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Background and Objectives

The precise relationship between myelodysplastic syndrome (MDS) and acute myeloid
leukemia (AML) is unclear and the role of molecular mutations in leukemic transfor-
mation in MDS is controversial. The aim of this study was to clarify the relationship
between AML and MDS by comparing the frequency of molecular mutations in the two
conditions.

Design and Methods

We compared the frequency of FLT3-length mutations (FLT3-LM), FLT3-TKD, MLL-par-
tial tandem duplications (MLL-PTD), NRAS, and KITD816 in 381 patients with MDS
refractory anemia with excess blasts [RAEB] n=49; with ringed sideroblasts [RARS]
n=310; chronic monomyelocytic leukemia [CMML] n=22) and in 4130 patients with
AML (de novo: n=3139; secondary AML [s-AML] following MDS: n=397; therapy-relat-
ed [t-AML]: n=233; relapsed: n=361). 

Results

All mutations were more frequent in s-AML than in MDS and all but the FLT3-TKD were
more frequent in RAEB than in RA/RARS. The higher incidences in s-AML were signif-
icant for FLT3-TKD (p=0.032), MLL-PTD (p=0.034), and FLT3-LM (RA/RARS: 0/45;
RAEB: 8/293; 2.7%; s-AML: 45/389; 11.6%; p<0.0001). The incidence of NRAS-
mutations increased from 17/272 (6.3%) in MDS to 41/343 in s-AML (12.0%) and
that of KITD816-mutations from 2/290 (0.7%) to 5/341 (1.5%) (p=n.s.). FLT3-LM-
acquisition occurred in 3/22 cases (13.6%) during MDS transformation; NRAS-acqui-
sition occurred in 1/24 (4.2%). FLT3-LM and MLL-PTD were more frequent in AML
relapse than in de novo AML or s-AML (p<0.0001). 

Interpretation and Conclusions

The increase of molecular mutations from low- to high-risk MDS, to s-AML, and to
relapsed AML emphasizes the value of these mutations as markers of progressing
disease. Finally, we found a low rate of 5q- in the molecularly mutated cases in MDS
which might explain the stability of this subtype.
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From clinical, cytomorphologic, cytogenetic, and
molecular aspects the myelodysplastic syn-
dromes (MDS) are heterogeneous diseases. If left

untreated, the survival of patients with MDS varies
between a few months and 20 years. The World
Health Organization (WHO) classification (based on
the French-American British [FAB] classification of
1982) subdivides MDS into eight subtypes according
to the percentages of bone marrow blasts, ringed
sideroblasts, and the number of dysplastic cell lineag-
es.1-4 Karyotype represents a strong prognostic param-
eter:5 5q-, -Y, and 20q- as sole abnormalities are asso-
ciated with a favorable prognosis. Complex aberrant
karyotype (defined by ≥3 chromosomal abnormalities)
and chromosome 7 abnormalities predict a poor prog-
nosis, whereas all other chromosome abnormalities
are associated with an intermediate prognosis. The
International Prognostic Scoring System (IPSS) catego-
rizes MDS patients into four risk groups based on
blast percentage, karyotype, and the number of cell
lines showing cytopenia.3,5 However, cytogenetic
abnormalities are observed in only 30-50% of de novo
MDS cases.6,7 Thus, molecular mutations may serve as
potential markers to extend the spectrum of diagnos-
tic and prognostic parameters in MDS. As MDS and
AML are conceived as end points of a stepwise
process of leukemogenesis in some patients, research
in MDS should concentrate as well on the analysis of
molecular mutations which occur frequently in
AML.8,9 

Mutations of the FLT3-gene, a member of the class-
III-receptor tyrosine kinase family, play a central role
in AML.10-14 The FLT3 length mutations (LM) (internal
tandem duplications or insertions) (20%-27%) are,
together with NPM1,15 the most frequent mutations in
AML. While FLT3-LM are prognostically unfavor-
able,16-18 NPM1 mutations are associated with a favor-
able outcome.15,19 Furthermore, small mutations in the
tyrosine kinase domain (TKD) of FLT3 (FLT3-TKD)
have been found in 5%-8% of all AML cases.11,12,20-22

