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Editorials and Perspectives

Since 1845, when the term leukemia was used for
the first time by Virchow, advances in biochemistry,
cytogenetics, cytochemistry, immunology, and subse-
quently molecular biology have led to the identifica-
tion of different subtypes of acute myeloid leukemia
(AML). Especially during the last couple of years, the
almost exponentially growing understanding of the
hematopoietic system has revealed that AML demon-
strates extraordinary morphological, biological, and
clinical heterogeneity. Therefore, clinically relevant
classification systems that reflect the underlying tumor
biology are needed. In an attempt to define a biologi-
cally and clinically useful working nomenclature, the
current World Health Organization (WHO) classifica-
tion of myeloid neoplasms incorporated those disease
characteristics that have proven to possess clinical and
biological relevance.1 This effort resulted in a more
sophisticated classification that divides AML into four
large subclasses, which can be further subdivided into
several distinct AML subtypes (Table 1). Nevertheless,
for many myeloid leukemia subtypes no specific
genetic or pathogenic event has been discovered yet,
and within well-defined AML subgroups such as cases
with t(8;21)(q22;q22) or inv(16)(p13q22) considerable
clinical heterogeneity is observed.2 Thus, additional
subtypes may exist even within the same cytogenetic
category, thereby highlighting the need to further
refine the current classification of AML. 

AML cytogenetics and molecular genetics
Cytogenetics currently represents the most powerful

prognostic factor for assigning AML patients into risk-
groups at diagnosis. However, novel molecular mark-
ers allow AML subclasses to be further dissected at the
molecular level. For example in the large group of AML
patients presenting with a normal karyotype internal
tandem duplications (ITD) of the FLT3 gene, partial
tandem duplications (PTD) of the MLL gene, as well as
mutations of CEBPA and NPM1 have been shown to
be of prognostic relevance, as have the expression lev-
els of EVI1 and BAALC.3,4 Nevertheless, there is still no
commonly accepted risk stratification for this group of
leukemia patients, nor are the leukemogenic mecha-
nisms fully understood yet.

Advances in molecular genetics have provided sever-
al lines of evidence that strongly suggest a multistep
pathogenesis of AML. While the expression of a single
fusion gene protein, e.g. RUNX1-CBFA2T1 resulting
from a t(8;21), can block myeloid differentiation with-
out causing leukemia, other events, such as constitu-
tively activated FLT3 or RAS family members, can
induce a myeloproliferative phenotype. Thus a combi-
nation of differentiation-blocking and proliferation-

inducing mechanisms might be involved in leukemo-
genesis.3

Gene expression profiling in leukemias
Genomic studies now offer the possibility of captur-

ing the molecular variation underlying the biological
and clinical heterogeneity of AML, with DNA microar-
ray based genome-wide gene expression profiling
(GEP) representing one of the most powerful experi-
mental approaches. Notably, the utility and promise of
this novel technology was first demonstrated in
leukemias. By analyzing AML and acute lymphoblas-
tic leukemia (ALL) samples Golub et al. demonstrated
the potential usefulness of GEP-based classification of
leukemias.5 Using an unsupervised class discovery pro-
cedure the authors were able to distinguish AML and
ALL without previous knowledge of these classes, and
by developing a supervised class predictor, new
leukemia cases could be accurately assigned to one of
these two leukemia classes. Unexpectedly, many of
the genes characterizing the different leukemia sub-
types were not markers of hematopoietic lineage, but
genes related to cancer pathogenesis.5 Thus, gene
expression patterns that are useful for cancer classifica-
tion can also provide further insight into cancer biolo-
gy.

Gene expression patterns associated with genomic
aberrations in AML

Trisomy 8 was one of the first recurrent cytogenetic
aberrations in AML to be investigated by GEP.
Compared to AML cases with normal cytogenetics, tri-
somy 8 cases are characterized by higher average
expression of genes located on chromosome 8.6 Similar
gene dosage effects have been reported for other chro-
mosomal gains and losses in AML.7,8 Moreover, super-
vised analytical approaches also proved to be useful for
discriminating characteristic gene expression patterns
in AML cases with balanced chromosomal re-
arrangements, such as cases with inv(16), t(8;21),
t(15;17) and t(11q23)/MLL.9-14 Similarly, with the aid of
supervised statistical algorithms characteristic gene
expression patterns have been defined for FLT3
ITD,9,14–17 CEBPA,14 and NPM1 mutations.18,19 However,
in contrast to translocations involving the MLL gene, in
larger studies no significant gene expression signature
was detected for cases with MLL PTD9,12 reflecting the
molecular heterogeneity of MLL PTD cases and their
clear distinction from AML with t(11q23). Likewise,
AML cases with NRAS mutations did not display an
apparent gene expression signature.16 Thus, not all
molecular genetic alterations necessarily have to affect
gene expression levels in a characteristic way. A possi-
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ble explanation might be that additional events in MLL
PTD or NRAS mutated cases result in various different
pathomechanisms.

