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The models of acute erythroleukemia caused in mice by the Friend retrovirus SFFV
(spleen focus forming virus) and the Spi-1/PU.1 transgenesis provide considerable
information to help to understand the molecular mechanisms underlying the multi-
stage nature of leukemia. Leukemogenesis in these murine models is initiated from an
acute hyperplasia of erythroid progenitor cells followed later on by a blastic crisis. This
review highlights recent findings demonstrating the key roles of the co-operation of two
mutations occurring during leukemic progression, a mutation interfering with differenti-
ation and a mutation conferring a proliferative advantage to cells. Through their multi-
step evolution, these mouse erythroleukemia models resemble the two phases of
human acute myeloid leukemia (AML). The findings we discuss provide evidence for
similar molecular mechanisms involved in the evolution of leukemia in mice and men.
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Leukemias are disorders of blood-form-
ing tissues in which the maturation and
differentiation programs of distinct

hematopoietic lineages originating from
primitive stem cells with multilineage poten-
tial are affected. These disorders result from
acquired somatic mutations targeting a vari-
ety of transcription factors and signaling
molecules. An important insight into the
molecular mechanisms responsible for
hematopoietic malignancies arose from
studies of leukemia induced in animals by
retroviruses, in part because these models
enabled the identification of several proto-
oncogenes that were transduced in the
genome of the retroviruses. In this review, I
shall only address the avian E26 virus1 and
the avian erythroblastosis AEV virus2 that
transduce the viral oncogenic counterparts
of the Myb and Ets proto-oncogenes for E26,
and ErbA and ErbB proto-oncogenes for
AEV. In addition, because retroviruses inte-
grate efficiently into the cellular genome,
they activate proto-oncogenes adjacent to
their integration sites by providing strong
transcriptional promotion or enhancement.
In this way, the genes encoding the tran-
scription factors Spi-1,3 Fli-14 and Evi-15 were
originally identified in murine leukemia as
common sites for retroviral integration.

The purpose of this review is to summa-
rize the currently available data about
murine acute erythroleukemia. These
murine models are unusual for their notably
short latency and striking homogeneity.
They represent powerful working models of

a disease whose evolution is very similar to
that of human acute myeloid leukemia
(AML). They provide several lines of evi-
dence indicating that leukemia proceeds via
multiple steps characterized by genetic alter-
ations driving the progression of a normal
hematopoietic cell towards malignancy.

The Friend erythroleukemia
The Friend virus was isolated by Charlotte

Friend in 1957.6 When inoculated into sus-
ceptible mouse strains, it causes a rapidly
developing erythroblastosis evident as early
as 10 days after injection. This erythroblas-
tosis is characterized by acute hyperplasia of
the erythroid progenitor compartment and
massive production of differentiated ery-
throid cells.7 The Friend virus is a retroviral
complex of a replication-defective spleen
focus forming virus (SFFV) that is the patho-
genic component responsible for the ery-
thoblastosis and a replication-competent
Friend murine leukemia virus (F-MuLV) that
supplies the replicative functions defective in
SFFV.8,9 Two different strains of SFFV have
been identified which reproducibly lead to
either polycythemia (SFFVP) or anemia
(SFFVA) due to a hemodilution.10 The target
cell in which both SFFV express their patho-
genic effect is an erythropoietin (Epo)-
responsive progenitor cell identified as a late
BFU-E or a CFU-E.11 The number of these
SFFV-infected erythroid progenitors increases
dramatically, but the cells do not acquire sig-
nificant self-renewal potential in vitro and are
not tumorigenic in vivo. Characteristically,
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erythroid progenitors differentiate in the absence of Epo
during SFFVp infection whereas erythroid precursors
infected with SFFVA need Epo for proliferation and dif-
ferentiation.12,13

Physiopathological studies established that the early
erythroblastosis is rapidly followed by an acute trans-
formation phase.14-16 Twenty to 30 days after infection,
tumorigenic proerythroblasts arrested in differentiation
at the CFU-E stage can be isolated. These cells are seri-
ally transplantable in vivo and can be established as per-
manent cell lines in vitro. The tumorigenic Friend cells
do, however, remain able to mature into hemoglo-
binized cells after exposure to a variety of chemical
inducers such as dimethylsulfoxide (DMSO) and hexa-
methylene-bisacetamide (HMBA), providing a model
which has been successfully used for studying terminal
erythroid differentiation in vitro.17