Their prognostic impact in AML is not yet clarified.16,22

In MDS the FLT3-mutations are less frequent. LM
were found in 2%-3% (Horiike et al. n=58; Shih et al.
n=198),23,24 and TKD mutations in 3%, as shown by
Yamamoto et al. (to our knowledge the only analysis
of this marker in MDS; n=29).12

Mutations of the KIT-proto-oncogene are a further
example of class-III-receptor tyrosine kinase muta-
tions in AML. KITD816-mutations occur with a fre-
quency of 2% in unselected AML, are localized in the
intracellular protein tyrosine kinase domain,25,26 and
have an unfavorable prognostic impact in the sub-
group of AML with t(8;21)/AML1-ETO.27-29 In MDS,
the single study focused on this mutation reported a
frequency of 3/39 (6%) when combining all cytomor-
phologic subtypes in MDS.30  Mutations of the NRAS-
proto-oncogene are identified in 10-15% of cases of

AML. These mutations increase the activity of the
RAS-pathway and lead to cell proliferation and reduc-
tion of apoptosis.31-35 Their influence on prognosis in
AML seems dependent on cytogenetics and additional
molecular mutations.36 They show a favorable trend in
CBF-leukemias and normal karyotype AML lacking
FLT3-LM and partial tandem duplications of the MLL
gene (MLL-PTD). In MDS frequencies of NRAS muta-
tions were reported to be between 7% and 48% in
previous studies including series of up to 220
patients.37-42 MLL-PTD occur in 10% of AML with nor-
mal karyotype and are associated with a poor progno-
sis.43-46 

Here we performed a study on the incidence of
FLT3-LM, FLT3-TKD, MLL-PTD, NRAS- and
KITD816-mutations in different cytomorphologic sub-
types of MDS (n=381) and compared these data to
those for AML (n=4130) in order to gain a better
understanding of the leukemic transformation of
MDS. In addition, we analyzed the correlation of
these mutations with cytogenetics in MDS.

Design and Methods

Bone marrow samples – in many cases accompanied
by peripheral blood samples – from 381 consecutive
patients with MDS at diagnosis and from 4130
patients with AML (de novo AML at diagnosis: n=3139;
secondary AML [s-AML] at diagnosis: n=397; therapy-
related [t-AML] at diagnosis: n=233; and relapsed
AML: n=361) were included in the study. The patients’
clinical data and biological characteristics are shown in
Table 1. The cytomorphological classification was
made according to the FAB-classification, as the cohort
was analyzed in part before WHO-criteria were
defined in these patients.2,47 The patients with refracto-
ry anemia (RA) and refractory anemia with ringed
sideroblasts (RARS) were combined to form the
RA/RARS cohort. The cohort with refractory anemia
with excess blasts (RAEB) included patients with
RAEB-1 (≤10% of blasts) and with RAEB-2 (<20% of
blasts). The third MDS subgroup was represented by
the dysplastic subtype of chronic myelomonocytic
leukemia (CMML). Only patients with MDS at diag-
nosis were included. AML patients were subdivided
according to the history of disease: de novo AML, sec-
ondary AML (s-AML) following MDS, and therapy-
related AML (t-AML) in association with previous
chemotherapy or radiotherapy of a malignant disease.
Screening for FLT3-LM, FLT3-TKD, MLL-PTD, NRAS-
and KITD816-mutations was performed as described
before. All methods for mutation analysis have been
reported in detail. Briefly, screening for FLT3-LM was
performed by gel electrophresis17 and fragment analy-
sis20 in parallel; MLL-PTD were analyzed by quantita-
tive real-time polymerase chain reaction (PCR),48 and
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analysis for FLT3-TKD, NRAS- and KITD816-muta-
tions was performed using melting curve based Light
Cycler analysis and subsequent sequencing of the pos-
itive samples.29 In addition, chromosome banding
analyses and fluorescence in situ hybridization were
performed as previously described.49

The cytogenetic subgroups were categorized as fol-
lows: normal karyotype, reciprocal translocations,
complex aberrant karyotype (≥3 chromosomal anom-
alies), deletion of 5q (5q-), chromosome 7 abnormali-
ties, numerical gain of 8 (+8), deletion of 20q (20q-),
loss of Y (-Y), inv(3)/t(3;3)(q21;q26), and other aberra-
tions.

