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ABSTRACT

Background and Objectives

In @ majority of all patients with systemic mastocytosis (SM) including those with
mast cell leukemia (MCL), neoplastic mast cells (MC) display the D816V-mutated vari-
ant of KIT. The respective oncoprotein, KIT D816V, exhibits constitutive tyrosine
kinase (TK) activity and has been implicated in malignant cell growth. Therefore, sev-
eral attempts have been made to identify KIT D816V-targeting drugs.

Design and Methods

We examined the effects of the novel TK-inhibitor dasatinib alone and in combination
with other targeted drugs on growth of neoplastic MC.

Results

Confirming previous studies, dasatinib was found to inhibit the TK activity of wild type
(wt) KIT and KIT-D816V as well as growth and survival of neoplastic MC and of the
MCL cell line, HMC-1. The growth-inhibitory effects of dasatinib in HMC-1 cells were
found to be associated with a decrease in expression of CD2 and CD63. In addition,
we found that dasatinib blocks KIT D816V-induced cluster-formation and viability in
Ba/F3 cells. In drug combination experiments, dasatinib was found to co-operate with
PKC412, AMN107, imatinib, and 2CdA in producing growth-inhibition and apoptosis in
neoplastic MC. In HMC-1.1 cells lacking KIT D816V, all drug interactions were found
to be synergistic in nature. By contrast, in HMC-1.2 cells exhibiting KIT D816V, only
the combinations dasatinib+PKC412 and dasatinib+2CdA were found to produce syn-
ergistic effects.

Interpretation and Conclusions

Combinations of targeted drugs may represent an interesting pharmacologic
approach for the treatment of aggressive SM or MCL.
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factor receptor (SCER, KIT), are often deregulated
nd show constitutive TK activity in hematopoietic
neoplasms."* These molecules represent attractive targets
for therapy. In fact, during the past few years, several
emerging treatment concepts have been based on novel
drugs targeting critical TK in neoplastic myeloid cells.”
Systemic mastocytosis (SM) is a myeloid neoplasm charac-
terized by abnormal accumulation of neoplastic mast cells
(MC) in one or more internal organs. Indolent as well as
aggressive variants of SM have been described.®® Patients
with aggressive SM (ASM) or mast cell leukemia (MCL)
respond poorly to conventional drugs and their prognosis is
grave.”"” Therefore, various attempts have been made to
identify new therapeutic targets in neoplastic MC and to
develop respective treatment concepts.” In most patients
suffering from SM including ASM or MCL, the KIT muta-
tion D816V is detectable.”"” This mutation is associated
with ligand-independent phosphorylation of KIT as well as
autonomous cell growth.”" Based on this information, the
D816V-mutated variant of KIT has been recognized as a
major target of therapy.*'*" Thus, efforts have been made to
identify TK-inhibitors that block phosphorylation of KIT-
D816V and the growth of neoplastic MC.*"*"** Imatinib
(STI571), a potent inhibitor of BCR/ABL, has recently been
described to inhibit the growth of neoplastic MC exhibiting
wild-type (wt) KIT or the rarely occurring F522C-mutated
variant of KIT.**In addition, imatinib was found to block
growth of neoplastic cells in patients who have chronic
eosinophilic leukemia with the FIP1L1/PDGFRA fusion
gene with or without co-existing SM.** However, imatinib
failed to inhibit the growth of neoplastic MC harboring KIT
D816V.%* More recently, we and others have shown that
PKC4127 inhibits the TK activity of KIT-D816V, and there-
by down-regulates growth of neoplastic MC.**1t has also
been described that the novel TK inhibitor AMN107 (nilo-
tinib)”" down-regulates the growth of neoplastic cells
exhibiting KIT-D816V at relatively high concentrations.**
However, these compounds may not produce long-lasting
complete remission in ASM or MCL.* Therefore, it is of
importance to search further for novel KIT-targeting TK
inhibitors and to examine co-operative drug effects. With
regard to drug combinations, we have recently shown that
PKC412 and AMNI107 produce co-operative growth-
inhibitory effects in HMC-1 cells.® However, whereas this
drug combination produced synergistic inhibitory effects in
HMC-1 cells lacking KIT-D816V, no synergism was
observed in HMC-1.2 cells expressing KIT-D816V.*
Dasatinib (BMS-354825) is a novel, oral, multitargeted
inhibitor of oncogenic kinases including src kinases,
BCR/ABL, and KIT.** In patients with imatinib-resistant
CML, dasatinib exhibits substantial antiproliferative effects.
It has also been described that dasatinib inhibits phospho-
rylation of KIT-D816V and the growth of neoplastic MC.**
In the current study, we investigated the effects of dasatinib,
alone and together with PKC412 as well as with 2CdA, on
growth inhibition in neoplastic MC.

