasts after the 1st course, 15%
AML15 inv(16)/t(16;16)*, or adverse cytogenetics [-5, -7,

irrespective of marrow del(5q), abn(3q), t(9;22),
status after 1st course complex karyotype@]
or the presence of other 
genetic abnormalities

NOPHO- < 15% blasts after the 1st 80% − − 11q23 abnormalities other than 20%
AML 2004 and CR after the 2nd t(9;11) or >15% blasts day 15

course, or t(8;21), inv(16), or lack of remission after 2
t(16;16), t(9 ;11)* and CR cours0es of chemotherapy
after the 2nd course

St. Jude t(8;21), inv(16), t(9;11)* 35% All other patients 40% Cytogenetic abnormalities [-7, 25%
AML-2002 t(6;9), FLT3/ITD], or FAB M6 

or M7, or therapy-related AML,
or secondary AML after  MDS,
or lack of remission after 2 courses

*As detected by karyotyping and/or molecular methods, independent of secondary abnormalities; @5 or more structural karyotypic abnormalities; #as isolated structur-
al abnormality, detected by karyotyping and/or molecular methods "As detected by karyotyping, and/or PCR but in case of the latter only it must be confirmed by
FISH/FAB-classification: morphological classification of AML; MRC, Medical Research Council study group; BFM, Berlin-Frankfurt-Münster study group; NOPHO,
Nordic Society for Pediatric Hematology and Oncology; St. Jude, St Jude Children’s Research Hospital, Memphis, USA; AIEOP, Associazione Italiana Ematologia
Oncologia Pediatrica; ELAM, Enfant Leucémie Aiquë Myéloblastique; COG, Childhood Oncology Group; JPLSG, Japanese Pediatric Leukemia/Lymphoma Study
Group; DCOG: Dutch Childhood Oncology Group.
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Minimal residual disease monitoring
In ALL, measurement of minimal residual disease

(MRD) by leukemia-specific PCR-based quantitative tech-
niques has emerged as a very powerful prognostic factor,76

and several groups are currently using MRD-levels to strat-
ify treatment. In AML, progress has been less striking.
MRD monitoring of fusion gene transcripts is made diffi-
cult by the heterogeneity of AML, and because it has been
observed that persisting low levels of fusion genes (espe-
cially for the CBF-leukemias) may exist in the absence of
relapse.77 However, this drawback may be overcome by
the development of quantitative PCR-technology which
may be predictive of prognosis.78-80

Several collaborative AML groups currently focus on
MRD monitoring by flow cytometry.81 Only a few studies
demonstrated the clinical significance of MRD in pediatric
AML.82-84 MRD measurements by flow cytometry are
based on leukemia-specific aberrant antigen expression
and can be applied in the vast majority of AML patients.
One problem is that immunophenotypic shifts between
diagnosis and relapse occur in most patients.82 Also, the
sensitivity of MRD by flow cytometry in AML is still too
limited. While it became clear that in ALL it is important
to be able to detect at least 1 in 104 cells, flow cytometry
in AML currently has a sensitivity in the range of 0.1-
0.01%.82 However, the technical possibilities are improv-
ing rapidly, and 8- to 12-color flow cytometry is now pos-
sible. This will undoubtedly make the technique more
sensitive although more complex. Therefore, standardiza-
tion of flow-based MRD technology is urgently required.
Currently, only St. Jude Children’s Research Hospital is
using MRD for treatment-stratification, and most other
groups still have to perform trials to confirm its prognostic
significance and define their cut-off values for further
prospective studies.

Newly detected genes may be more promising as MRD
targets. For instance, overexpression of the Wilms tumor
gene 1 was found to be an independent predictor of
relapse, although wt1 is also expressed by normal
hematopoietic progenitors which may hamper its speci-
ficity at low MRD-levels.81,85 Alternatively, FLT3/ITDs may
be used as MRD markers, although clonal instability has
been described.86 NPM1 may be another candidate,
although the frequency is relatively low in pediatric
AML.87 However, most of these markers still need to be
confirmed in larger and prospective clinical trials in pedi-
atric AML before they can be used. 