Results

Distribution of molecular mutations in low grade
MDS, RAEB, and s-AML

First, the distribution of the mutations in the total
cohorts of MDS and AML was analyzed. The com-
plete results of the molecular analyses within the dif-
ferent subgroups are shown in Table 2. In MDS NRAS-
mutations were detected in 17/272 patients (6.3%)
and, from among the analyzed mutations, was the one
with the highest frequency in MDS, followed by the
MLL-PTD (10/368; 2.7%) and by the FLT3-LM (8/367;
2.2%). In contrast, in the total AML cohort FLT3-LM
was the most frequent mutation of all those analyzed

(783/3718; 21.1%), followed by the NRAS mutation
(290/2856; 10.2%), and FLT3-TKD (144/3052; 4.7%). 

Considering the different cytormophologic subtypes
of MDS, in RA/RARS a FLT3-TKD-mutation was
observed in 1 of 28 cases whereas FLT3-LM, NRAS,
and KITD816 were not observed at all. In RAEB NRAS
mutations represented the most frequent molecular
marker (15/223; 6.7%), followed by the FLT3-LM
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Table 1. Clinical data and cytomorphologic subtypes of 381
patients with MDS at diagnosis and of 4130 patients with AML at
diagnosis or relapse. 

MDS
Sex 240 males, 141 females
Age 18.1-97.8 years (median 68.1)
RA/RARS 49
RAEB 310
CMML 22
MDS total 381

AML
Sex 2260 males, 1870 females
Age 16.2-96.8 years (median 61.2)
de novo AML 3139
s-AML 397
t-AML 233
Relapsed AML 361
AML total

4130
Total MDS + AML 4511

Table 2. Mutated cases in the different cytomorphologic subtypes of MDS and in the cohorts with AML.  

Mutation RA/RARS RAEB CMML Total MDS de novo AML s-AML t-AML Relapsed AML Total AML

FLT3-LM
N. mutated 0 8 0 8 629 45 26 83 783
Total number 45 293 29 367 2813 389 216 300 3718
% 0.0 2.7 0.0 2.2 22.4 11.6 12.0 27.7 21.1

(<0.0001) (<0.0001) (0.034) (<0.0001) (<0.0001) (0.004) (<0.0001)

FLT3-TKD
N. mutated 1 0 0 1 130 6 3 5 144
Total number 28 209 19 256 2357 322 167 206 3052
% 3.6 0.0 0.0 0.4 5.5 1.9 1.8 2.4 4.7

(1.000) (<0.0001) (1.000) (0.030) (0.032) (0.064) (0.096)

MLL-PTD
N. mutated 1 8 1 10 176 28 7 25 85
Total number 46 292 30 368 2735 378 213 303 1197
% 2.2 2.7 3.3 2.7 6.0 7.4 3.3 8.3 7.1

(0.517) (0.032) (0.627) (0.017) (0.034) (0.166) (0.036)

NRAS
N. mutated 0 15 2 17 209 41 21 19 290
Total number 29 223 20 272 2128 343 174 211 2856
% 0.0 6.7 10.0 6.3 9.8 12.0 12.1 9.0 10.2

(0.128) (0.108) (1.000) (1.000) (0.177) (0.294) (0.810)

KITD816
N. mutated 0 2 0 2 39 5 2 3 49
Total number 32 237 21 290 2136 341 172 213 2862
% 0.0 0.8 0.0 0.7 1.8 1.5 1.2 1.4 1.7

(1.000) (0.431) (1.000) (0.227) (1.000) (1.000) (1.000)

The p-values (in brackets) indicate whether the frequencies of the molecular mutations differ significantly from those in the other MDS or AML stages.



