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Concomitant aberrant overexpression of RUNX1 and
NCAM in regenerating bone marrow of myeloid
leukemia of Down’s syndrome

Children with Down’s syndrome (DS),
characterized by constitutional tri-
somy 21, have a 150-fold increased

risk of developing acute myeloid leukemia
(AML) before the age of 4-5 years.1 As this
type of leukemia – characterized by mega-
karyoblastic/erythroblastic features associat-
ed with mutations in exon 2 of the transcrip-
tion factor GATA1 – is unique to individuals
with DS, it has been proposed that it is clas-
sified as myeloid leukemia of DS (ML-DS).2

The blast cells of this type of leukemia have
been studied in detail by immunophenotyp-
ing3,4 and microarray analysis.5-7 About 10%
of neonates with DS exhibit a transient
myeloproliferative disease (TMD), in which
blast cells in the peripheral blood the same
morphological and immunological features
as those of ML-DS blasts,3 typically accom-
panied by clinical signs such as hyperleuko-
cytosis, thrombocytopenia, anemia or liver
disease.8 Interestingly, in most cases TMD
disappears spontaneously, whereas ML-DS
requires intensive chemotherapy. However,

due to a higher sensitivity to cytostatic
drugs,9 the outcome of ML-DS is greatly
superior to that of non-DS AMKL (overall
survival: 91% vs. 64%).10 Mutations in the
transcription factor GATA1, resulting in
translation into a shorter isoform of the pro-
tein (GATA-1s), are detectable in virtually all
cases of TMD and ML-DS, but are absent
during remission and in children with non-
DS AML.11-15 In a recent study, Ahmed et al.
demonstrated GATA1 mutations in neonates
with DS who subsequently developed a
TMD and/or ML-DS, indicating that these
mutations are acquired in utero.16 Neural cell
adhesion molecule 1 (NCAM, CD56) – a
member of the immunoglobulin superfami-
ly – is a membrane-bound glycoprotein that
plays a role in cell-cell and cell-matrix adhe-
sion. This antigen, usually expressed on nat-
ural-killer (NK) cells, is also found in a subset
of CD3+ cytotoxic T-cells and a small popu-
lation of CD4+. Furthermore, it has been
found to be expressed in various hematopoi-
etic neoplasms, including about 20% of
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Background and Objectives. Myeloid leukemia of Down’s syndrome (ML-DS) has char-
acteristic biological features (e.g. expression of the truncated GATA1s), which are dif-
ferent from those of non-DS childhood acute myeloid leukemias (AML). The objective of
this study was to investigate factors predisposing to the development of ML-DS.

Design and methods. We analyzed 134 bone marrow specimens from 64 children with
ML-DS and non-DS AML during chemotherapy and 7 specimens from DS children with-
out leukemia, who did not receive any chemotherapy, The specimens were analyzed by
multiparameter flow cytometry and quantitative reverse transcriptase polymerase chain
reaction for transcription factors involved in hematopoiesis.

Results. Samples taken from children with ML-DS in complete remission during
chemotherapy aberrantly expressed CD56 (NCAM) at the surface of monocytic and
granulocytic cells. Compared to non-DS AML cases, children with ML-DS had a statisti-
cally significant higher proportion of CD56+ cells in the CD33+ fraction: 71%±6% vs.
4%±1% (p<0.00001). A significant decrease of the amount of CD33+/CD56+ cells was
observed during and after maintenance therapy. An increased number of CD33+/CD56+

cells was also present (>85%) in children with DS who did not receive chemotherapy,
but showed a left-shift (due to infection), compared with DS children without left-shift
(<10% CD33+/CD56+ cells). Within the CD33+/CD56+ fraction, RUNX1 was overex-
pressed more than 5-fold (p<0.02) compared to CD33+/CD56- cells, whereas there
were no differences regarding GATA1, SPI1, ERG or ETS-2 levels.