Pharmacogenomics
Recent studies have analyzed the influence of host-fac-

tors on outcome in pediatric AML. CCG studies have
shown that Hispanics and black children have a poorer
outcome than white children. This may be because of
pharmacogenetic differences.88 Interestingly, black children
also had fewer HLA-identical sibling donors available. 

There have been no larger prospective studies linking
drug-metabolizing polymorphisms to outcome in pedi-

atric AML.89 So far, mostly single gene polymorphisms
have been studied. Davies et al., for example, reported that
children who lacked glutathion s-transferase theta 1 (gstt1)
had greater toxicity and reduced survival after chemother-
apy for AML compared with children with at least one
GSTT1 allele.90 However, polymorphisms in the gene
encoding for XPD, which is involved in DNA-repair, did
not affect the etiology or outcome of pediatric AML.91

Innovative therapies and drug development studies in
pediatric AML

Drug development studies in pediatric AML are made
more difficult by the low number of patients, as well as by
the fact that most patients are heavily pretreated. This  cre-
ates the problem that potentially effective new drugs may
be abandoned because of lack of efficacy, when in fact this
is caused by the resistance phenotype of the leukemias
rather than lack of efficacy of a new drug. Another problem
is that the market is too small to interest pharmaceutical
companies to carry out pediatric studies. Since 1997, this
has been addressed in the USA by creating specific regula-
tions regarding medicinal products for pediatric use and the
extension of market exclusivity (the Pediatric Rule). In
Europe, a similar law (Better Medicines for Children) is in the
last stages of implementation by the Agency for the
Evaluation of Medicinal Products (EMEA, www.emea.eu).
We discuss here the results of several phase I/II studies in
pediatric AML. In addition, we briefly discuss drugs that
are being explored in adults, and that may become of inter-
est to the pediatric population in the near future.

2-chlorodeoxyadenosine (cladribine) 
Resistance to cytarabine is a major cause of treatment

failure in AML, and new analogues have been designed to
overcome this resistance. Like cytarabine, cladribine is
phosphorylated into its triphosphate form and incorporat-
ed into the DNA of cycling cells, resulting in cell death.
However, cladribine may also induce apoptosis in non-
dividing cells, and is resistant to inactivation by deamina-
tion.41 Of interest, in vitro, cladribine was the only analogue
that was significantly more cytotoxic towards pediatric
AML than ALL cells among an in-vitro panel of more than
10 drugs.41 Clinical studies with continuous infusion of
cladribine showed  59% of relapsed pediatric AML
patients responded, with a CR rate of 27%.92 In de novo
AML, single-agent cladribine induced CR in 42% of pedi-
atric patients after 2 courses.42 However, acute monoblas-
tic leukemia (FAB M5) was seen to be more sensitive than
non-FAB type M5 cases (n=20, p=0.002) with a CR rate of
71%.42 Subsequently, cladribine was combined with
cytarabine, and the combination appeared to be more
effective if cytarabine was given by continuous infusion
rates than by a 2-hour infusion, with a CR rate after 1
course of 63% vs. 32% respectively in pediatric AML
patients.93 The BFM-group has currently also included
cladribine in the BFM-AML 2004 study for high-risk chil-
dren, which includes most FAB M5 patients.
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Clofarabine 
Clofarabine is a designer nucleoside analog. It is orally

bioavailable and combines the most favorable pharmaco-
kinetic properties of fludarabine and cladribine. This
results in a drug that potently inhibits DNA polymerases
and DNA synthesis as well as ribonucleotide reductase. In
relapsed/refractory pediatric AML, however, only limited
efficacy was found, with only 1 complete remission (with
insufficient platelet recovery) and 8 partial remissions out
of 35 children.94 However, in elderly patients who were
not considered fit to undergo intensive multi-agent
chemotherapy, clofarabine 30 mg/m2 for 5 days per course
with a maximum of 5 courses was well tolerated, and
59% of patients achieved complete remission after 1
course.95 Clofarabine has now been registered by the FDA
and the EMEA for use in relapsed/refractory pediatric ALL,
based on data by Jeha et al.96 Several pediatric studies with
clofarabine in combination with other chemotherapeutic
agents, such as cytarabine and cyclophosphamide plus
etoposide, are ongoing. Ideally, a randomized study
should confirm the benefit of novel nucleoside analogs
such as clofarabine as compared with cytarabine or the
combination of fludarabine, cytarabine and G-CSF
(FLAG).

