Letters to the Editor

Down-regulation of WT1/+17AA gene expression
using RNAi and modulating leukemia cell
chemotherapy resistance

We have shown that inhibition of WT1/+17AA
protein expression following transfection with a
vector-based small interfering RNA expression
construct in K562 cell lines, leads to a decrease in
MDR1 and P-glycoprotein levels, accumulation of
Rh123, and enhancement of the doxorubicin cyto-
toxicity. Our findings suggest that WT1/+17AA
exerts its oncogenic function by modulating mul-
tidrug resistance in leukemia cells.
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The Wilms’ tumor gene (WT1) is now thought to be
involved in the pathogenesis of leukemia as well as a
wide variety of solid cancers. The WT1 gene is alterna-
tively spliced at two main regions, exon 5 (17 amino
acids: 17AA) and the last three codons of exon 9 (KTS),
yielding four isoforms: (+17AA/+KTS), (+17AA/-KTS), (-
17AA/+KTS), and (-17AA/-KTS)." All four WT1 isoforms
are expressed in primary leukemia cells and each is con-
sidered to have a different function in interfering with
signaling in cell differentiation, apoptotic and drug resist-
ance pathways. However, the functions of each WT1 iso-
form in leukemia cells remains controversial. Recently,
the co-expression of WI1 and the multidrug resistance
related gene (MDR1) has been shown in vitro and in vivo.’
The promoter region of MDR1 has been carefully
mapped and an EGR1/SP1/WTT1 site at positions -69 to -
41 has been identified® It is clear that the
SP1/EGR1/WTT1 site is a key regulatory region for MDR1
transcription, suggesting that WT1 is a potential modula-
tor for leukemia cells’ multidrug resistance.

In this study, a vector-based shRNA expression system
was used (Figure 1A). We selected the target region in
exon 5 of WT'1/+17AA cDNA and designed WT1/+17AA
ShRNA and nonspecific control ShRNA oligonucleotides
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according to Tushul’s principles. Recombinant plasmids
were transfected with the LIPOFECTAMINETM2000
transfection reagent into two paired erythroleukemia cell
lines: K562 and K562/A02 (sensitive and resistant to dox-
orubicin, respectively). WT1/+17AA, WT1/-17AA,
MDR1 and B2-MG genes were determined by quantita-
tive real-time PCR using the SYBR green I dye. The
primer pairs were designed using the Primer Premier soft-
ware (version 5.0): WT1/+17AA forward primer 5'-
AAAGGGAGTTGCTGCTGG-3, reverse primer 5’-TGC-
CGACCGTACAAGAGT-3’(202bp for the product)
WT1/-17AA forward primer 5-CACCTTAAAGGGC-
CACAG-3’, reverse primer 5-TGCCGACCGTACAA-
GAGT-3'(157 bp for the product) MDR1 forward
primer5’-CCCATCATTGCAATAGCA-3’, reverse primer
5-GTTCAAACTTCTGCTCCTGA-3, (157 bp for the
product) B2-MG forward primer 5-CTCGCGC-
TACTCTCTCTTTC-8’ reverse primer 5-CATGTCTC-
GATCCCACTTAAC-3’, (330 bp for product).

The products of WT1/+17AA, WT1/-17AA, MDR1
and B2-MG were ligated into pUCm-T vectors and seri-
ally 10-fold diluted in water with 1 to 10° copies to be a
positive template. The normalized WT1 isoform expres-
sion levels (WT1/+17AAN and WT1/-17AAN) and the
MDRT1 expression level (MDR1N) were represented as a
ratio of the WT1 isoform’s copy number and MDR1
products to the control B2-MG product, determined by
real-time PCR for each RNA sample. It has been sug-
gested that the protein expression of WT1/+17AA and
WT1/-17 AA was measured using western blotting. The
expression of P-gp was detected by flow cytometric
analysis using fluorescein isothiocyanate-conjugated
anti-P-gp.* P-gp function was examined for uptake,
efflux and accumulation of Rh123. Doxorubicin cyto-
toxicity was determined by tetrazolium (MTT) assay.
Normalized WT1 isoform WT1/+17AAN expression
level in K562 and K562/A02 cells reduced rapidly from
182.45+42.32 to 92.77+27.38 (p<0.005, n=9) and from
243.77+56.93 t0101.81+37.51 (p<0.001, n=9) respec-
tively. The WT1/-17AAN expression remained relative-
ly constant throughout (p>0.05, n=9). The ratios of