GEP-based prediction of AML subtypes - a powerful
tool for AML classification 

Importantly, the distinct gene signatures associated
with cytogenetic and molecular genetic aberrations
can also be used to accurately predict the respective
leukemia subgroups.12,19,20 Furthermore, classifiers gen-
erated from pediatric AML samples accurately strati-
fied adult leukemia cases exhibiting the same genetic
aberrations,12 thereby indicating age-independent aber-
ration-specific pathomechanisms. Moreover, these
diagnostic signatures seem to be quite robust with
regard to technical aspects of specimen sampling and
target preparation.21

Therefore, in the future gene expression profiling
might offer a global, highly accurate approach for the
diagnosis of known leukemia subgroups, especially for
those associated with recurrent genetic aberrations (see
also Table 1), and indeed first efforts towards this goal
are very promising.20,22 In addition, this approach will
most likely significantly contribute to a refined classi-
fication of AML, as problems in predicting certain
leukemia subgroups might be indicative that the cur-
rent classification system does not fully reflect the
underlying biology and that novel tumor classes
remain to be discovered.

Table 1. WHO classification of acute myeloid leukemia.

Acute myeloid leukemia with recurrent genetic abnormalities
AML with t(8;21)(q22;q22), (AML1/ETO)
AML with inv(16)(p13q22) or t(16;16)(p13;q22), (CBFβ/MYH11)
AML with t(15;17)(q22;q12), (PML/RARα) and variants
AML with 11q23 (MLL) abnormalities

Acute myeloid leukemia with multilineage dysplasia
With prior myelodysplastic syndrome
Without prior myelodysplastic syndrome

Acute myeloid leukemia and myelodysplastic syndromes, therapy related
Alkylating agent/radiation-related
Topoisomerase II inhibitor-related type
Others

Acute myeloid leukemia, not otherwise categorized
AML, minimally differentiated
AML without maturation
AML with maturation
Acute myelomonocytic leukemia
Acute monoblastic and monocytic leukemia
Acute erythroid leukemia
Acute megakaryoblastic leukemia
Acute basophilic leukemia
Acute panmyelosis with myelofibrosis
Myeloid sarcoma

Figure 1. Hierarchical cluster analysis of diagnostic AML samples. A. Thumbnail overview of two-way hierarchical cluster of 119 AML
samples (columns) and 6,283 variably-expressed genes (rows). Mean-centered gene expression ratios are depicted by a log2 pseudocol-
or scale (indicated).  Gray denotes poorly-measured data. B. Enlarged view of the sample dendrogram.  Samples are color-coded accord-
ing to prognostically-relevant cytogenetic groups, based on conventional chromosome banding and fluorescent in situ hybridization analy-
sis (color key indicated).  Three paired samples of peripheral blood and bone marrow are indicated by horizontal black bars. C and D.
Gene expression features extracted from clusters correlating with t(8;21) and inv(16), respectively (locations indicated by vertical col-
ored bars).  Due to space limitations, only named genes (and not EST) are indicated (modified with permission from Büllinger et al.,9

Copyright 2004, Massachusetts Medical Society).
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Discovery of novel molecularly defined AML
subclasses

Besides providing novel biological insights, unsuper-
vised cluster analysis also represents a powerful tool for
the discovery of novel AML subgroups of clinical rele-
vance. In a large study based on unsupervised analysis
samples from 285 patients with AML were grouped
into sixteen clusters.14 Some clusters were characterized
by high frequencies of certain molecular lesions or
mutations, for example two clusters (#1 and #16) which
both harbored cases with t(11q23)/MLL abnormalities,
but also included patients without these molecular
lesions. Furthermore, this study identified a distinctive
gene expression pattern associated with increased EVI1
expression and poor treatment outcome. Another clus-
ter associated with shorter survival included cases with
high risk cytogenetic markers, such as monosomies 7
and 5, and the translocation t(9;22). Interestingly, this
cluster displayed a signature comparable to that of
CD34+ cells, thereby suggesting a possible common
mechanism for resistance to therapy.14 While favorable
cytogenetic subgroups were characterized by homoge-
nous clustering, Valk et al. also observed a molecular
variation within these homogenously grouped cases.14 For
example in cases with inv(16) or t(8;21) clustering was
less stringent when more than 2,856 probe sets were