Liposomal daunorubicin 
Liposomal daunorubin was mainly known for its use in

Kaposi sarcoma. Among a cohort of nearly 1,000 adult
patients treated with liposomal daunorubicin at cumula-
tive doses of up to 1,700 mg/m2, only 1 patient developed
clinically apparent cardiotoxicity.97 In general, liposomal
anthracyclines cause less cardiotoxicity than conventional
anthracyclines.98 This may be explained by a preferential
release of daunorubicin in tumor cells. In a mouse study,
low incorporation of liposomal daunorubicin in heart
muscle was found when compared with tumor cells.99

Several other animal studies demonstrated a lack of car-
diotoxicity of liposomal anthracyclines, while other in vitro
and animal studies showed that at an equivalent daunoru-
bicin dose, liposomal daunorubicin had more anti-tumor
effect than conventional daunorubicin.100,101 These findings
stimulated the use of liposomal daunorubicin in AML
because the use of anthracyclines is limited by acute and
long-term cardiotoxicity.40,70 In one study, liposomal daun-
robicin was combined with cytarabine in 69 children with
pediatric relapsed/refractory AML. This was feasible in
terms of toxicity and induced a 2nd remission in 67% of
children.102 The BFM group is currently randomizing
between liposomal daunorubicin and idarubicin in induc-
tion for pediatric de novo AML. The international study
Relapsed AML 2001/01 randomizes liposomal daunoru-
bicin on a basis of FLAG (fludarabine, cytarabine and G-
CSF). This will provide data on both efficacy and long-
term cardiotoxicity. So far, acute cardiotoxicity has not
been a problem in these studies.

Gemtuzumab ozogamicin
Gemtuzumab ozogamicin (GO) is an anti-CD33 direct-

ed monoclonal antibody which is linked to a potent cyto-
toxic agent, calicheamicin.103 After binding to CD33, the
drug is internalized and the calicheamicin is released,
resulting in apoptosis by inducing DNA double strand
breaks. Although GO was thought to be highly leukemia
specific, at least 2 major side-effects have occurred that
were not anticipated, maybe due to CD33 expression on
the cells that are involved in these complications. The first
is the occurrence of sinusoidal obstruction syndrome
(SOS), and the second is slow platelet recovery.104,105 In
pediatric AML, a phase I study was performed which
showed that the MTD was 2 infusions at 6 mg/m2 with a
14-day interval, with SOS as dose-limiting toxicity at the
9 mg/m2 dose-level.106 All patients had myelosuppression,
and other toxicities included grade 3-4 hyperbilirubinemia
(7%) and elevated hepatic transaminases (21%). However,
the incidence of grade 3-4 mucositis (3%) and sepsis (24%)
was low. The remission rate was 28%. Thirteen patients
were transplanted within 3.5 months post re-induction
with GO, of which 6 (40%) developed SOS during this
procedure. In an earlier report, 15 children were reported,
treated on compassionate use basis with GO 4-9 mg/m2,
up to 3 infusions.107 Eight children had no evidence of
leukemia, of which 5 were classified as CRp (complete
remission with insufficient platelet recovery). Toxicity
consisted of veno-occlusive disease (n=1), grade 3 hyper-
bilirubinemia (n=1), grade 3 transaminase elevation (n=1)
and grade 3 hypotension during GO administration (n=1).
No infections or mucositis occurred. Versluys et al. report-
ed on 5 children with AML, and suggested that defibrotide
may play a role in the prevention of SOS at subsequent
stem-cell transplantation after re-induction with GO.108 In
another compassionate use series, 12 children (including 9
AML cases) were treated with GO, 3-9 mg/m2 for 1-5 infu-
sions.109 There was a 25% response rate, and no SOS
occurred. In general, GO seems to be an active agent in
these very resistant patients. The toxicity profile is accept-
able apart from the risk of SOS. In adult AML studies, GO
has been combined at induction and consolidation with
conventional chemotherapy.110 This study showed that
low dose GO (3 mg/m2) was very well tolerated when
incorporated in such regimens (although not in consecu-
tive courses), and that combination with thioguanine was
not possible due to hepatotoxicity. In pediatrics, GO has
been combined with cytarabine in relapsed/refractory
AML.111 Currently, several pediatric study groups have also
incorporated GO in their upfront treatment protocols
(Table 3). Several study groups are investigating which role
GO can play and in which patient-groups, including the
MRC and COG. The recent MRC AML15 study in de novo
and secondary AML has shown improved disease-free sur-
vival with GO, although not a significantly improved
overall survival.112 Prolonged follow-up will show if sur-
vival also improves with GO. GO should become avail-
able for larger clinical studies in pediatric AML, but the
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current lack of registration of GO in Europe is a problem
still to be resolved.