(8/293; 2.7%) and MLL-PTD (8/292; 2.7%). 
Subsequently the distribution of the respective

markers in the different hematologic subgroups was
analyzed. The FLT3-TKD were heterogeneously dis-
tributed, most probably because of the very low fre-
quency of this mutation overall. Statistically signifi-
cant differences in distribution were found for FLT3-
LM (p<0.0001) and MLL-PTD (p=0.004), whereas the
distribution of the NRAS- and KITD816-mutations did
not vary significantly. The incidence of the markers in
early MDS categories (RA/RARS) was compared with
that in the advanced stages (RAEB) and in s-AML. The
incidence of FLT3-LM, MLL-PTD, NRAS-, and
KITD816-mutations increased from RA/RARS to
RAEB and to s-AML. The differences were statistical-
ly significant for FLT3-LM (p<0.0001), FLT3-TKD
mutations (p<0.0001), and MLL-PTD (p=0.032). The
sharpest increase was observed for FLT3-LM which
were found in no case with RA/RARS (0/45; 0.0%), in
8/293 (2.7%) cases of RAEB, and in 45/389 (11.6%)
cases of s-AML (p<0.0001) (Figure 1).

Molecular mutations in CMML
In our small series of CMML with dysplastic sub-

type NRAS-mutations were found in 2/20 (10%) rates,
which was similar to the frequency in AML. The other
mutations analyzed were rarely (FLT3-TKD) or never
(FLT3-LM and KITD816) observed in CMML (Table 2). 

Incidence of molecular mutations with respect to
history of AML 

FLT3-LM were significantly more frequent in de novo
AML and in AML at relapse than in s-AML or t-AML
(p<0.0001). FLT3-TKD were significantly more fre-
quent in de novo AML (p=0.030) and in s-AML
(p=0.032) than in t-AML or in relapsed AML. The fre-
quencies of MLL-PTD, NRAS-, and KITD816-muta-
tions did not differ significantly between the different
AML cohorts. These results confirmed those of two
previous studies (Table 2).17,36 

Concomitant molecular mutations in MDS
The concomitant presence of different molecular

mutations was observed in only 2/381 MDS patients
(0.5%): one case with RAEB showed FLT3-LM and
MLL-PTD, whereas another RAEB patient had FLT3-
LM, MLL-PTD, and NRAS-mutations. 

Acquisition of molecular mutations during progres-
sion of MDS

Finally, we analyzed whether leukemic transforma-
tion of MDS was accompanied by acquisition of the
molecular markers. For this analysis, 25 paired
MDS/AML cases were available. We found that the
mutation status was stable in all cases screened for
FLT3-TKD (n=24), MLL-PTD (n=22), and KITD816
(n=24). However, acquisition of FLT3-LM was

observed in 3/22 cases (13.6%) during leukemic trans-
formation and acquisition of the NRAS mutation was
observed in 1/24 cases (4.2%) during leukemic trans-
formation. 

Distribution of chromosomal abnormalities in
molecularly mutated MDS cases 

We analyzed the frequency of chromosomal abnor-
malities in the molecularly mutated MDS cases. The
cases with FLT3-LM, NRAS mutation, and MLL-PTD
showed a high incidence of normal karyotype (FLT3-
LM: 4/8 [50%]; NRAS mutation: 11/14 [79%]; MLL-
PTD: 7/9 [78%]).  We analyzed whether deletions of 5q
or monosomy 7 showed any association with FLT3-LM
or NRAS mutations: del(5q) was rare in FLT3-LM posi-
tive MDS (1/8; 12%) and was not found in NRAS- or
MLL-PTD mutated cases. Chromosome 7 abnormalities
were not detected in any of the FLT3-LM-, NRAS-, or
MLL-PTD-positive MDS cases (Table 4). 

Discussion

Given the new therapeutic options for MDS, such as
allogeneic stem cell transplantation with reduced
intensity conditioning for elderly patients,50-52 inten-
sive chemotherapy regimens for high-risk MDS,53 and
new compounds  including azacitidine54 and lenalido-
mide,55 risk assessment and prognostic stratification in
MDS have become increasingly important. As cytoge-
netics included in the IPSS provide the basis for prog-
nostic predictions only in some  patients,6,7 additional
parameters are needed for a more detailed characteri-
zation of the biology and prognosis of this heteroge-
neous disorder. In AML it has been established that
80-85% of all cases with normal karyotype can be fur-
ther characterized by molecular markers, which are
found alone or in combination with others (NPM1:
50%, MLL-PTD: 10%, CEBPA: 15%, FLT3-LM: 35%,
FLT3-TKD: 6%, NRAS: 10%). In contrast, in MDS
screening for molecular mutations is not currently
included in routine practice, as the frequency and
prognostic impact of these mutations are less well
determined. However, there are many questions also
with respect to the role of molecular mutations in the
leukemic transformation process of MDS. Thus, in
this study, we focused not only on the incidence of
different molecular mutations in MDS, but also com-
pared the distribution of these markers within the dif-
ferent stages of MDS and in AML.