R:ceptor tyrosine kinases (TK) such as the stem cell
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Design and Methods

Reagents

Dasatinib (BMS-354825)* was provided by Bristol-
Myers Squibb (New Brunswick, NJ, USA), and imatinib
(STI571), AMN107 (nilotinib),” and PKC412 (midostau-
rin)” by Novartis Pharma AG (Basel, Switzerland). Stock
solutions of dasatinib, AMN107, and PKC412 were pre-
pared by dissolving the compounds in dimethyl-sulfoxide
(DMSO) (Merck, Darmstadt, Germany). Recombinant
human (th) stem cell factor (SCF) was purchased from
Strathmann Biotech (Hannover, Germany), RPMI 1640
medium and fetal calf serum (FCS) from PAA laboratories
(Pasching, Austria), L-glutamine and Iscove’s modified
Dulbecco’s medium (IMDM) from Gibco Life
Technologies (Gaithersburg, MD, USA), *H-thymidine
from Amersham (Buckinghamshire, UK), 2-chloro-deoxy-
adenosine (cladribine, 2CdA) from Sigma (St. Louis, MO,
USA), and rh interleukin-4 (IL-4) from Peprotech (Rocky
Hill, NJ, USA). The phycoerythrin (PE)-labeled monoclonal
antibodies RPA-2.10 (CD2), WM15 (CD13), YB5.B8
(CD117), and N6B6.2 (CD164) as well as MOPC-21
(mlgG1) and G155-178 (mlgG2a) were purchased from
Becton Dickinson (San Jose, CA, USA), and the PE-conju-
gated monoclonal antibody CLB-gran12 (CD63) from
Immunotech (Marseille, France). The PE-labeled mono-
clonal antibody VIM5 (CD87) was kindly provided by Dr.
Otto Majdic (Institute of Immunology, Medical University
of Vienna, Austria).

HMC-1 cells expressing or lacking KIT D816V

The mast cell line HMC-1* generated from a patient
with MCL, was kindly provided by Dr. J. H. Butterfield
(Mayo Clinic, Rochester, MN, USA). Two subclones were
used, namely HMC-1.1 harboring the KIT mutation
V560G but not KIT D816V,* and a second subclone, HMC-
1.2, harboring both KIT mutations, i.e. V560G and
D816V.* HMC-1 cells were grown in IMDM supplement-
ed with 10% FCS, L-glutamine, o-thioglycerol (Sigma) and
antibiotics at 37°C and 5% COz. HMC-1 cells were period-
ically checked for i) metachromatic granules, ii) expression
of KIT, and iii) the down-modulating effect of
interleukin(IL)-4 on KIT-expression.”

Ba/F3 cells with inducible expression of wt KIT or KIT
D816V

The generation of Ba/F3 cells with doxycycline-inducible
expression of wt KIT (Ton.Kit.wt) or KIT D816V has been
described previously.®* In brief, Ba/F3 cells expressing the
reverse tet-transactivator®® were co-transfected with
pTRE2 vector (Clontech, Palo Alto, CA, USA) containing
KIT D816V cDNA (or wt KIT cDNA, both kindly sent by
Dr. J. B. Longley, Columbia University, New York, USA)
and pTK-Hyg (Clontech) by electroporation. Stably trans-
fected cells were selected by growth in hygromycin and
cloned by limiting dilution. In this study, the subclone
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Ton Kit.D816V.27* was wused in all experiments.
Expression of KIT D816V can be induced in these cells
(within 12 hours) by exposure to doxycycline (1 pug/mL).*

Isolation of primary neoplastic cells

Primary neoplastic cells were obtained from four
patients with SM and one patient with normal bone mar-
row. According to WHO criteria,”* the SM patients were
classified as having indolent SM (ISM), smoldering SM
(SSM), ASM, and MCL. Mast cells were enriched by Ficoll
gradient centrifugation. In the patient with MCL, the puri-
ty of MC after isolation was 75%. In the other patients, the
percentage of MC was below 5%. Cell viability was >90%
in each case. All patients gave written informed consent
before bone marrow puncture.

