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Molecular and clinical correlates in iron overload
associated with mutations in ferroportin 

HFE-related hemochromatosis (HC) is
a prevalent hereditary iron overload
disorder in humans.1 Hereditary iron

loading syndromes, due to mutations in
other genes have, however, recently been
reported. Ferroportin-associated iron over-
load (termed ferroportin disease) is increas-
ingly recognized as a cause of hereditary
hyperferritinemia.2 Ferroportin disease was
recognized in 1999 as an autosomal domi-
nant form of hereditary iron overload with
unusually high reticuloendothelial iron
stores and normal-low transferrin satura-
tion.3 This pathologic phenotype was linked
to the A77D mutation of ferroportin (Fpn)4

in 2001 as well as other Fpn mutations.5-11

Fpn is a transmembrane protein that
exports iron in many tissues.12-14 Fpn is the
receptor for hepcidin, a hormone produced
by the liver in response to iron and inflam-
mation. Hepcidin binds to Fpn resulting in
Fpn internalization and degradation in lyso-
somes resulting in reduced iron egress.15

Patients with ferroportin disease present
with either reticuloendothelial iron overload
and relative plasma iron deficiency, consis-
tent with a lack of iron export activity2 or
increased transferrin saturation and paren-
chymal cell iron overload.16 Recent in vitro
studies have shown that a subgroup of Fpn
mutations expressed in cultured cells are
hepcidin resistant and show increased rather
than diminished iron export activity.17-20 The
paucity of good clinical data on ferroportin
disease has been an obstacle to understand-
ing its pathogenesis, as pointed out by Liu et
al.20 In this study we set out to characterize
the biochemical and metabolic properties of
Fpn mutants A77D, N174I, G80S in vitro and

verify their clinical correlates in patients
with ferroportin disease.

Design and Methods

Fpn mutations
We studied three human Fpn mutations:

FpnA77D, FpnN174I and FpnG80S. The cod-
ing regions of the hemochromatosis (HFE),
transferrin receptor 2, hemojuvelin and hep-
cidin genes were also analyzed in Fpn
patients. Clinical data of the patients can be
found elsewhere.21

Cells and media
Mouse Fpn cDNA was cloned into pEGFP-

N1 (Clontech). This vector expresses Fpn as a
fusion protein with a carboxyl terminal green
fluorescent protein (GFP). All cell lines were
maintained in Dulbecco's minimal essential
media (DMEM) with 10% fetal bovine serum
and transfected with pFpn-EGFP-N1 or
pFpn(mutations)-EGFP-N1 using Nucleofector
(Amaxa, Gaithersburg, MD, USA). Mouse
bone marrow macrophages were cultured as
previously described22 and transfected using
Nucleofector technology.

Generation of Fpn constructs
All human Fpn mutations were generated in

pFpn-EGFP-N1 using a QuikChange Site-
Directed Mutagenesis Kit (Stratagene)TM.

Other procedures 
Hepcidin was synthesized, iodinated and

used in binding assays as described else-
where.15 Fpn-GFP expressing cells were solu-
bilized in 150 mM NaCl/10 mM EDTA/10
mM Tris, pH 7.4/1% Triton X-100/protease
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Mutations in ferroportin (Fpn) result in iron overload. We correlate the behavior of three
Fpn mutants in vitro with patients’ phenotypes. Patients with Fpn mutations A77D or
N174I showed macrophage iron loading. In cultured cells, FpnA77D did not reach the
cell surface and cells did not export iron. Fpn mutant N174I showed plasma membrane
and intracellular localization, and did not transport iron. Fpn mutation G80S was tar-
geted to the cell surface and was transport competent, however patients showed
macrophage iron. We suggest that FpnG80S represents a class of Fpn mutants whose
behavior in vitro does not explain the patients’ phenotype. 
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inhibitor mixture (Roche Applied Science) and samples
analyzed by SDS-PAGE followed by western blotting19

using rabbit anti-GFP (1:10,000, Abcam #ab6556) or goat
anti-human actin (1:1,000 Santa Cruz Biotechnology) fol-
lowed by either peroxidase-conjugated goat anti-rabbit
IgG (1:12,500, Jackson ImmunoResearch Labs) or peroxi-
dase- conjugated donkey anti-goat IgG (1:5,000, Santa
Cruz Biotechnology). Densitometric analysis was per-
formed using Biorad FluorMax with Quantity One soft-
ware. For ferritin analysis, cells expressing GFP only, Fpn-
GFP or mutant Fpn-GFP were incubated with 10 µM fer-
ric ammonium citrate (FAC) for 24 hours, harvested and
ferritin content determined by enzyme-linked immuno-
sorbent assay (ELISA) (Laguna Scientific). All western
blots were normalized for protein using the bicinchoninic
acid assay (Pierce).