Potential new drugs for pediatric AML that are being
tested in adults

The impressive results obtained with imatinib mesylate
in chronic myeloid leukemia have increased interest in
inhibitors of type 1 genetic abnormalities in AML.113 Apart
from activity against bcr-abl, imatinib also inhibits wild-
type c-kit which is normally expressed on AML cells.
Given this, Kindler et al. performed a phase II study in
which 21 patients were treated with 600 mg imatinib once
daily.114 Two patients had a complete hematologic remis-
sion and one other patient showed no evidence of
leukemia after treatment. None of the patients were KIT
mutated. Whether dasatinib will prove to be a more
potent inhibitor of kit still needs to be seen.115 A potential
advantage of dasatinib over imatinib is that it also inhibits
the D816V mutation which is relatively frequent in pedi-
atric AML.20,115 Another flt3 and c-kit inhibitor is PKC412.
This is of clinical interest given the mutually exclusive
mutations in either C-KIT or FLT3 in up to 30% of pedi-
atric AML patients.20 PKC412 has not yet been studied in
children, but a phase II study in adults showed clinical
activity.116 Various other flt3-inhibitors have been tested in
phase I/II clinical trials in adults.117,118 In general, these
inhibitors result in relatively short-lived reductions in
peripheral blood or bone-marrow blast counts.116-118 This is
similar to the experience with imatinib in Philadelphia-
positive acute lymphoblastic leukemia, and probably
reflects the fact that AML and Ph+ ALL are genetically
multi-hit diseases.119 Current studies focus on the addition
of these compounds to regular chemotherapy. A recent in-
vitro study of MLL-gene rearranged MLL suggests that flt3
inhibitors are best given directly after exposure to
chemotherapy.120 Schedule dependency has also been
observed for imatinib in Philadelphia chromosome posi-
tive ALL.121 Whether a newly developed antibody against
flt3 will be more effective than the small molecules has to
be awaited.122 A trial with SU5416, which is an inhibitor
with activity against multiple targets relevant in AML (flt3,
kit and vegf), also showed only modest activity with 5%
partial responses in 55 patients.123 A phase I study with
another multi-targeted tyrosine kinase inhibitor, sunitinib
(SU11248, Sutent®),124 obtained responses in all FLT3-
mutated AML patients (n=4), as compared with 2 out of 7
non-mutated AML patients, although the responses were
short-lived.125 Sunitinib is now registered for use in gastro-
intestinal stroma cell tumors and metastatic renal cancer.126

Farnesyltransferase inhibitors (FTI) is a novel class of anti-
cancer agents that interfere with the farnesylation of sev-
eral proteins, such as ras and rhoB.127 Tipifarnib, which is
one of the FTIs, has shown promising activity in a phase II
study of previously untreated elderly AML or MDS
patients, with a complete response rate of 14% and an
overall response rate of 23%.128 However, in pre-treated
patients, activity was very limited.129 Currently, no data on

tipifarnib in pediatric AML are available.  Clearly, many
new compounds are available which may be of interest for
pediatric AML. Only the most promising can be adopted,
given the low numbers of patients available to test these
compounds, and selection must be guided by preliminary
results in adults. Furthermore, international collaboration
is essential for most if not all early clinical studies with tar-
geted agents.