Analysis of KIT phosphorylation by western blotting

HMC-1 cells (10°/mL), and Ton.Kit cells (10°/mL) con-
taining either wt KIT (Ton.Kitwt) or KIT D816V
(Ton.Kit.D816V.27), were incubated with dasatinib (1 pM
to 1 M) or control medium at 37°C for 4 hours. In select
experiments, HMC-1 cells were incubated with combina-
tions of dasatinib (HMC-1.1: 3 nM; HMC-1.2: 300 nM) and
PKC412 (300 nM for both HMC-1 subclones). Prior to drug
exposure, Ton.Kitwt and TonKit.D816V.27 cells were
incubated with doxycycline (1 pg/mL) at 37°C (24 hours)
to induce expression of KIT. In the case of Ton.Kit.wt cells,
KIT-phosphorylation was induced by adding rhSCF (100
ng/mL). Immunoprecipitation (IP) and western blotting
were performed as described elsewhere.®® In brief,
washed cells were incubated in RIPA buffer (1 mL buffer
per 10° cells) supplemented with proteinase inhibitors for
30 minutes at 4°C. For I, lysates from 107 cells were incu-
bated with anti-KIT antibody 1C1 (kindly provided by Dr.
H.-J. Bihring, University of Tiibingen, Germany)* and pro-
tein G Sepharose-beads (Amersham) in IP-buffer at 4°C
overnight. After washing, immunoprecipitates were sepa-
rated under reducing conditions by 7.5% SDS-polyacryl-
amide gel electrophoresis and transferred to nitrocellulose
membranes (Protran, Schleicher & Schuell, Keene, NH,
USA). Membranes were blocked for 1 hour in 5% block-
ing-reagent (Roche) and were then incubated with anti-KIT
antibody 1C1 or anti-phosphoprotein monoclonal anti-
body 4G10 (Upstate Biotechnology, Lake Placid, NY, USA)
at 4°C overnight. Antibody-reactivity was made visible by
sheep anti-mouse IgG antibody and Lumigen PS-3 detec-
tion reagent (both from Amersham), with CL-Xposure film
(Pierce Biotechnology, Rockford, IL, USA).

Evaluation of drug effects on growth and function of
Ton.Kit.D816V.27 cells

Ton.Kit.D816V.27 cells were co-incubated with doxycy-
cline (1 pug/mlL) and various concentrations of dasatinib,
PKC412, or AMN107 at 37°C for 24-48 hours. Cell viabili-
ty was determined by trypan blue exclusion. KIT-D816V-
induced cluster formation® was analyzed by inverted
microscope (clusters per high power field, HPF) and

expressed as a percent of the control (=doxycycline alone
without drugs=100%). All experiments were performed in
triplicate.

Measurement of °H-thymidine uptake

To determine the growth-inhibitory effects of the drugs,
HMC-1 cells and Ton.Kit.wt cells were incubated with var-
ious concentrations of dasatinib (100 fM-10 uM), PKC412
(100 pM - 10 uM), AMN107 (1 nM-100 uM), imatinib (3
nM-300 pM), or 2CdA (0.005-10 ug/mL) in 96-well culture
plates (TPP, Trasadingen, Switzerland) at 37°C for 48
hours. Primary cells (neoplastic cells from patients with SM
or control bone marrow) were cultured in control medium,
dasatinib (100 pM - 10 uM), PKC412 (100 pM-10 uM),
AMN107 (100 pM-10 uM), or imatinib (100 pM-10 uM)
for 48 hours. After incubation, 1 uCi *H-thymidine was
added (37°C, 12 hours). Cells were then harvested on filter
membranes (Packard Bioscience, Meriden, CT, USA) in a
Filtermate 196 harvester (Packard Bioscience). Filters were
air-dried, and the bound radioactivity was counted in a B-
counter (Top-Count NXT, Packard Bioscience). To deter-
mine potential additive or synergistic drug effects on cell
growth, HMC-1 cells or primary MC were exposed to var-
ious combinations of drugs (dasatinib, PKC412, AMN107,
imatinib, 2CdA) at fixed ratios of drug concentrations.
Drug interactions (additive, synergistic) were determined
by calculating combination index values using Calcusyn
software (Calcusyn; Biosoft, Ferguson, MO, USA).* All
experiments were performed in triplicate.