Molecular events during Friend erythroleukemia
Expression of the viral gp55

The Friend virus complex differs from most acutely
oncogenic retroviruses in that it does not carry a mutat-
ed cellular proto-oncogene. The pathogenicity of SFFV
is determined by the product of the viral env gene, a gly-
coprotein with a molecular mass of 55k Da (gp55P and
gp55A).18 gp55 derives from a deleted and mutated F-
MuLV env gene, making the protein resident in the
infected cells and unable to be processed in the viral par-
ticle. An important insight into the role of gp55 was pro-
vided by the demonstration that gp55 could interact
with the receptor for erythropoietin (EpoR).19 This inter-
action occurs through the respective transmembrane
domains of EpoR and gp55P or gp55A at the surface of
erythroid cells. A third partner contributing to the effect
of gp55 in erythroid hyperplasia is the naturally occur-
ing short form of the stem-cell kinase receptor (sf-Stk).
Stk is a tyrosine kinase receptor of the Met family
encoded by the Fv2 gene, long known as one of genes
determining the susceptibility of some mouse strains
(Fv2s/s) to Friend disease.20-22 Transcription of sf-Stk is
initiated from an internal promoter within the Stk gene
that is lacking in Friend-resistant mice (Fv2r/r). sf-Stk
lacks the extracellular ligand-binding domain but retains
the transmembrane and the tyrosine kinase domain.23-25

The binding of gp55P to EpoR and sf-Stk promotes the
Epo-independent proliferation and terminal differentia-
tion of the erythroid precursors through the activation of
signal-transducing proteins, including the Janus protein
tyrosine kinases Jak1 and 2, the transcription factors
STAT1, 3 and 5, the downstream effector AKT of
PI3kinase and the mitogen-activated protein kinases.26-30

Rare amino acid differences in the transmembrane
domains of gp55P and gp55A are sufficient to minimize
Jak2/STAT5 signaling making gp55A unable to promote
Epo-independent erythroid proliferation.25

Transforming events
Although SFFV is an acutely leukemogenic retrovirus,

it induces transformation of erythroid cells by a mecha-
nism of insertional mutagenesis usually employed by
non-acute leukemogenic viruses. The identification of
integrated SFFV proviruses in the genome of various
Friend tumor cells was the first molecular signature of
their clonal nature. The consistent rearrangement of a
genomic locus by SFFV insertion, the so-called Spi-1
standing for SFFV proviral integration-1, indicated that
this rearrangement was crucial for the clonal expansion
of a single cell.3,31 The SFFV insertion activates the tran-
scription of the spi-1 gene by introducing LTR transcrip-
tional enhancers able to by-pass the tissue-specific
activity of the spi-1 genomic promoters.3,32,33 The Spi-1
protein is identical to the transcription factor PU.1 iden-
tified through its ability to recognize purine-rich DNA
sequences in the genome.31,34 Spi-1 is not mutated,
implying that aberrant overexpression is responsible for
the oncogenic function. The total incidence of spi-1
mutation in Friend leukemia suggests a specific co-oper-
ation between gp55 and Spi-1 overexpression. This was
verified in a heterologous model of self-renewal and dif-
ferentiation of chicken primary erythroid progenitors in
which it was shown that the effects of Spi-1 on survival,
proliferation and arrest in differentiation were depend-
ent on the co-expression of Spi-1 with an EpoR activat-
ed either by gp55 or by a mutation on residue R129C
which mimics EpoR/gp55 activation.35-37

Another recurrent genetic alteration in Friend tumor
cells is mutation in the tumor suppressor p53 gene.
Allelic deletions or missense mutations lead to loss of its
tumor suppressive function.38,39 Friend leukemia devel-
ops more rapidly in transgenic mice expressing a mutant
allele of p53 or in p53-null mice than in normal
mice.40,41Although ectopic expression of a normal p53
protein in Friend cells induces apoptosis and hemoglo-
bin production,42 the loss or mutation of p53 seem to
accelerate the acquisition of other mutations, promoting
growth and survival rather than specifically altering ery-
thoid differentiation.