Interpretation and Conclusions. The combined overexpression of RUNX1 and NCAM dur-
ing stress hematopoiesis in children with DS might be a key factor in the development
of overt leukemia and/or in the growth advantage of the malignant GATA1s clone in ML-
DS.
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cases of AML, particularly M5, M7, M2 with t(8;21) and
M3.17-20 CD56 is commonly expressed on blast cells of
ML-DS and TMD.3 NCAM is related to the
hematopoiesis-supporting capacity of stromal cells and
thereby has a role in the maintenance of hematopoietic
stem cells.21 The runt-related transcription factor 1
(RUNX1, AML1, PEBP2), localized on the long arm of
chromosome 21 (21q22.3), encodes the α subunit of the
transcription factor PEBP2/CBF and is essential for the
establishment of fetal liver hematopoiesis. RUNX1 is
one of the most frequent targets of chromosome
translocations associated with leukemia.22 Two different
transcript variants encoding different isoforms have
been found for this gene. In contrast to acquired trisomy
21 in adult AML, in which RUNX1 point mutations are
frequent, in children with congenital trisomy 21 muta-
tions of RUNX1 do not play a significant role in the
development of hematologic disorders.23,24 RUNX1 is
important for early granulocytopoiesis25 and is required
for maturation of megakaryocytes and differentiation of
T and B cells, but not for maintenance of hematopoiet-
ic stem cells in adult hematopoiesis.26 Although it has
been suggested that an increased dosage of wild-type
RUNX1 could play a role in DS-related leukemias,15,27 we
and others could not confirm that there was overexpres-
sion of RUNX1 in blast cells of children suffering from
ML-DS or TMD.5,28 It has been recently shown that
there is a physical interaction between the zinc finger
domains – and not the N-terminus – of GATA1 and the
Runt domain in RUNX1, suggesting that their interac-
tion and synergy are retained in ML-DS.29 During nor-
mal neutrophil differentiation, a downregulation of
RUNX1 and GATA1 takes place, whereas the expres-
sion of SPI1 increases.30

The aim of this study was to investigate factors pre-
disposing to the development of ML-DS. Therefore, we
analyzed regenerating bone marrow (BM) specimens of
children who were treated for their ML-DS within the
AML-BFM 98 trial and compared these specimens to
remission BM specimens from patients with non-DS
AML. We focused on the expression of surface antigens
and the gene expression profile of transcription factors
that are involved in hematopoiesis in different cell pop-
ulations.

Design and Methods

Patients
We studied the occurrence of CD33/CD56 coexpress-

ing cells in 134 follow-up BM specimens from 64 children
(27 with DS, 37 without DS) with AML in complete
remission who were treated according to the AML-BFM-
98-study. The children without DS consisted of two
groups: the first group was selected for French-American-
British (FAB) subtype and included cases with M7 (n=13)

and M6 (n=3) AML, because of the highly similar mor-
phological and immunological features of the blast cells
from these forms of AML and ML-DS (apart from
GATA1s). The second group consisted of children with
FAB M2 (n=11) and M5 (n=10), who were selected to rep-
resent genetically homogeneous subgroups of sporadic
AML (Table 1). Quantitative real-time polymerase chain
reaction (RQ-RT-PCR) was performed on 19 specimens of
FACS sorted cells (CD33+/CD56+ and CD33+/CD56–)
derived from BM of children with and without DS.

Additionaly, BM or peripheral blood specimens from
seven children with DS who did not receive any
chemotherapy treatment were studied by flow cytometry
for the occurrence of CD33/CD56 coexpressing cells.
These BM aspirations were performed to exclude a
leukemic disorder as a differential diagnosis. BM speci-
mens were obtained after informed consent from each
patient and/or the patient’s guardian. All investigations
had been approved by the local ethics committees and
were in accordance with an assurance filed with and
approved by the Department of Health and Human
Services.

Diagnosis
Diagnoses and classifications were established

according to the criteria of the FAB31-33 group by the ref-
erence laboratory of the AML-BFM studies in Muenster
and were reviewed by an expert group of independent
hematologists. The diagnoses of M0 and M7 subtypes
were always confirmed by immunological methods.
Cytogenetic and molecular genetic data were obtained
from the reference laboratory of the AML-BFM study (J.
Harbott, Giessen).