Evaluation of apoptosis by conventional morphology and
electron microscopy

The effects of TK inhibitors on apoptosis were analyzed
by morphologic examination, flow cytometry, and electron
microscopy. In typical experiments, HMC-1 cells were
incubated with various concentrations of dasatinib (1 pM-
1 uM) or control medium in six-well culture plates (TPP) in
IMDM containing 10% FCS at 37°C for 24 hours. In a sep-
arate set of experiments, HMC-1 cells were incubated with
combinations of dasatinib and PKC412. The percentage of
apoptotic cells was quantified on Wright-Giemsa-stained
cytospin preparations. Apoptosis was defined using con-
ventional cytomorphological criteria.* To confirm apopto-
sis in HMC-1 cells, electron microscopy was performed
using HMC-1 cells (both subclones) exposed to dasatinib (1
pM, 1 nM, 10 nM, 100 nM, 1 pM), PKC412 (1 uM), or con-
trol medium for 24 hours. Electron microscopy was per-
formed as described elsewhere.**

Evaluation of apoptosis by the Tunel assay and flow
cytometry

To confirm apoptosis in HMC-1 cells after exposure to
dasatinib (1 pM to 1 uM) or PKC412 (100 nM, 1 uM), a
Tunel (in situ Terminal transferase-mediated dUTP-fluores-
cence Nick End-Labeling) assay was performed using an In
Situ Cell Death Detection Kit Fluorescein (Roche Diagnostics,
Mannheim, Germany) as described previously. For flow
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cytometric determination of apoptosis and viability, com-
bined annexinV/propidium iodide staining was performed.
HMC-1 cells were exposed to dasatinib (HMC-1.1: 3 nM;
HMC-1.2: 300 nM), PKC412 (300 nM for both HMC-1
subclones), or a combination of drugs at 37°C for 24 hours.
The cells then were incubated with annexinV-fluorescein
isothiocyanate (FITC) (Alexis Biochemicals, San Diego,
CA, USA) in binding-buffer containing HEPES (10 mM, pH
7.4), NaCl (140 mM), and CaCl: (2.5 mM). Thereafter, pro-
pidium iodide (1 pg/ml) was added. Cells were then
washed and analyzed by flow cytometry on a FACScan
(Becton Dickinson).

Evaluation of expression of activation-linked surface
antigens on HMC-1 cells

Expression of cell surface antigens on HMC-1 cells (both
subclones) was determined by flow cytometry after expo-
sure to control medium or TK inhibitors (dasatinib, 1 pM -
5 uM; PKC412, 1 uM) at 37°C for 24 hours. After incuba-
tion with drugs, cells were washed and subjected to flow
cytometry using antibodies against various MC-related
(SM-related) antigens,®* including CD2, CD13, CD63,
CD87, CD117, and CD164. Flow cytometry was per-
formed on a FACScan (Becton Dickinson) as previously
described. ¥4

Statistical analysis

To determine the significance of differences between
proliferation rates, apoptosis, and surface expression-levels
after exposure of HMC-1 cells to inhibitors, the Student’s t
test for dependent samples was applied. Results were con-
sidered statistically significant when p was <0.03.

Results

Effects of TK inhibitors on growth and cluster
formation of Ba/F3 cells expressing KIT D816V

In line with previous observations® dasatinib decreased
the ligand-independent phosphorylation of KIT-D816V in
Ton Kit.D816V.27 cells as well as the SCF-induced phos-
phorylation of wt KIT in TonXKit.wt cells (Figure 1A).
Dasatinib was also found to inhibit ligand-independent
(Ton.Kit.D816V.27) and SCEF-dependent (Ton.Kit.wt)
growth and viability of Ba/F3 cells (Figure 1B). In control
experiments, dasatinib did not inhibit growth of TonKit
cells in the absence of doxycycline. We have previously
shown that KIT-D186V induces cluster formation in Ba/F3
cells.” In the present study, we found that dasatinib, and to
a lesser degree AMN107, inhibit KIT-D816V-dependent
cluster-formation in Ba/F3 cells (Figure 1C).