Allogeneic bone marrow transplantation
Allogeneic stem cell transplantation (allo-SCT) aims at

reducing the risk of relapse by administering high-dose
anti-leukemic therapy, and by inducing a graft-versus-
leukemia (GvL) response which matches that of graft-ver-
sus-host disease (GvHD). To assess the potential benefit of
allo-SCT, many studies focus on the reduction of relapse
risk only. However, treatment related mortality should be
taken into account, and therefore benefit should be
expressed as improvement in overall survival rather than
the cumulative incidence of relapse only. Autologous SCT
has not been shown to be superior to chemotherapy-
based consolidation.130,131 However, several studies in pedi-
atric AML have shown the superiority of allo-SCT com-
pared to chemotherapy, as  summarized by Bleakley et
al.132 When interpreting these data, however, it should be
recognised that the actual reduction of relapse risk is high-
ly dependent  on the efficacy and intensity of the control
chemotherapy arm.133 In current studies, from for example,
the MRC and BFM groups, the role of SCT in 1st CR seems
very limited  given the relatively good results obtained
with chemotherapy only.2,3,133 Recent studies from the US
however, still advocate allo-SCT in most pediatric AML
patients in first complete remission.134 Most if not all
groups consider allo-SCT to be indicated in relapsed AML,
ideally after achieving a subsequent complete remission.
However, there are no randomized studies to prove that
allo-SCT is better than intensive chemotherapy alone in
that setting. More experience is being acquired from the
use of matched unrelated donors and mismatched family
donors for patients in 2nd remission who lack an HLA-iden-
tical sibling donor.102 Given that a GvL effect is demonstra-
ble in pediatric AML, another option would be to use a
reduced-intensity rather than a myeloablative condition-
ing regimen.135,136 However, the anti-leukemic efficacy in
such transplants is highly dependent on the induction and
extent of GvHD. This has major limitations in children
because of its side-effects.137 A similar immunologic
approach can be tried in patients who show increasing
mixed chimerism in the post-allo-SCT setting. These
patients experience a poor outcome, but early immunolog-
ic intervention with donor lymphocyte infusions and rapid
tapering of immunosuppresion was able to rescue some
patients.135

Concluding remarks and future perspectives
Remarkable progress has been made in the treatment of

pediatric AML over the past decades, and the overall prob-
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ability of survival in newly diagnosed pediatric AML is
now above 60%. However, we may have reached a
plateau in the cure rate with conventional chemotherapy,
given the treatment-related mortality rates and the long-
term side-effects associated with intensive chemotherapy
and stem-cell transplantation in selected patients.

Improvements may come from improved risk-group
stratification, based either on novel genetic abnormalities,
or on the monitoring of minimal residual disease. For
instance, the development of specific subgroup-directed
protocols for children with myeloid leukemia of Down
syndrome and APL may further improve their outcome
and reflects differences in the underlying biology of the
disease. Further investigation into  the genetic aberrations
of pediatric AML cells may provide the knowledge need-
ed to develop compounds directed against leukemia-spe-
cific targets. Treatment of APL with ATRA, as well as gem-
tuzumab ozogamicin, are examples of such a targeted
approach. So far, the small molecularly targeted molecules
have not shown an impressive efficacy in AML, and it still
needs to be seen whether combination studies with
chemotherapy will be more successful. However, sub-
group-directed and rationally targeted therapy does offer
possibilities for improved care of patients with AML, but
will also have implications for the design of clinical trials.
With more and more subgroups, sample sizes become

smaller. In the long term, this may make large randomized
trials including all children with AML impossible, but may
be replaced with international subgroup specific protocols.
Fortunately, platforms for international collaboration
enabling the study of  new agents in pediatric AML have
been established, and it is therefore to be expected that
high-quality cure can be achieved in the future for many if
not most children and adolescents with AML.
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