In conclusion, the multi-step evolution of SFFV-
induced erythroleukemia indicates that gp55 induces a
preleukemic stage, but that Spi-1 overexpression deter-
mines the onset of leukemia (Figure 1).

Erythroleukemia in spi-1 transgenic mice
To specify the role of Spi-1 in erythroleukemia, spi-1

transgenic mice were enginereed by germinal insertion
of a spi-1 transgene driven by a SFFV LTR. These ani-
mals develop an acute erythroleukemia that evolves as
a two-step process.43 The first step is characterized by
large hepatosplenomegaly associated with severe ane-
mia. The spleen and liver are infiltrated by proerythro-
blasts arrested in differentiation at a basophilic stage.
Permanent erythroblastic cell lines are easily established
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from diseased hematopoietic tissues, but only in the
presence of Epo. Accordingly, the in vivo disorder is
tightly controlled by the level of endogenous Epo as
demonstrated by the rapid regression of hepato-
splenomegaly and disappearance of circulating blasts
following repeated red blood cell transfusions. The ane-
mic state creates hypoxic conditions and induces stress
erythropoiesis. Under these conditions, the massive
expansion of the erythroid compartment destined to
compensate for the deficit in mature red blood cells
takes place in the presence of stem cell factor (SCF) and
Epo in the splenic microenvironment.44 Indeed, SCF co-
operates with Epo to maintain the survival and prolifer-
ation of the spi-1 transgenic proerythroblasts in vitro
when Epo is used at limiting concentrations.45 Finally,
since these spi-1 transgenic proerythroblasts are unable
to induce tumors when engrafted in vivo they are consid-
ered as preleukemic cells. This disease clearly shows
that ectopic expression of Spi-1 in the proerythroblast
contributes to the maturation block of erythroid precur-
sor cells without removing their dependence on growth
factors.

Later, during the acute expansion of the proerythrob-
lastic compartment, blastic cells emerge: these cells are
are characterized by both Epo-independent growth in
vitro and tumorigenicity in vivo. This evolution to a ter-
minal blastic phase undoubtedly reflects the selection of
a malignant cell subpopulation having acquired genetic
lesions. In conclusion, the erythroleukemia in spi-1
transgenic mice evolves as a multi-step process indicat-
ing that the onset of leukemia depends on the occur-
rence of somatic mutations in addition to Spi-1 overex-
pression (Figure 1).

Molecular events during erythroleukemia in spi-1
transgenic mice
Overexpression of Spi-1/PU.1

The function of Spi-1/PU.1 in erythroid transforma-
tion appears multifaceted. The arrest in differentiation
of proerythroblasts is associated with cell cycle disor-
ders and increased proliferation (P. Rimmaele, F.M.G. and
C. Guillouf, unpublished data). However, the molecular
mechanisms that engender these effects of Spi-1/PU.1
are still subject to speculation. Some information stems
from the role of PU.1 in normal hematopoiesis. Various
targeted disruption models have shown that PU.1 sup-
ports hematopoiesis at different stages. PU.1 is a crucial
player in controlling B lymphoid and macrophage devel-
opment46-50 and its down-regulation is required for nor-
mal erythroid as well as T lineage development.51,52 In
addition, PU.1 plays an early role in regulating the com-
mitment of multipotent hematopoietic progenitors.53,54

These functions of PU.1 are determined by distinct
threshold levels, high levels driving precursors to a
myeloid cell fate and moderate levels specifying B lym-
phoid development.55

Aberrations in PU.1 levels are leukemogenic. The first
evidence of this was that overexpression of Spi-1 plays
an oncogenic role in Friend erythroleukemia.4 Recently,
other murine models demonstrated that a reduction in
the level of Spi-1/PU.1 can initiate transformation in
other hematopoietic lineages. The knock-down of Spi-
1/PU.1 by ablation of its distal regulatory enhancer32 in
adult mice generates animals in which PU.1 is expressed
at 20% of the normal level. These mice ultimately
develop myeloid and lymphoid leukemias. Myeloid
leukemia are typically characterized by a maturation
block in myeloid precursor cells indicating that the