Effects of TK inhibitors on growth and survival of
neoplastic mast cells

Confirming previous studies,®** dasatinib, PKC412,
and AMN107 were found to inhibit the growth of HMC-
1.1 cells and HMC-1.2 cells in a dose-dependent manner.
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Figure 1. Effects of dasatinib on KIT TK activity, proliferation and
cluster formation of Ba/F3 cells expressing wt KIT or KIT D816V.
A, KIT-phosphorylation in doxycycline-exposed Ton.Kit.wt cells (left
panel) and Ton.Kit.D816V.27 cells (right panel) after incubation in
control medium (“0”) or dasatinib (10°-10° nM) for 4 hours. Prior
to drug exposure, cells were kept in control medium (control), or
in doxycycline for 24 hours to induce expression of KIT. In case of
Ton.Kit.wt, cells were also exposed to SCF (100 ng/mL, 4 hours)
to induce KIT phosphorylation (p-KIT). Immunoprecipitation was
conducted using the anti-KIT monoclonal antibody 1C1. Western
blotting was performed using the anti-phospho-tyr-mAb 4G10 for
p-KIT detection and anti-KIT monoclonal antibody 1C1 for detec-
tion of total KIT protein (KIT). B, Effects of dasatinib on growth of
Ton.Kit cells. Left panel: Ton.Kit.wt cells were either maintained in
interleukin (IL)-3-containing medium before and during incubation
with dasatinib (circles ®-®) or were preincubated with doxycycline
(1 pg/mL) in the presence of IL-3 for 24 hours, and were then
incubated with various concentrations of dasatinib in medium
containing doxycycline and SCF (100 ng/mL) without IL-3 for 48
hours at 37°C (squares m-m). After incubation, cells were harvest-
ed and subjected to *H-thymidine uptake experiments. Results are
expressed as percent of control and represent the mean + S.D. of
three independent experiments. Right panel: Ton.Kit.D816V cells
were incubated in control medium (+IL-3) and various concentra-
tions of dasatinib (as indicated) in the absence (circles ®-®) or
presence (squares m-m) of doxycycline (1 ug/mL) for 48 hours
(37°C). Thereafter, cell viability was determined by the trypan
blue exclusion test. Results are expressed as percent of viable
cells (calculated from the percentage of trypan blue positive cells)
compared to control (without dasatinib = 100%) and represent
the mean % S.D. of three independent experiments. C, Effects of
dasatinib (left panel) and AMN107 (right panel) on KIT-D816V-
induced cluster formation in Ton.Kit.D816V.27 cells. Cells were
incubated without doxycycline (Co) or in doxycycline (1 ug/mL) in
the absence or presence of various concentrations of dasatinib or
AMN107 as indicated for 24 hours. After incubation, the numbers
of clusters were counted under an inverted microscope. Results
are expressed as percentage of cluster formation compared to
cells kept in control medium (Co) and doxycycline (=100%) and
represent the mean + S.D. of three independent experiments.
Asterisk indicates p<0.05.

Table 1 shows a summary of respective ICs values. In a
next step, we confirmed anti-proliferative drug effects
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Figure 2. Dasatinib induces apoptosis in HMC-1 cells. HMC-1.2
cells were cultured in the absence (Co) or presence of various con-
centrations of dasatinib as indicated for 24 hours. Thereafter, the
percentages of apoptotic cells were quantified by light microscopy.
Results represent the mean * S.D. of three independent experi-
ments. Asterisk indicates p<0.05.

Table 1. Effects of targeted drugs (ICgo) on *H-thymidine uptake in
HMC-1 cells and primary neoplastic mast cells.

HMC-1.1 HMC-1.2 ISM ASM ~ SSM  MCL  Normal BM
Dasatinib ~ 1#0.5  300+3 550 880 2000 300 >10,000 nM
nM M oMM nM nM
Imatinib 147 33446+ 9730 9110 n.t nt. >10,000 nM
nM  15380nM nM nM
PKC412  198+28 191+33 1240 370 165 810 >10,000 nM
nM M oMM nM nM
AMN107 10£7 2363+ 7050 3560 n.t nt. >10,000 nM
nM 2440 nM nM M
2CdA 28467 1242 nt 6ng/mL nt n.t. n.t.
ng/mL  ng/mL

ISM: indolent systemic mastocytosis; ASM, aggressive systemic mastocytosis; SSM,
smouldering systemic mastocytosis; MCL, mast cell leukemia; BM, bone marrow;
n.t., not tested. Mast cells were enriched by Ficoll gradient centrifugation. In the
patient with MCL, the ium’ly of MC amounted to 75%. In the other patients, the
percentage of MC was below 5%. Cell viability was >90% in each case.

using primary neoplastic cells obtained from four patients
with SM. In all cases tested, dasatinib and PKC412 were
found to inhibit growth of neoplastic cells in a dose-
dependent manner. Respective ICs values are shown in
Table 1. To explore the mechanism underlying growth
inhibition, we analyzed morphological and biochemical
signs of apoptosis in HMC-1 cells after drug exposure. As
assessed by light microscopy, dasatinib was found to
induce apoptosis in HMC-1.1 cells at doses (1ot shown) and
HMC-1.2 cells at doses (Figure 2) in a dose-dependent
manner. The apoptosis-inducing effect of dasatinib on
HMC-1 cells was confirmed by electron microscopy and in
a Tunel assay (supplemental Figure S1). Confirming previous
data,® imatinib (1 pM) induced apoptosis only in HMC-1.1
cells, but not in HMC-1.2 cells (not shown).