Flow cytometry/FACS sorting
Four-color flow-cytometry was performed using antico-

agulated BM samples. After incubating the BM samples
with monoclonal antibodies for 15 minutes, erythrocytes
were lysed for 7 minutes using Versa LyseTM (Beckman
Coulter). Afterwards, the specimens were washed twice
with 2 mL phosphate buffered saline (pH 7.4) and cen-
trifuged (5 minutes, 20° C, 600 g) to remove excess anti-
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Table 1. Patients studied for the occurence of CD33+/CD56+ cells
during chemotherapy.

ML-DS non-DS AML

Number of patients 27 37
Number of follow-ups 58 76
Gender M/F 11/16 18/19
Age at diagnosis [median (range)] 1.8 (0.7-6.5) 4.1 (0.3-17.7)

M2 − 11
M5 1 10
M6 − 3
M7 − 13
ML-DS 26 −



bodies and lysed red blood cells. Specimens were meas-
ured using the FC-500TM (Beckman Coulter), analyzing at
least 30,000 events.

A wide antibodies based on a CD33/CD34 backbone
including fluorescence conjugated myeloid markers CD13-
PE (SJ1D1; Immunotech), CD15-FITC (MMA; Becton
Dickinson), CD33-APC (D3HL60.251; Immunotech) and
HLA-DR-FITC (L243, Becton Dickinson), lymphoid mark-
ers CD7-PE (8H8.1; Immunotech), CD10-FITC (ALB2;
Immunotech), CD19-FITC (J4.119; Immunotech), CD56-
PE (NCAM 16.2; Becton Dickinson), the activation and
proliferation marker CD38-PE (HB7; Becton Dickinson) as
well as the progenitor-associated markers CD34-PC7 (581;
Immunotech) and CD117-FITC (95C3; Immunotech) was
applied. Syto 16 (Molecular Probes) was used to stain
nucleated cells, enabling debris and not completely lysed
erythrocytes to be excluded from analysis. Cell popula-
tions were sorted using standard techniques and the FACS
VantageTM cell sorter (Becton Dickinson). BM specimens
were labeled with CD33-PC5, CD56-PE and CD15-FITC
antibodies. Cells were sorted according to their forward
and sideward scatter and the expression levels of the
labeled antigens. The mean purity of isolated cell popula-
tions was 93% (range 83-99%).

RQ-RT-PCR
Total RNA was isolated from FACS-sorted cells with the

RNeasy Kit (Quiagen, Hilden, Germany) according to the
manufacturer`s instructions. Depending on the amount of
RNA, 0.15-2 µg total RNA was reverse transcribed into
cDNA using SuperScript™ II Reverse Transcriptase
(Invitrogen). Gene expression levels of seven hematopoiet-
ic transcription factors (GATA1, GATA2, RUNX1, ERG,
ETS2, SPI1 and NCAM) were analyzed by RQ-RT-PCR.
For the first six of these genes, expression levels were
determined by the LightCyclerTM 2.0 System (Roche
Applied Science) using SYBR green and gene-specific
primer kits (Search-LC, Germany). The expression levels
of NCAM were quantified in the 7300 Real-Time PCR
System (Applied Biosystems, Germany) using Quantitect
Primer Assay and Quantitect SYBR Green RT-PCRTM kits
(Qiagen, Germany). Expression levels were calculated
either by determining copy numbers according to specific
standard curves and normalizing them to the expression
level (Search-LC Kits) of the house-keeping gene
cyclophilin B or by relative quantification using the 2-∆∆CT

method (Quantitect Kit).34

Results

Abnormal coexpression of CD56+ cells in the CD33+

fraction in children with ML-DS during chemotherapy
Children with ML-DS in complete remission during

chemotherapy (determined by morphology and multipa-
rameter flow cytometry) aberrantly expressed CD56

(NCAM) at the surface of myeloid cells. These
CD33+/CD56+ cells could be further separated by their for-
ward-/sideward scatter features into monocytes and gran-
ulocytes (Figure 1). The CD56-positive myelocytes did not
differ morphologically from normal (CD56–) monocytic or
granulocytic cells. Apart from CD56, their immunopheno-
type did not differ from normal monocytes (CD33++,
CD13++, CD15+, CD36++, CD14++, CD65w++) or granulo-
cytes (CD33+, CD13++, CD15++, CD14+, CD65w+).