Figure 1. (A). Molecular mechanisms
involved in the pathogenesis of murine
acute erythroleukemia. The early
stage of Friend acute erythroleukemia
is characterized by an expansion of
erythroid progenitors as a conse-
quence of the activation of EpoR and
sf-STK by viral gp55. The blastic crisis
results in clonal expansion of erythroid
progenitors whose differentiation is
blocked. The arrest in erythroid matu-
ration is associated with overexpres-
sion of the transcription factor Spi-
1/PU.1 caused by SFFV integration.
(B). In the leukemia that progress in
spi-1 transgenic mice, the initial event
is overexpression of Spi-1/PU.1 by ger-
minal mutation. This results in expan-
sion of erythroid progenitors whose dif-
ferentiation is blocked. The blastic cri-
sis characterized by the autonomous
expansion of proerythroblasts is asso-
ciated with activating mutations in the
Kit gene.
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reduced PU.1 level was sufficient to support the survival
of myeloid progenitor cells but not to sustain their dif-
ferentiation, possibly because of deregulation of the
expression of some cytokine receptors.56 These mice
also develop B-cell proliferative syndromes as a conse-
quence of the reduced PU.1 level in B progenitor cells
and T lymphoma as a consequence of the maintainance
of PU.1 expression in T precursor cells.57 PU.1 was iden-
tified to have a role in the development of murine
myeloid leukemia induced by radiation in two comple-
mentary studies reporting that one allelic deletion of
PU.1 is associated with a specific, presumably hypo-
morphic, mutation in the remaining allele.58,59 Recent
studies have also shown that inactivation of PU.1 in
adult mice can lead to the development of myeloid
leukemia.60 Thus, the modulation of Spi-1/PU.1 activity,
i.e. an increase or a decrease, would be variations of a
common mechanism contributing to the pathogenesis
of leukemia. Spi-1/PU.1 overexpression in the proery-
throblast probably changes the delicate balance of tran-
scriptional activities required for normal erythropoiesis.
An excess of Spi-1 may disrupt the function of an ery-
throid factor and, in this hypothesis, GATA-1 is a likely
candidate. Several studies have reported that a direct
interaction of Spi-1/PU.1 with GATA-1 may lead to the
inhibition of their respective functions.61-64 The concept
that Spi-1 could inhibit the function of GATA-1 in ery-
throleukemic cells is supported by the reversal of
tumorigenicity and reinitiation of a differentiation pro-
gram when GATA-1 expression is ectopically imposed
in a Friend tumor cell line.65 Nevertheless, GATA-1 target
genes, such as EKLF, NF-E2, β globin, EpoR and GATA-
1 itself are expressed in both Friend and spi-1 transgenic
cells43 (our unpublished data). Moreover, it is difficult to
reconcile the inhibition of GATA-1 functions in
leukemic cells with its activities during normal ery-
throid differentiation in which GATA-1 protects against
apoptosis and controls cell proliferation.66 Little is
known about the downstream Spi-1 targets in ery-
throleukemic cells. As a first element, transcription of
the fli-1 gene, which encodes an ETS family transcrip-
tion factor, is directly regulated by Spi-1 in Friend cells.67

The finding that Fli-1 is involved in the blockage of ery-
throid differentiation during late erythroleukemia
induced by the Friend MuLV4 is compatible with the
role of Spi-1 in differentiation arrest. Indeed, future
studies using global transcriptome analysis of the
preleukemic spi-1 transgenic proerythroblasts may offer
a valuable approach to elucidate the Spi-1/PU.1-induced
modifications in gene expression programs leading to
erythroleukemogenesis.

Transforming events
Inactivation of p53 by mutations is frequently

observed in malignant spi-1 transgenic proerythroblasts
and disease progression on a p53-null background is

greatly accelerated.68 Nevertheless, proerythroblasts
that remain Epo-dependent and non-tumorigenic can be
isolated from diseased p53-/--spi-1 transgenic mice indi-
cating that p53 extinction is not sufficient to confer
malignancy in this context.69 Thus, a p53 abnormality
may be a permissive event supporting the illegitimate
survival of proerythroblasts harboring genetic aberra-
tions, as reported in Friend erythroleukemia.