100 1
S 80 { *
@S 6
8= T
= 40 1
=
20 -
Control  1uM  5uM 1 puM
Dasatinib  PKC412

Figure 3. Effects of dasatinib on expression of CD63 on HMC-1
cells. HMC-1.2 cells were exposed to control medium or various
concentrations of dasatinib (as indicated), or PKC412 (1 uM) at
37°C for 24 hours. After incubation, cells were examined for
expression of CD63 antigen by flow cytometry using the PE-con-
jugated mAb CLB-gran12. The figure shows the mean fluores-
cence intensity (MFI) levels as percent of control (=100%). Results
represent the meanS.D. of 3 independent experiments. Asterisk:
p<0.05.

Dasatinib down-regulates expression of
activation-linked cell surface antigens on HMIC-1 cells
Several cell surface antigens such as CD63 are overex-
pressed on neoplastic MC in SM.** We therefore asked
whether dasatinib can affect expression of these antigens
on HMC-1 cells. Incubation with dasatinib resulted in a sig-
nificant decrease in expression of CD13, CD63, CD87, and
CD117 in HMC-1.1 cells, and in a significant decrease in
expression of CD2, CD63, and CD87 in HMC-1.2 cells
(Supplemental Figure S2). As exemplified for CD63 in Figure
3, the effects of dasatinib on surface expression of activa-
tion antigens on HMC-1 cells were dose-dependent.

Dasatinib co-operates with other TK inhibitors and with
2CdA in producing growth inhibition in HMC-1 cells

As assessed by °H-thymidine incorporation, dasatinib
was found to co-operate with PKC412 and with other tar-
geted drugs in producing growth inhibition in HMC-1 cells
(Table 2, Figure 4). In HMC-1.1 cells, all drug interactions
tested were found to be synergistic in nature (Figure 4A).
By contrast, in HMC-1.2 cells, only the combinations dasa-
tinib and PKC412 and dasatinib and 2CJA produced clear
synergistic effects (Figure 4B), whereas the other drug com-
binations showed additive rather than synergistic effects
on the cells (Table 2). Finally, we were able to show that
the two TK inhibitors (dasatinib and PKC412) synergize in
producing growth inhibition in primary neoplastic MC
(Figure 4C).

Co-operative inhibitory effects of dasatinib and PKC412
on KIT TK activity in neoplastic MC

To define the mechanism of synergism and to show co-
operative effects of dasatinib and PKC412 on KIT TK activ-
ity, western blot experiments were performed using HMC-
1 cells. In a first step, single drugs were applied at various
concentrations to define drug concentrations producing

haematologica/the hematology journal | 2007; 92(11) | 1455 |
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Table 2. Evaluation of synergistic drug effects on growth of HMC-
1 cells.

Dasatinib Imatinib  PKC412  AMN107 2CdA
Dasatinib + + + +
Imatinib + n.t. + n.t.
PKC412 + + + +
AMN107 n.t. + + +
2CdA n.t. nt. + +

Cooperative drug effects on growth of HMC-1.2 cells (upper panels; bold) and
HMC-1.1 cells (lower panels; normal) were determined by measuring uptake of
3H-thymidine. Coopemfwe drug effects were calculated by calcusyn software.
Drug interactions: +, synergistic effects; %, additive effects; —, antagonistic effects.
n.t., not tested.

suboptimal effects on KIT TK activity. Figures 5A and 5B
show the dose-dependent effects of dasatinib on KIT phos-
phorylation in HMC-1.1 cells and HMC-1.2 cells, respec-
tively. In a next step, suboptimal doses of dasatinib and
PKC412 were applied together (combination) or as single
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bated with various concentrations of
dasatinib (squares m-m) or PKC412 (cir-
cles @-@) or with combinations of both
drugs (triangles A-A). B, Lower panel:
HMC-1.2 cells were incubated with var-
ious concentrations of dasatinib
(squares m-m) or 2CdA (circles ®@-®) or
with combinations of both drugs (trian-
gles A-A). C, Primary neoplastic mast
cells obtained from the bone marrow
of a patient with smoldering SM (upper
panel; percentage of mast cells <5%,
but most cell lineages in this patient
displayed KIT D816V) and mast cells
enriched from the bone marrow of a
patient with mast cell leukemia (lower
panel; percentage of mast cells 75%)
were incubated with various concentra-
tions of dasatinib (circles ®-®) or
PKC412 (squares m-m) or combinations
of both drugs (triangles A-A). In each
case, results represent the mean + S.D.
of triplicate sums of one typical experi-
ment.

8§ 9 10 11 12

drug on HMC-1.1 cells (Figure 5C) and HMC-1.2 cells
(Figure 5D). As can be seen, these combinations produced
a complete knock-down of KIT TK activity in both cell
lines, suggesting that these drugs do co-operate to inhibit
KIT activation in neoplastic MC.