Even though CD33+/CD56+ cells are also detectable in
remission BM specimens from non-DS AML cases, chil-
dren with ML-DS have a statistically significantly higher
proportion of CD33+/CD56+ cells in the CD33+ fraction:
71%±6% vs. 4%±1%, p<0.00001 (Figure 2).

The occurrence of CD33+/CD56+ cells is associated with
stress hematopoiesis in children with DS

We wanted to determine whether the occurrence of
CD33+ /CD56+ cells in regenerating BM of children with
ML-DS was treatment-dependent. We, therefore, studied
the relationship between time-points and the size of the
CD33/CD56 population. Using a time-dependent variance
analysis, we found that there was a significant decrease
(p=0.02) in the size of the CD33+ /CD56+ population over
time: i.e. lower values during and after maintenance ther-
apy (BM samples 7 and 8), than during the period of inten-
sive chemotherapy (BM samples 2 to 5) (Figure 3). For both
groups (ML-DS and non-DS AML), morphological studies
showed significantly increased proportions of myeloid
and erythroid lineage progenitor cells (>50% each), an
indicator of stress hematopoiesis, during the period of
intensive chemotherapy than during and after maintenace
therapy. The levels at the latter timepoints were in the
same range as those of normal control BM samples.

CD33+ /CD56+ cells were also present at high levels
(>85%) in neonates and children with DS who did not
receive any chemotherapy, whose hemogram showed a
left-shift accompanied by an increased white blood count
(WBC) due to increased hematopoiesis (for instance as a
consequence of severe infections and/or sepsis). In con-
trast, CD33+ /CD56+ cells in DS children with a normal dif-
ferential blood count (without any sign of leukemic blasts
or increased hematopoiesis with a left-shift) accounted for
less than 10% of all myeloid cells (Table 2).

RUNX1 is overexpressed in CD33+/CD56+ cells
Using RQ-RT-PCR, we confirmed the overexpression

of NCAM in DS CD33+/CD56+ cells compared to its
expression in DS CD33+/CD56– cells (122±46 vs.
1.4±0.4, p=0.04) and non-DS CD33+/CD56– cells
(122±46 vs. 10.6±4.8, p=0.02). Non-DS CD33+/CD56+

cells show a 1.6-fold higher NCAM expression com-
pared to non-DS CD33+/CD56– cells, reflecting the
lower expression of NCAM in non-DS CD33+/CD56+

cells, as determined by flow cytometry (Figure 4A). We
also analyzed the level of RUNX1 mRNA in the

RUNX-NCAM in ML-DS
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CD33+/CD56+ of children with and without DS. The
expression of RUNX1 was more than 5 times higher in
the CD33+/CD56+ cells than in the CD33+/CD56– ones
(p<0.02). Expression within the CD33+/CD56+ and
CD33+/CD56- cells was similar in children with and
without DS (Figure 4B).

Regarding the chromosome 21 encoded transcription
factors ERG and ETS2, there were no significant differ-
ences in the levels of mRNA expression between DS
CD33+/CD56+ and CD33+/CD56– cells. Furthermore,
there were no statistically significant differences

between the analyzed cell populations regarding either
GATA1, which was expressed at low levels as expected
in monocytic and granulocytic cells, or SPI1, which
showed high levels of expression that are characteristic
of granulocytes and monocytes.