More specific with regards to the erythroleukemic
process in spi-1-transgenic mice are mutations in the Kit
gene, which we recently identified in 86% of tumors
isolated late during the progression of leukemia.45 Kit is
the tyrosine kinase receptor for SCF. It is expressed in
hematopoietic stem cells (HSC) and committed progen-
itor cells of different blood cell lineages and is activated
by SCF binding.70 The Kit mutations detected in spi-1
transgenic leukemic cells affect amino acids located in
the Kit catalytic domain (mainly codon 814 and occa-
sionally codon 818) and confer ligand-independent tyro-
sine kinase activity to Kit. Accordingly, expression of
mutated forms of Kit in preleukemic spi-1 transgenic
proerythroblasts render them growth factor-independ-
ent and tumorigenic. This phenotype is related to the
constitutive activation of the ERK MAP kinase and
PI3Kinase/AKT pathways.71 This mouse model demon-
strates that the combined effect of the Spi-1 mutation,
targeting differentiation, and the Kit mutation, targeting
intracellular signaling, leads to the development of the
malignant leukemic phase (Figure 1).

The target cell for the malignant transformation during murine
erythroleukemia

The clonal origin of the malignant cells in Friend
virus-infected mice and in spi-1 transgenic mice pro-
vides evidence for a specific change associated with the
blastic crisis.68,72 The precise nature of the cell in which
the leukemogenic event(s) occurs is yet to be defined.
The restriction of the blast cell populations to the ery-
throid lineage suggests that the leukemic clone could
emerge from the CFU-E pool. Alternatively, the genetic
change leading to self-renewal and proliferation of the
proerythroblast might occur in a primitive multipotent
stem cell and its effects may only occur in a more
mature downstream progenitor. The specificity for
SFFV integration upstream of the spi-1 gene during
Friend disease is informative. The murine leukemia
viruses show a preference for insertion in regions sur-
rounding the trancriptional start site of actively
expressed genes.73 In most Friend tumors, SFFV is inte-
grated in a region 15 to 25 kbp upstream of the spi-1
transcription start site corresponding to the distal tran-
scriptional promoter,3,32 inducing the maintenance of spi-
1 transcription in downstream erythroid progenitors.
The transcriptional profile of spi-1 in myelopoiesis pre-
dicts that the chromatin structure of the distal spi-1 pro-
moter is in an open conformation in immature and com-
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mitted multipotent progenitors. In contrast, during ery-
throid committment, spi-1 transcription is shut off
implying that chromatin is in a repressive structure.
Thus, the selection pressure for spi-1 insertional muta-
genesis argues in favor of a primitive cell as the target
cell for leukemic transformation.

In the model of spi-1 transgenic leukemia, the high
incidence of Kit mutations suggests that the association
of Kit mutations with Spi-1 overexpression reflects cell-
type specific constraints to clonal selection. SCF, togeth-
er with Epo supports the proliferation and differentia-
tion of normal erythoid progenitor cells and SCF is also
effective in stimulating the proliferation of multipotent
progenitor cells. If the presumption is that oncogenic
mutations will target a gene in a cell type for which
development depends on its normal activity, mutations
in either the Epo/EpoR or the SCF/Kit pathways could
be expected. No mutation in EpoR was identified in spi-
1 transgenic proerythroblasts. Alternatively, autocrine
or paracrine stimulation of EpoR may play a role in
leukemic cells as reported in other murine ery-
throleukemias induced by F-MuLV74,75 and in rare human
erythroleukemias.76 Regarding spi-1 transgenic tumors,
7% were autocrine for Epo. However, half of them har-
bored Kit mutations indicating that Epo autocriny is not
a major selective process. According to its function in
primitive progenitors, the finding that Kit mutations are
preferentially selected might be seen as an indication
that mutation occurs in immature progenitor cells.
Strikingly, the clonal selection in this model did not
involve mutations in other tyrosine kinases, such as
FLT3, also expressed in multipotential hematopoietic
progenitors and more frequently detected in human
AML (see below). This suggests that Kit mutations cer-
tainly occur in a narrow window that excludes selection
pressure on FLT3, possibly in a cell in which FLT3
expression is shut off whereas Kit expression is present.
In this context, a BFU-E would appear to be a better
potential candidate. Thus, these models show that
immature progenitor cell compartments are most likely
targeted by oncogenic events even if the differentiation
blockage is lineage- and stage-specific.