Dasatinib co-operates with PKC412 in producing
apoptosis in HMC-1 cells

To further examine the mechanism of drug interactions,
we examined cooperative effects of TK inhibitors on sur-
vival (apoptosis) in HMC-1 cells. In these experiments,
dasatinib and PKC412 were found to synergize with each
other in producing apoptosis in HMC-1.1 cells (Figure 6A)
and HMC-1.2 cells (Figure 6B). Moreover, we were also
able to show that dasatinib and imatinib as well as dasa-
tinib and AMN107 co-operate in producing apoptosis in
HMC-1.1 cells (Figures 6C and 6D). Finally, we were able
to confirm co-operative apoptosis-inducing effects of TK
inhibitors (dasatinib and PKC412) by flow cytometry (sup-
plemental Figure S3).
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Discussion

Factor-independent autonomous growth and accumula-
tion of MC are characteristic features common to all dis-
ease variants of SM.*"* The somatic KIT mutation D816V
is an SM-related defect considered to be responsible for
constitutive activation of KIT and autonomous growth of
cells.”™” Therefore attempts have been made to identify
pharmacological compounds that inhibit KIT-D816V, and
thus growth of neoplastic MC.*" In the present study, we
show that a novel TK-targeting drug, dasatinib, inhibits
several KIT D816V-dependent functions in neoplastic MC,
including growth, survival, and expression of activation-
linked antigens. In addition, we show that dasatinib syner-
gizes with PKC412 as well as with other drugs in produc-
ing growth-inhibition in neoplastic MC.

Dasatinib is a novel multitargeted kinase inhibitor that
exerts profound effects on several TK including BCR/ABL
and KIT, and also displays considerable activity against sev-
eral src kinases.** Based on its TK-targeting activity, dasa-
tinib has recently been considered as an antineoplastic
agent that may inhibit the growth of neoplastic cells in var-
ious myeloid neoplasms.”*In the present study, we show
that dasatinib inhibits the TK activity of KIT-D816V and
the in vitro growth of MC harboring this KIT mutation, con-
firming the data of Shah ez al. and Schittenhelm et al*** In
addition, we found that dasatinib inhibits KIT-D816V-
dependent cluster formation in Ba/F3 cells as well as the
expression of CD2 and CD63 in HMC-1.2 cells. Thus,
dasatinib inhibits several KIT-dependent functions in neo-
plastic MC. With regard to growth inhibition, an interest-
ing observation was that the effect of dasatinib on wt KIT
or KIT G560V was more pronounced than that seen with
KIT D816V. Similar observations have been made with
AMN107 and imatinib.® However, whereas the D816V
KIT mutation confers almost complete resistance to ima-
tinib, the other two TK inhibitors (AMN107, dasatinib)
retain considerable activity against KIT D816V, with lower
ICso values obtained for dasatinib compared to AMN107 on
a molar basis. This may be explained by different drug-tar-
get interactions or by the fact that dasatinib not only
inhibits KIT TK activity but also several other potential tar-
gets, such as src kinases. An interesting observation was
that the growth-inhibitory effects of dasatinib on HMC-1.2
cells occur at pharmacological concentrations (that can be
reached in patients), confirming previous data.**** In most
instances, TK inhibitors act on their target cells by blocking
TK-dependent cell growth with consequent apoptosis.*®*
Consistent with this, in the case of dasatinib, we were able
to show that growth inhibition of HMC-1 cells is associat-
ed with loss of KIT TK activity and with signs of apopto-
sis, evidenced by light- and electron microscopy as well as
in a Tunel assay. As expected, dasatinib showed more
potent apoptosis-inducing effects on HMC-1.1 cells than
on HMC-1.2 cells, in line with recently published results.*