Figure 1. Down-regulation of WT1 exon 5 tran-
script expression level following treatment with
WT1/+17AA ShRNA. A. Schematic presentation
of U6 promoter-based ShRNA expression vector.
Sequences encoding ShRNA with 19-nt of homol-
ogy to the target gene are synthesized as 65 bp
double-stranded DNA oligonucleotides and
inserted downstream of U6 promoter. B. WT1
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antibody and horseradish peroxidase-conjugated
goat anti-mouse secondary antibody. When com-
pared with K562-con and K562/A02-con, there
was significant reduction of WT1/+17AA isoform
production in both K562-+17AAR (p<0.005) and
K562/A02-+17AAR (p<0.001), while there was
no significant change in WT1/-17AA expression
(p>0.05). There was no difference in actin pro-
duction among the these groups (p=0.453).
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Figure 2. Representative flow cytometric histograms show the effect
of WT1/+17AA ShRNA on the levels of cell surface P-glycoprotein
expression and P-glycoprotein mediated rhodamine 123 efflux in
both K562 and K562/A02 cells. A. P-glycoprotein is present at very
high levels in drug-resistance K562/A02-con cells (53.92) when com-
pared with parental drug-sensitive K562-con cells (4.78) (dark lines).
The expression rates of P-gp in K562/A02-+17AAR cells (21.47, blue
line) decreased obviously compared to K562/A02-con cells, whereas
K562-+17AAR cells (4.54, red line) showed similar results with the
K562-con cells. B. The uptake processes in K562 cells were unaffect-
ed by WT1/+17AA ShRNA transfection, the K562/+17AAR cells
(dashed line) displayed uptake kinetics similar to that of the parental
K562-con cells (dotted line), whereas Rh123 uptake was dramatical-
ly altered upon transfection with WT1/+17AA ShRNA in K562/A02
cells, the K562/A02-+17AAR cells (solid line) displayed rates of
Rh123 accumulation between those of K562-con and K562/A02-con
(heavy solid line).

WT1/+17AA and WT1/-17AA in paired cell lines were
rapidly reduced, dropping from 1.71+0.37 and
1.90+0.41 to 0.77+0.21 and 0.82+0.30 (Figure 1B).
Compared with control cells, the WT1/+17AA isoform
protein expression significantly decreased in
WT1/+17AA ShRNA transfected K562-+17AAR
(p<0.005, n=6) and K562/A02-+17AAR (p<0.001, n=6).
There was no change in the WT'1/-17AA expression in
these two cell lines (p>0.05) (Figure 1C). The MDRI1
gene expressions were quantified at 8.72+2.93 and
272.54+42.73 in the control ShRNA transfected K562-
con and K562/A02-con cells by real-time RT-PCR. In
K562-+17AAR and K562/A02-+17AAR cell lines,
MDR1 gene expressions decreased to 7.43+2.23 and
105.73+£27.73 respectively. The MDR1 transcript
expression was markedly down-regulated in the mul-
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tidrug resistant K562/A02 cell line (p=0.017) following
WT1/+17AA ShRNA transfection. The fluorescent
intensity of P-gp was 53.13+7.56 in K562/A02-con cells
and 4.39+2.32 in K562-con cells (p<0.001). The P-gp
expression in K562/A02 cells clearly decreased, obvi-
ously, falling to 19.12+4.21, after transfection with
WT1/+17AA ShRNA (p<0.005) (Figure 2A). However,
the MDR1 gene and P-gp expression levels in K562-
+17AAR cells showed qualitatively similar results with
those in the K562-con cells (p>0.05). Similarly, Rh123
uptake was dramatically altered after transfection with
WT1/+17AA ShRNA in K562/A02 cells. The K562/A02-
+17AAR cells displayed rates of Rh123 accumulation in
between those of K562-con and K562/A02-con, while
the K562/+17AAR cells displayed uptake kinetics simi-
lar to that of the parental K562-con cells (Figure 2B).
The K562-+17AAR cells also displayed doxorubicin
dose-response similar to K562-con parental cells, with
an ICso values of 0.79 and 0.94 uM. After transfection of
WT1/+17AA ShRNA, the dose response curve of the
K562/A02+17AA cells shifted significantly to the left,
reducing the ICso value from 78.67uM to 22.59 uM.
Thus, transfection of WT1/+17AA ShRNA led to a sub-
stantial reversal of doxorubicin resistance in K562/A02
cells but had no effect on the doxorubicin dose response
profile of the parental K562 cells.

It has been suggested that the presence of the exon 5
insert and the maintenance of the correct balance
between WT1/+17AA and WT1/-17AA isoforms are
essential for the regulation of critical cellular functions
including proliferation, differentiation, and resistance to
chemotherapeutic drugs.>” The changes in exon 5 splic-
ing are also believed to affect the regulation of down-
stream gene expression profile in the WT1 pathway.® The
MDRI1 gene transcription is regulated by the combined
actions of several transcription factors that bind to its
promoter region.*" We suggest that ShRNA, when direct-
ed to WT1 exon 5, might inhibit WT1/+17AA isoform
expression and strongly influence expression and func-
tion of the MDRI1 gene in drug-resistant leukemia cells.
To our knowledge, this is the first report of the relation-
ship between the WT1/+17AA isoform and multidrug
resistance in leukemia cells. These results provide novel
insights into the role of WT1 exon 5 splicing transcript in
the regulation of leukemia cells’ survival signaling path-
ways. This suggests that a designed RNAIi targeted WT1
isoform could be a very effective strategy for MDR1 reg-
ulation.
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