What lessons can be learnt from the murine
leukemia models of AML ?

Clinically, human AML are characterized by an accu-
mulation of immature blasts which exhibit uncontrolled
proliferation and failure to differentiate normally. The
phenotypes of AML are heterogenous and are classified
into sub-types according to the predominance of a par-
ticular myeloid lineage. Molecularly, AML are associat-
ed with multiple and various genetic alterations, includ-
ing chromosomal translocations and mutations. Some
genetic alterations may serve as fingerprints for a partic-
ular leukemia sub-type such as the chromosomal
translocation t(9;22) encoding the tyrosine kinase BCR-

ABL in chronic myeloid leukemia (CML) (present in up
to 98% of patients),77,78 the mutation in the pseudo-
kinase domain of JAK2 in myeloproliferative disorders
(present in 80% of polycythemia vera patients)79-83 and
the translocation t(15;17) encoding the promyelocytic
leukemia-retinoic acid receptor α (PML-RARα) found in
99% of cases of acute promyelocytic leukemia (APL).84,85

Studies on the genetic alterations found in AML have
been the subject of several recent reviews and will not
be described here.86-90 One important observation is that
the genetic alterations can be divided into two classes.
One class includes transcription factors that play a reg-
ulatory role in hematopoietic development.91 These
most frequently result from chromosomal transloca-
tions and the resulting chimeric proteins inhibit differ-
entiation in a particular hematopoietic cell lineage, spec-
ifying the leukemia sub-type. For instance, the two
AML1 and CBF‚ sub-units of the heterodimeric core-
binding factor (CBF) are altered by translocation t(8;21)
or inversion inv(16) in 20-25% of cases of AML. They
are expressed as AML1-ETO88,92 and CBFβ-MYH1193

chimeric proteins, both acting as dominant negative
inhibitors for CBF functions. PML/RARα, which is
expressed in APL, behaves as a transcriptional repressor
for the hormonal receptor RARα.85 Albeit more rarely,
transcription factors can also be altered by small or
point mutations in their coding region as detected in
AML194 and in the granulocyte transcription factor
C/EBPα.95,96

PU.1 mutations are rare in human AML, as shown by
screening studies in different groups, in which PU.1
mutations were found in 1.5% of cases.97-99 PU.1 muta-
tions are heterozygous and missense. They render the
mutant protein defective in its transcriptional regulator
functions, predicting that the oncogenic mechanism
underlying PU.1 mutation would be a dosage effect.
When not mutated, Spi-1/PU.1 function can also be dis-
rupted downstream of oncogene signaling pathways as
for AML-ETO.100

In the second class, mutations affect proteins that act
in intracellular signaling and that are involved in the
control of cell survival and proliferation.89 Point muta-
tions frequently target tyrosine kinases including the
growth factor tyrosine kinase receptors FLT3 (in approx-
imately 40% of AML),86,101-103 Kit (in 5% of AML)104,105 and
Ras signaling proteins affecting mainly N-Ras in 30% of
cases.106 Kinases are also altered through chromosomal
translocations leading to expression of chimeric proteins
with constitutive kinase activity, such as BCR/ABL.78,107

These are gain of function that provide proliferative sig-
nals in AML.