Results and Discussion

Clinical data
Clinical and biochemical data of patients carrying the

FpnA77D mutation have been reported and discussed
previously.3,4,21 Patients present with high serum ferritin
and low transferrin saturation. Transferrin saturation
increases with age, with values above 50% in older sub-
jects.3,4 We studied six patients with FpnG80S and three
patients with FpnN174I (Table 1). All these patients were
negative for mutations in HFE, transferrin receptor 2,
hemojuvelin and hepcidin genes. Perls’ Prussian blue liver
staining showed iron accumulation in Kupffer cells in sub-
jects with A77D, G80S and N174I mutations (data not
shown).

Subcellular localization of mutant Fpn
Mouse and human Fpn are highly conserved (90%

identity) and we previously showed that mouse Fpn-GFP
was functional for iron export when expressed in human
cells.15,19 We generated known human Fpn mutations in
mouse Fpn-GFP expressed under the control of the cyto-
megalovirus promoter, transfected cultured HEK293T
cells and examined Fpn-GFP cellular localization. Wild
type Fpn localized to the cell surface (Figure 1A, Fpn-
GFP). Fpn mutant A77D was predominantly intracellular
(Figure 1A, FpnA77D-GFP). Fpn mutant G80S showed cell
surface localization (Figure 1A, FpnG80S-GFP). FpnN174I-
GFP showed both intracellular and cell surface localiza-
tion (Figure 1A, FpnN174I-GFP). The subcellular distribu-
tion of the Fpn mutants was unaffected by the type of
cells transfected (data not shown).

Response of mutant Fpn to hepcidin
Addition of hepcidin to cells expressing wild type Fpn-

GFP results in the internalization and degradation of Fpn-
GFP. In a 4-hour incubation with hepcidin, most of the
wild type Fpn was internalized. FpnA77D-GFP did not
show any response to hepcidin. Some FpnG80S-GFP

remained on the cell surface after 4 hours of hepcidin
(Figure 1A). After 24-hours most of the mutant G80S Fpn
had been internalized. Fpn N714I-GFP localization
remained unchanged after incubation with hepcidin.
Western blot analysis showed that N174I and G80S were
expressed at concentrations comparable to wild type Fpn
(Figure 1B), whereas FpnA77D-GFP expression was
lower. Sequence analysis showed that the decreased
expression observed in FpnA77D-GFP could not be
ascribed to incidental mutations in the coding sequence or
the promoter and may reflect the stability of the
FpnA77D protein. Western blot analysis of cells express-
ing Fpn-GFP detected two bands associated with Fpn-
GFP. The two Fpn-GFP bands were observed independ-
ently of the Fpn mutants introduced. Fpn-GFP has a pre-
dicted molecular mass of 97kDa. The lower band may
represent a degradation product of Fpn-GFP.
Densitometric analysis of Fpn-GFP westerns blots
showed 77% of wild type Fpn-GFP degraded after 4-
hours of treatment with hepcidin while Fpn A77D
showed a 14% reduction in protein levels, Fpn G80S
showed a 66% reduction and Fpn mutant N174I showed
a 10% decrease in Fpn. Cells incubated in high iron
increase cytosolic iron and accumulate the iron storage
protein ferritin (Figure 2A, GFP black bars). Expression of
Fpn-GFP decreased cytosolic iron and ferritin levels, even
in the presence of iron-containing media (Figure 2A, WT
Fpn-GFP). Cells expressing FpnA77D-GFP had high levels
of ferritin. Expression of FpnG80S-GFP resulted in ferritin
levels similar to that of cells expressing wild type Fpn-
GFP. In cells expressing FpnN174I-GFP, ferritin levels were
high suggesting a defect in iron transport. This is the first
report of an Fpn mutant protein that localizes to the cell
surface but does not export iron.

Addition of hepcidin to cells expressing wild type Fpn
resulted in an increase in ferritin (Figure 2A gray bars).
FpnA77D cells showed no change in ferritin levels in
response to hepcidin. Cells expressing FpnG80S showed a
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Table 1. Biochemical parameters in patients with the ferroportin
disease.

Patient Age Sex Hemoglobin Transferrin Serum Ferroportin
(years) (M/F) g/dL saturation ferritin mutation

(%) g/L

Normal M/F 12-18 20-50 12-300 none
1. 66 F 14.9 48 5815 N174I
2. 38 F 13.4 45 5430 N174I 
3. 45 M 14.7 39 3200 N174I
4. 34 M 15.8 60 4420 G80S
5. 52 M 16.1 42 1540 G80S
6. 55 M 14.8 30 2309 G80S
7. 51 F 12.5 27 1727 G80S
8. 17 M 15.9 23 1122 G80S
9. 57 M 14.4 34 1434 G80S

Clinical data associated with iron overload disorder due to unique mutations in
FPN. Hemoglobin, transferrin saturation and serum ferritin levels were
determined as previously described.3



modest increasein ferritin after incubation with hepcidin,
although the increase was less than that observed for wild
type Fpn-GFP cells (p<0.01). The decreased response to
hepcidin could indicate impaired hepcidin binding or an
altered response subsequent to hepcidin binding. To dis-
tinguish between these possibilities we measured the
binding of 125I-hepcidin to cells expressing wild type or
Fpn mutants (Figure 2B). Cells expressing FpnA77D-GFP
did not bind 125I-hepcidin. Cells expressing FpnG80S-GFP
bound 125I-hepcidin similarly to wild type but FpnN174I-
GFP-expressing cells bound 125I-hepcidin less efficiently.