Discussion

In the course of performing minimal residual disease
studies in childhood AML, we found that, during inten-
sive chemotherapy, children with ML-DS exhibit aber-
rant populations of CD56-coexpressing myelocytes
(granulocytes and monocytes). These cells do not show
any signs of being leukemic blasts either by morpholo-
gy or by multi-color flow cytometry. Functionally, they
are not different from their normal counterparts. As nor-
mal hematopoietic cells do not coexpress CD56 on
myeloid cells, the combination of
CD33+/CD56+/CD34+/- is commonly regarded as a sensi-
tive and specific leukemia-associated immunopheno-
type (LAIP) for monitoring minimal residual disease.35-37

We are the first group to describe that the aberrant coex-
pression of CD33 and CD56 in regenerating bone mar-
row is common in children with ML-DS and is not asso-
ciated with poor outcome. This prompted us to system-
atically screen (a) remission marrow from non-DS chil-
dren during their treatment for AML, and (b) marrow
from DS children without hematologic malignancies for
the occurrence of CD33+/CD56+ cells. Interestingly, we
found that the appearance of CD33+/CD56+ cells in indi-
viduals with DS is strongly correlated to stress
hematopoiesis, either due to regeneration during inten-
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Figure 1. Coexpression of CD33 and CD56 in regenerating
bone marrow of a child treated for ML-DS. Virtually all mono-
cytes and granulocytes show aberrant coexpression of CD33
and CD56. These cells are not morphologically distinguish-
able from normal monocytes and granulocytes.

Figure 2. CD33+/CD56+ cells are also detectable in regenerating
BM of children with non-DS AML, however at a significantly lower
level.
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sive chemotherapy or as a consequence of severe infec-
tions or sepsis. In addition, we were able to show that
the population of CD33+/CD56+ cells decreases signifi-
cantly over time during maintenance treatment, which
is less BM suppressive than chemotherapy during the
intensive phases of treatment. By quantitative RT-PCR
we also validated the increased NCAM expression at
the level of mRNA. During chemotherapy, there were
significantly lower proportions of CD33+/CD56+ cells in
non-DS children than in DS children, suggesting quali-
tative differences in the cell populations of DS and non-
DS children during stress hematopoiesis. In an attempt
to find possible explanations for the excessive expres-

sion of NCAM in DS individuals with increased
hematopoiesis, we analyzed the expression of transcrip-
tion factors that are involved in hematopoiesis and/or
leukemogenesis in ML-DS. We did not find differences
in the expression levels of GATA1, GATA2, SPI1, ERG or
ETS2 between CD33+/CD56+ and CD33+/CD56– cells.
The most important finding was the elevated expres-
sion of RUNX1 in CD33+/CD56+ cells. The recently
detected RUNX1 binding site within the NCAM pro-
moter38 might explain this observation.

The a priori presence of three copies of RUNX1 in indi-
viduals with DS might be the prerequisite for the abnor-
mal hematopoiesis under the condition of stress: as we

RUNX-NCAM in ML-DS
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Figure 3. CD33/56 measurements in bone marrow aspirates were correlated to the pre-defined timepoints during treatment in the AML-
BFM studies. As children with ML-DS do not receive a second induction course, maintenance treatment starts earlier, so that timepoint
BM6 does not exist in these children. (AIE: Ara-C [cytosine arabinoside], idarubicin, etoposide, HAM: high-dose Ara-C, mitoxantrone, AI:
Ara-C, idarubicin, haM: medium-high dose Ara-C, mitoxantrone, HAE: high-dose Ara-C, etoposide, G-CSF: granulocyte colony-stimulating
factor, Rand: randomization). A. Treatment schedule for ML-DS. B. Treatment schedule AML-BFM 98 study (excl. ML-DS).

Table 2. Expression of CD33+/CD56+ cells in neonates and children with DS who did not receive chemotherapy.