Extensive studies of large cohorts of patients with
AML provide evidence that the combinations of genet-
ic changes from the two classes are heterogenous but
mutations within a class are mutually exclusive. For
example, the initial chronic phase of CML is associated
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with the BCR-ABL translocation. The translocation
products AML1/EVI1,108 NUP98/HOXA9109 or TLS-
ERG110 are additional genetic alterations in the clonal
evolution of CML and all of them encode chimeric pro-
teins with transcription factors properties. Conversely,
25%-30% of AML patients with AML1 translocations
carry Kit mutations104,105,111,112 and 38% of APL patients
with the PML/RARα translocation bear FLT3 muta-
tions.103

The concept emerging from this complexity is that an
acute leukemia would arise from co-operation between
a mutation interfering with differentiation and a muta-
tion conferring a proliferative advantage.113 This concept
is also supported by murine models designed to display
an oncogenic event, using retrovirally-transduced bone
marrow cell transplantation or transgenesis. All cases
indicate that neither fusion genes nor mutated kinases
are able to induce acute leukemia on their own.
Generally, they provoke a myeloproliferative disorder in
which the progression to leukemia requires either a long
latency, making the occurrence of a second mutation
plausible, or additional treatment with mutagenic com-
pounds. Functional evidence for oncogenic co-operation
in the development of AML can be obtained from the
co-expression of pairs of mutations such as AML1-ETO
and FLT3 mutant,114 BCR-ABL and AML1-EVI1115 or
PML-RARα and FLT3 mutant116 in primary hematopoiet-
ic cell transplantation models .

Both the Friend and spi-1 transgenic models demon-
strate that leukemia development depends on the co-
operation between a mutation that impairs differentia-
tion and blocks maturation and a mutation that pro-
motes autonomous cell growth (Figure 1). In this way,
the murine models provide direct evidence for the two-
hit model of leukemogenesis hypothesized from the
heterogeneity of AML in humans.113 A glimmer of this
concept is naturally illustrated by retroviruses in birds.
The avian erythroblastosis virus (AEV) transduces the
oncogenic tyrosine kinase v-erbB together with the
aberrant nuclear transcription factor v-erbA. v-erbA is a
mutated thyroid hormone receptor α that is no longer
responsive to thyroid hormone and causes an arrest of
erythroid differentiation at the BFU-E/CFU-E stage. v-
erbB encodes a mutated epidermal growth factor recep-
tor that induces extensive erythroblast self-renewal.117

The murine erythroleukemia models highlight that it is
the complementation between the two classes of muta-
tions rather than the order of their occurence that is
important for leukemogenesis.

The specificity of the association of Spi-1 mutation
with either gp55-dependent EpoR activation or Kit acti-

vation in these leukemia models suggests that there is
an obligatory relationship between these alterations. In
addition, the nature of the mutation might also be spe-
cific since all mutations affect the phosphotransferase
domain of Kit, exclusive of other activating mutations
known to target the juxtamembrane domain of Kit.118

Such a specificity may be determined by the cellular lin-
eage that will give rise to leukemia and the requirement
for signaling pathways downstream of Kit mutants. A
possible specificity for associations between alterations
in transcription factors and mutations in tyrosine kinas-
es is apparent in human AML. For example, mutations
in the phosphotransferase domain of Kit are associated
with CBF leukemias involving inv(16) or t(8;21) chro-
mosomal translocations whereas internal tandem dupli-
cations (ITD) affecting the juxtamembrane domain of
FLT-3 are found in APL with PML-RARα translocations.
This raises the question of identifying the mechanism
by which oncogenic kinases and transcription factors
co-operate in leukemic self-renewal. Tyrosine kinases
and transcription factors could act independently, co-
regulating complementary sets of key genes required for
self-renewal. Alternatively, the activity of transcription
factors could be regulated by kinases that belong to
common cell signaling pathways. The hypothesis of co-
operating mutations that would target genes participat-
ing in the development of the same lineage may give
some hints for identifying the second mutation in cases
of AML in which only one genetic change is known.

Conclusions
Significant advances have been made in understand-

ing the mechanisms of leukemia from studies on murine
models of erythroleukemia. At first, these models were
fruitful for establishing the multiple-step evolution of
leukemia. Twenty-five years later, these models validate
the concept of oncogenic co-operativity emerging from
the diversity of genetic lesions that underlie the devel-
opment of AML in human. Unraveling transcriptional
regulatory and signaling networks is the major chal-
lenge for the future in order to gain better understand-
ing of leukemogenesis. Further clarifications on the
molecular pathways downstream of each of the co-
operating oncogenic events may lead to the design of
new protocols of targeted therapies. There is no doubt
that murine models are still promising tools for these
prospective studies.
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