A key feature and major WHO criterion in SM is cluster
formation of MC in visceral organs.** We have recently
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Figure 5. Co-operative effects of dasatinib and PKC412 on KIT
phosphorylation in HMC-1 cells. Tyrosine phosphorylation of KIT in
HMC-1.1 cells (A) and HMC-1.2 cells (B) after incubation in control
medium or various concentrations of dasatinib for 4 hours. C,D,
KiT-phosphorylation in HMC-1.1 cells (C) and HMC-1.2 cells (D)
cells after incubation in control medium, PKC412 as a single
agent (300 nM for both HMC-1 subclones), dasatinib as a single
agent (HMC-1.1: 3 nM; HMC-1.2: 300 nM) or a combination of
both drugs for 4 hours. Immunoprecipitation was conducted using
the anti-KIT monoclonal antibody 1C1. Western blotting was per-
formed using the anti-phospho-tyr-monoclonal antibody 4G10 for
p-KIT detection and anti-KIT monoclonal antibody 1C1 for detec-
tion of total KIT protein (KIT).
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Figure 6. Co-operative effects of dasatinib and PKC412 in induc-
ing apoptosis in HMC-1 cells. A,B, HMC-1.1 (A) and HMC-1.2 cells
(B) were incubated with dasatinib (HMC-1.1: 3 nM; HMC-1.2: 300
nM) or PKC412 (both HMC-1 subclones: 300 nM) or with a combi-
nation of both drugs for 24 hours. Thereafter, the percentages of
apoptotic cells were quantified by light microscopy. Results repre-
sent the mean + SD of three independent experiments. B,C. HMC-
1.2 cells were incubated with dasatinib (3 nM), imatinib (30 nM)
(C) or AMN107 (30 nM) (D) as single agents or as drug combina-
tions (as indicated) for 24h. Thereafter, the percentages of apop-
totic cells were quantified by light microscopy. Results represent
the mean % S.D. of three independent experiments.

shown that KIT D816V induces early MC differentiation
and cluster formation in Ba/F3 cells.*® Thus, MC cluster for-
mation may be an initial and most important step in the
pathogenesis of SM. In the present study, we were able to
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show that dasatinib and AMN107 inhibit KIT D816V-
induced cluster formation in Ba/F3 cells, which provides
further evidence for the specific effects of these drugs.

Several cell surface membrane antigens, such as CD2 or
CD63 are typically overexpressed on neoplastic MC when
compared to normal MC.*#In several cases, such as CD63,
expression may be KIT-D816V-dependent.* The results of
our study show that dasatinib down-regulates expression
of CD2, CD63, and CD87 in HMC-1.2 cells (exhibiting KIT
D816V), whereas no significant inhibition of expression of
CD13, KIT, or CD164 was found. By contrast, in HMC-1.1
cells, dasatinib was also found to down-regulate expression
of CD13 and KIT. One explanation for this discrepancy
could be the different sensitivity (ICsy) of the two HMC-1
subclones to dasatinib. An alternative possibility is that
CD13 and KIT in HMC-1.2 cells, are in general, not suscep-
tible to drug-induced modulation. This hypothesis is sup-
ported by the observation that CD13 and KIT were also
expressed at the same levels after incubation with PKC412,
although the ICso values for this compound are identical in
the two HMC-1 subclones.”

Recent data suggest that treatment of myeloid neo-
plasms with a TK inhibitor as a single agent may not be
sufficient to control the disease for a prolonged period.
This has been documented for imatinib and advanced
chronic myeloid leukemia and may also apply to patients
with ASM or MCL.* Thus, in many of these patients, drug
resistance is found. A number of pharmacological strate-
gies may be envisaged to overcome resistance. One reason-
able approach is to use combinations of drugs.

In a previous study, we found that PKC412, AMN107,
and 2CdA exhibit potent co-operative effects on HMC-1
cells.® However, whereas synergistic effects were seen
with most drug combinations in HMC-1.1 cells lacking
KIT D816V, no synergistic (but merely additive) drug
interactions were seen in HMC-1.2 cells harboring KIT
D816V. We were, therefore, interested to determine
whether dasatinib would produce synergistic effects on
these cells when combined with other potent inhibitors of

KIT D816V. Indeed, our results show that dasatinib and
PKC412 as well as dasatinib and 2CdA, a drug used for
the treatment of ASM and MCL® inhibit growth of
HMC-1.2 cells in a synergistic manner. To the best of our
knowledge, this is the first combination of TK inhibitors
producing a synergistic effect on growth of neoplastic MC
carrying KIT D816V. In addition, dasatinib and PKC412
were found to synergize in producing apoptosis in HMC-
1.2 cells. These co-operative drug effects are of interest as
both agents act on the same target (KIT D816V). Based on
our data, dasatinib and PKC412 may indeed co-operate
substantially in down-regulating KIT D816V phosphory-
lation and thus activation in neoplastic MC. Whether
other mechanisms and drug targets also play a role in the
synergistic effects on neoplastic MC observed with dasa-
tinib and PKC412 remains unknown.

In summary, we show that dasatinib and PKC412 are
most promising targeted drugs for the treatment of ASM
and MCL. Based on our data, it seems reasonable to con-
sider the use of combinations of these drugs or combina-
tions between these drugs and 2CdA to improve therapy in
patients with ASM/MCL.
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