In consideration of the central role of FLT3-muta-
tions in AML (≥30% of all AML patients show either
internal tandem duplications or mutations of the tyro-
sine kinase domain), FLT3-mutations have been
hypothesized to be important in MDS transforma-
tion.11,12,20-22 Indeed, our study gives additional support
to an association of FLT3-LM with progression. These

Molecular mutations in MDS and AML

haematologica/the hematology journal | 2007; 92(06) | 747 |



U. Bacher et al. 

| 748 | haematologica/the hematology journal | 2007; 92(06)

Figure 1A-E. Frequency of the dif-
ferent mutations within the differ-
ent cytomorphologic subtypes of
MDS (RA/RARS; RAEB; CMML) and
of AML (s-AML; AML at relapse).
The x-axis shows the different MDS
and AML cohorts. The numbers of
the analyzed patients are in paren-
theses. The percentage of mutated
cases is given on the y-axis.  

A

B

C

D

E

RA/RARS CMML RAEB s-AML AML relapse de novo AML
(n=0/45) (n=0/29) (n=8/293) (n=45/293) (n=83/300) (n=629/2813)

RA/RARS CMML RAEB s-AML AML relapse de novo AML
(n=1/28) (n=0/19) (n=0/209) (n=6/322) (n=5/206) (n=130/2357)

RA/RARS CMML RAEB s-AML AML relapse de novo AML
(n=0/29) (n=2/20) (n=15/223) (n=41/343) (n=19/211) (n=209/2128)

RA/RARS CMML RAEB s-AML AML relapse de novo AML
(n=1/46) (n=1/30) (n=8/292) (n=28/378) (n=25/303) (n=176/2911)

RA/RARS CMML RAEB s-AML AML relapse de novo AML
(n=0/32) (n=0/21) (n=2/237) (n=5/341) (n=3/213) (n=39/2136)
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mutations were not found in low-risk MDS, but their
incidence increased over the proceeding stages (RAEB;
RAEB-t) to s-AML, following MDS. In ≥10% of all
cases the progression of MDS to AML is accompanied
by the acquisition of FLT3-LM (this study; Shih et
al.).23,56 The occurrence of FLT3-LM at diagnosis of
MDS is associated with leukemic transformation and
shorter survival.56 Furthermore, the incidence of FLT3-
LM was significantly higher in relapsed AML than in
de novo and s-AML at first diagnosis, underlining the
importance of the FLT3-LM also in AML progression
(Table 3). Thus, rather than being considered as initial
events in the development of MDS, FLT3-LM should
be considered as secondary events involved in MDS
progression. The inclusion of the respective mutation
status into MDS risk assessment at diagnosis and dur-
ing follow-up might improve the identification of
patients who may benefit from therapy intensification
and might be considered also in routine diagnostics. 

The role of FLT3-TKD mutations in MDS progres-
sion is less clear. FLT3-TKD are also significantly more
frequent in s-AML than in MDS as shown by this
study and by Yamamoto et al.,12 and slightly more fre-
quent in AML relapse than in s-AML at diagnosis (this
study). This points to a role for FLT3-TKD in the trans-
formation of MDS and possibly also in relapse of
AML.12 However, definite conclusions cannot yet be
drawn as the numbers of cases and studies are too low
– so far only two cases of FLT3-TKD mutations in
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Table 3. Frequency of molecular mutations in previous studies.