Ferroportin is an iron exporter, expressed in macro-
phages recycling iron from senescent erythrocytes, ente-
rocytes absorbing dietary iron and hepatocytes which

store iron.23 The concentration of Fpn on the cell surface
is controlled by hepcidin. Hepcidin binds to Fpn, causing
its internalization and degradation thus blocking cellular
iron efflux.15 Autosomal-dominant mutations in Fpn result
in iron overload with heterogeneous phenotypes.2 Studies
suggest that Fpn mutations fall into two classes: mutant
Fpn molecules that fail to reach the plasma membrane or
mutant Fpn that is capable of exporting iron but is resist-
ant to hepcidin-mediated down-regulation.17-19 This latter
class of mutations contradicts the paradigm that Fpn-
related iron overload or ferroportin disease is always due
to loss of protein function. This class of Fpn mutations
suggests that resistance to hepcidin could result in high
iron egress from the intestine and macrophages, increased
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Figure 1. Human Fpn mutations affect Fpn localization and hep-
cidin-induced internalization. A. HEK293T cells were transiently
transfected with plasmids containing wild type (WT) Fpn-GFP,
FpnA77D-GFP, FpnG80S-GFP or FpnN174I-GFP. Eighteen to 24 h
after transfection, localization of Fpn-GFP and response to hep-
cidin were assessed by epifluorescent microscopy. Cells were incu-
bated with or without 1 µg/mL hepcidin for 4 and 24 h to assess
hepcidin response. B. 18-24 h after transfection cells were incu-
bated with or without 1 µg/mL hepcidin for 4 h, and extracts were
analyzed by western blot analysis using antibody to GFP and actin
as a loading control, as described in the Design and Methods.

A

Figure 2. Fpn mutations affect intracellular ferritin levels and 125I-
hepcidin uptake. A. HEK293T cells were transiently transfected
with plasmids containing wild type (WT) Fpn-GFP, FpnA77D-GFP,
FpnG80S-GFP or FpnN174I-GFP. Eighteen hours after transfection,
cells were cultured with ferric ammonium citrate (FAC) (20 µM
iron) for 24 h. Cells were incubated with 100 µµM cycloheximide for
1 h followed by 1 µg/mL hepcidin for 4 h. Ferritin levels were
determined by ELISA and normalized to total protein concentra-
tion. Error bars represent the standard error of the mean of three
independent experiments. B. Eighteen hours after transfection,
125I-hepcidin was added to HEK293T and 125I-hepcidin uptake
measured as described previously.15,19 Error bars represent the
average of three separate experiments in triplicate (n=9).
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transferrin saturation and progressive parenchymal cell
iron overload. 

Here we describe the in vitro behavior of two Fpn
mutants and a previously described FpnA77D mutant, and
correlate these observations with clinical findings. All
patients showed the ferroportin disease phenotype with
macrophage iron loading, but the three Fpn mutants
showed striking differences when expressed in cultured
cells. Fpn A77D and N174I were unable to export iron con-
sistent with the patients’ phenotype of increased
macrophage iron retention. That Fpn N174I leads to intra-
cellular iron accumulation was surprising because approxi-
mately half of Fpn N174I-GFP was targeted to the cell sur-
face. Our data suggest that Fpn mutant N174I is transport-
incompetent. Decreased function of Fpn is limiting for
macrophage iron export but not for intestinal iron export.4,15

Fpn G80S-GFP was expressed at the cell surface and
exported iron at levels similar to those of wild type Fpn.
FpnG80S-GFP showed a slower rate of internalization
compared to Fpn-GFP. Fpn mutation Q182H, also showed
a slower rate of hepcidin-mediated Fpn internalization.19

Fpn mutations have been described that are not internal-
ized in response to hepcidin, and patients with these
mutations show hepatocyte iron loading. Surprisingly,
patients with FpnG80S were almost indistinguishable

from those with Fpn A77D or N174I Fpn. The extent of
transferrin saturation in patients carrying the G80S muta-
tion was inappropriately low compared with the levels of
serum ferritin (Table 1). The discrepancy between the in
vitro findings and the clinical phenotypes was not due to
the specific cellular context. It is possible that in vitro
expression of Fpn regulated by the cytomegalovirus pro-
moter (constitutive high expression) obscures trafficking
defects that are seen when Fpn is expressed at endoge-
nous levels. Published studies suggest that in macro-
phages, Fpn may predominantly localize to an intracellu-
lar compartment and is targeted to the cell surface upon
iron loading.24 This translocation step may not be appro-
priately modeled in non-macrophage cell lines or even in
macrophages overexpressing Fpn. This study clearly
demonstrates that several mechanisms may lead to
abnormal trafficking and/or function of Fpn.
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