Patient Gender Age Source Leukocytes [1/µL] Neutrophils [%] Comment CD33/56
cells [%]

M.F. M 16 years BM n.a. 78 left shift (sepsis) 98
J.S. M 5 months BM 65500 67 left shift (pneumonia) 100
J.N. M 1 day PB 36300 48 left shift (sepsis) 87
P.D. F 5 days BM n.a. 49 normocellular, representative 5
S.P. M 13 days BM n.a. 69 normal differential blood profile 9
F.W. M 9 days PB n.a. 28 normal differential blood profile 0
S.M. M 1 day PB n.a. n.a. n.a. 5

BM: bone marrow; PB: peripheral blood; WBC: white blood count; n.a.: not available.
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showed, there is an imbalance towards more immature
hematopoietic cells. Therefore, the anticipated down-
regulation of RUNX1 expression during normal neu-
trophil development30 might be delayed. This relatively
increased RUNX1 expression might induce (through
promoter binding) an elevated NCAM level that again
supports the maintenance of hematopoietic stem cells21

resulting in a self-inducing system of increased
hematopoiesis. The co-operation between NCAM,
with its hematopoiesis-supporting capacity, and
RUNX1, which is responsible for early granulocy-
topoiesis is likely to produce an environment conducive
to increased growth of granulocytes. This proposed
mechanism is even more likely to occur in DS individu-
als - due to the three copies of RUNX1 - giving rise to
the observed coexpression of RUNX1 and NCAM in
granulocytes and monocytes. Overexpression of
NCAM has also been reported in non-hematopoietic
cells of mouse embryos with trisomy 16,39 indicating its
generally critical role in the pathophysiology of humans
with trisomy 21. The observed overexpression of
RUNX1 during particular stages of hematopoiesis in
individuals with DS might explain its role in leukemo-
genesis in ML-DS: it has been shown recently that
RUNX1 promotes proliferation of megakaryocytic pro-
genitors and downregulates terminal differentiation of
megakaryocytes.40 The fact that fetuses with DS show
increased megakaryopoiesis (unpublished data; personal
communication from I. Roberts, London, UK) confirms the
proposed higher turnover of megakaryocytic progeni-
tors. This phenomenon might result clinically in the

often described thrombocytosis in infants with DS.41

There are, however, also reports of transient thrombo-
cytopenia in neonates with DS,42 which must be put
into perspective because of the high incidence of con-
gestive heart failure (15/25) and furthermore the possi-
bly undetected cases of TMD in this cohort. This would
be in line with the hypothesis, published by Greaves et
al.,43 that leukemia-specific genetic alterations could
arise in any type of proliferating cell but they are only
likely to gain a clonal advantage in the context of a par-
ticular developmental pathway.

The fact that RUNX1 is not overexpressed in the
leukemic blast cell population of ML-DS and TMD5,44

does not necessarily exclude that it has a role during
leukemogenesis. On the one hand, the final mature blast
cell with megakaryocytic features is not typically the
cell in which the malignant transformation has taken
place; more likely, as proposed by Bonnet and Dick,45

leukemogenesis seems to be a multistep process starting
from a leukemic stem cell that undergoes hierarchical
differentiation into leukemic blasts, as known from nor-
mal hematopoiesis. On the other hand, even though
RUNX1 seems not to be relevant for the proliferation of
mature blast cells, it might play a decisive role in the
growth advantage of the leukemic clone – most likely
expressed by the generation of GATA1s. For the malig-
nant transformation to ML-DS we propose that trisomy
21 can be assumed as both a predisposition and a first
event46 (class II mutation, according to the model pro-
posed by Gililand et al.).47 For the development of overt
leukemia, the here described phenomenon of combined
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Figure 4. RQ-RT-PCR showed NCAM overexpression in CD33+/CD56+ cells (A), confirming the observed overexpression of NCAM by flow-
cytometry. Moreover, a greater than 5-fold overexpression of RUNX1 was observed in the CD33+/CD56+ subclone of cells (B).
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RUNX1 and NCAM overexpression during increased
hematopoiesis (in the context of stress) in individuals
with DS might be an important requirement for the
selection of the malignant GATA1s clone during leuke-
mogenesis: spontaneous mutation of GATA1 is more
likely to occur during increased turnover of megakary-
ocytic progenitors – due to the overexpression of
RUNX1 – than under normal hematopoietic conditions.
We hypothesize that at least three events are required to
occur within a certain time frame for leukemogenesis:
(i) trisomy 21, (ii) acquired mutation of GATA1 and (iii)

increased and qualitatively different hematopoiesis
with overexpression of RUNX1.
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