FLT3-LM This Shih et al., Horiike et al., Total
study 200424 199723

RA 0% 0% 0% 0.0%
(0/45) (0/27) (0/13) (0/98)

RARS 0% 0% 
(0/21) (0/4)

RAEB 2.7% 2% 0% 2.4%
(8/293) (2/99) (0/20) (10/412)

RAEB-t − − 8% 8%
(1/12) (1/12)

CMML 0% 6% 11% 4.5% 
(0/29) (3/51) (1/9) (4/89)

MDS total 2.2% 2.5% 3% 0.2%
(8/367) (5/198) (2/58) (15/623)

FLT3-TKD This Yamamoto Total
study et al.,200112

RA 3.6% − 3.6%
(1/28) (1/28)

RARS −
RAEB 0% 0% 0%

(0/209) (0/6) (0/215)
RAEB-t − 8% 8%

(1/13) (1/13)
CMML 0% 0% 0%

(0/19) (0/10) (0/29)
MDS total 0.4% 3% 0.7%

(1/256) (1/29) (2/285)

NRAS This Nakagawa Paquette Mitani Padua Total
study et al., et al., et al., et al.,

199241 199357 199758 199842

RA 0% 0% 8% 0% 35% 10.0% 
(0/29) (0/10) (6/72) (0/9) (6/17) (20/201)

RARS 0% 9% 0% 25%
(0/1) (4/46) (0/1) (4/16)

RAEB 6.7% 67% 8% 0% 50% 8.8% 
(15/223) (2/3) (5/63) (0/8) (5/10) (27/307)

RAEB-t − 100% 13% 9% not 12.8%
(1/1) (3/23) (2/23) specified (6/47)

CMML 10.0% 20% 12% − 66% 35.6% 
(2/20) (1/5) (2/16) (21/32) (26/73)

MDS total 6.3% 20% 9% 2% 48% 12.5% 
(17/272) (4/20) (20/220) (2/44) (36/75) (79/631)

KITD816 This Lorenzo Total
study et al., 200630

RA 0.0% 0% 0.0%
(0/32) (0/10) (0/42)

RARS −
RAEB 0.8% 0% 0.8%

(2/237) (0/10) (2/247)
RAEB-t − 13% 13%

(2/15) (2/15)
CMML 0.0% 0% 0.0%

(0/21) (0/15) (0/36)

MDS total 0.7% 4% 1.2%
(2/290) (2/49) (4/339)

MLL-PTD This study

RA 1/46 (2.2%)
RARS
RAEB 8/292 (2.7%)
RAEB-t −
CMML 1/30 (3.3%)
MDS total 2.7% (10/368)

Table 4. Distribution of chromosomal aberrations in the molecu-
larly mutated MDS cases. 

FLT3-LM FLT3-TKD cKITD816 NRAS MLL-PTD

Normal 50% 100% 0% 79% 78%
karyotype (4/8) (1/1) (0/2) (11/14) (7/9)

Reciprocal 0% 0% 0% 0% 0%
translocations (0/8) (0/1) (0/2) (0/14) (0/9)

Complex 12% 0% 0% 7% 0%
aberrant (1/8) (0/1) (0/2) (1/14) (0/9)

inv(3)/t(3;3) 0% 0% 50% 0% 0%
(0/8) (0/1) (1/2) (0/14) (0/9)

del(5q) 12% 0% 0% 0% 0%
(1/8) (0/1) (0/2) (0/14) (0/9)

Chromosome 7 0% 0% 0% 7% 0%
anomalies (0/8) (0/1) (0/2) (1/14) (0/9)

+8 25% 0% 0% 0% 22%
(2/8) (0/1) (0/2) (0/14) (0/9)

del(20q) 0% 0% 0% 0% 0%
(0/8) (0/1) (0/2) (0/14) (0/9)

-Y 0% 0% 0% 0% 0%
(0/8) (0/1) (0/2) (0/14) (0/9)

Others 0% 0% 0% 7% 0%
(0/8) (0/1) (0/2) (1/14) (0/9)



MDS have been reported: one patient with RA in this
study and one patient with RAEB in transformation in
the study by Yamamoto et al.12

Due to the rather high incidence of NRAS-mutations
in AML, interest was focused on the role of this mark-
er in MDS.31-36 In this study, as in most previous analy-
ses, NRAS-mutations were among the most frequent
mutations in MDS (≥6.5% of all cases),38,41,42,57 and more
frequent than  FLT3-LM (≤3%).23,24 Although the
reported incidences of NRAS mutations in MDS range
widely (probably due to different proportions of MDS
subtypes in the various analyses), this study and all
mentioned previous analyses found higher frequencies
of NRAS mutations in the advanced stages of MDS
than in the initial stages.41,42,57,58 This demonstrates an
association between NRAS mutations and MDS trans-
formation. NRAS mutations were further shown to be
associated with karyotype evolution, e.g. with the
acquisition of monosomy 7, during MDS transforma-
tion,59,60 and with inferior survival in MDS.57 Based on
these results the inclusion of NRAS-screening at diag-
nosis and during follow-up in MDS might be dis-
cussed. With respect to the MLL-PTD, our data
showed a significantly higher incidence in AML than
in MDS, whereas the frequency of MLL-PTD did not
vary significantly within the diverse cytomorphologic
MDS subtypes. To our knowledge there are no further
studies on this molecular marker in MDS, so the role
of MLL-PTD in MDS and in leukemogenesis needs
further clarification. 

KITD816 mutations play a minor role in AML. In
MDS, these mutations seem to be restricted to the
advanced stages of MDS, as found both in this study
and a study by Lorenzo et al.,30 suggesting involvement
in the transformation towards AML. We found a
slightly higher frequency of KITD816 in AML than in
MDS, but the numbers are too small to comment on
this fact. We found no influence of AML progression
to relapse on the incidence of KITD816 mutations. 

Another aim of our study was an analysis of the cyto-
genetic characteristics in the molecularly mutated MDS
cases. The high rates of normal karyotype in NRAS-
mutated cases (79% of all NRAS-mutated MDS
patients in this study, 57% in the study by De Souza et
al.)61 support the hypothesis that NRAS mutations
might represent the initial event in a proportion of
MDS cases while additional aberrations induce
leukemic transformation.61 Some authors have suggest-
ed a co-operation of chromosome 7 abnormalities with
RAS and FLT3-LM mutations in leukemogenesis. Side et
al. found monosomy 7 in two patients who progressed
from t-MDS to AML with a positive NRAS or FLT3-LM
mutation status.62 In a report by Stephenson et al., RAS

mutations occurred in three out of seven patients with
RAEB in transformation and monosomy 7.60 A single
case of NRAS-positive RAEB with -7 was reported by
de Souza et al.61 In contrast to these reports, we found
no assocation between NRAS mutations or FLT3-LM
and chromosome 7 abnormalities in MDS in our study.
Therefore, a  co-operation of -7 with these molecular
markers can be discussed in single cases, but general
conclusions should not be drawn at this time due to the
low number of reported cases. 

We found a 5q- syndrome in 12% of cases with
FLT3-LM but in no case of MDS with NRAS or MLL-
PTD mutations. This observation corresponds to that
of Fidler et al. who found no case of FLT3-LM, NRAS,
or p53 mutations in four patients with the 5q- syn-
drome and thus suggested that the stability of this
MDS syndrome might be a consequence of the
absence of other molecular mutations.63

In conclusion, the progression from the initial stages
of MDS to secondary AML can be accompanied by the
acquisition of molecular mutations which are known
to play an important role in AML, such as the FLT3-
LM or NRAS-mutations. This allows the interpretation
of these mutations as markers of progression in MDS
and supports the two-hit theory, according which at
least two different types of mutations are needed for
the development of AML: the class I mutations (which
are frequently represented by mutations of receptor
tyrosine kinases) mediate myeloproliferation, while
the class II mutations lead to an arrest in differentia-
tion in hematopoiesis.64-66 It can, therefore, be hypoth-
esized that a single molecular event leads to the early
stages of MDS but additional mutations are needed to
cause leukemic transformation.  

Finally, further evaluation of molecular markers in
MDS, especially FLT3-LM, NRAS, FLT3-TKD, MLL-
PTD, and KITD816 mutations can be recommended.
Such an evaluation should, of course, be completed by
analysis of other mutations which are frequent in
MDS, such as point mutations in the AML1/RUNX
gene67,68 or mutations of TP53.69 These studies may
lead to new approaches to the subclassification of
MDS and to early detection of progression to AML.
Thus, complete understanding of the picture of molec-
ular markers in MDS may also be of therapeutic value.  
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