included into the unsupervised analysis. In agreement
with Valk et al., based on unsupervised clustering using
6,283 genes we also detected some molecular hetero-
geneity within the cytogenetically well-characterized
core binding factor leukemias, with each class, t(8;21)
and inv(16), being separated into mainly two groups
(Figure 1).9 Distinct patterns of gene expression within
each of these t(8;21) and inv(16) subgroups might reflect
alternative co-operating mutations/deregulated pathways
leading to transformation, since the primary transloca-
tion/inversion events themselves are not sufficient for
leukemogenesis.23 

In our study, cases with normal karyotype also segre-
gated mainly into two distinct groups, each of which
included a small number of cases from other classes.9

FLT3 aberrations were more prevalent in one subgroup,
while M4/M5 morphologic subtypes defined according
to French-American-British (FAB) criteria, were signifi-
cantly more represented in the other subgroup. In agree-
ment with these results, Valk et al. also identified nor-
mal karyotype-predominated clusters associated with
FLT3 ITD, as well as a cluster including mainly speci-
mens from patients with AML of FAB M4 or M5 sub-
type.14 Notably, in our study Kaplan-Meier analysis
identified a statistically significant difference in overall
survival between the two subclasses.9
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Figure 2. 8q24 amplification in
HL-60.40 A. Enlarged view of the
HL-60 cell line array compara-
tive genome hybridization
(CGH) profile of chromosome 8
encompassing a high-level DNA
amplification in band 8q24.
The amplified clones are col-
ored in red. B-D. Correlation of
array CGH (b) and GEP (C and
D) findings identifies overex-
pressed candidate genes locat-
ed in the amplified region.
Genomic gains and gene
expression levels are color-
coded according to the indicat-
ed pseudocolor scale.
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Monitoring drug effects - drug discovery in AML
Analyzing the effects of all-trans retinoic acid

(ATRA) in acute promyelocytic leukemia (APL)-
derived cell lines, such as NB4 cells, showed that
ATRA-regulated genes included members of the tumor
necrosis factor (TNF) pathway suggesting that this
pathway might intersect with ATRA signaling.24,25

Indeed, the ATRA and TNF interaction involved
increased NF-κB activity followed by a synergistic
induction of NF-κB target genes.25 This supports the
idea that ATRA primes cells to be more susceptible to
differentiation effects of other pathways. In addition,
many promoters of ATRA target genes contain NF-kB
binding sites, providing further evidence that this
pathway might play a role in regulating cell survival in
response to ATRA.26

Besides monitoring drug effects, GEP has also
proven to be a powerful means for discovering both
novel drug targets as well as novel drugs. For example
gene expression-based high-throughput screening
approaches can be used to screen for chemical com-
pounds with differentiation-inducing activity in
AML.27 A microarray-based five-gene differentiation
signature formed the cornerstone for a high through-
put screening method using multiplexed reverse tran-
scriptase polymerase chain reaction, single base exten-
sion reaction and MALDI-TOF (matrix-assisted laser
desorption/ionization time-of flight) mass spectrome-
try. In HL-60 cells treatment with 1,739 different com-
pounds revealed eight chemicals that reliably induced
this differentiation signature. These drugs included
DAPH1 (4,5-dianilinophthalimide), a compound with
epidermal growth factor receptor (EGFR) kinase
inhibiting activity. Therefore, the authors hypothe-
sized in a subsequent study that the Food and Drug
Administration (FDA)-approved EGFR inhibitor gefi-
tinib might also promote differentiation in AML.28 In
accordance with this hypothesis, treatment of AML
cell lines and primary patient-derived AML blasts in
vitro with gefitinib promoted cellular differentiation
even in the absence of EGFR expression suggesting an
EGFR-independent mechanism of gefitinib-induced
differentiation.28

Prognostic signatures in AML
As already mentioned, GEP allows the identification

and prediction of specific signatures correlated with
low-risk and high-risk cytogenetics, as well as with
prognostically relevant molecular genetic aberra-
tions.9,14,20 However, supervised approaches have also
been used to identify novel gene signatures predictive,
for example, of response to chemotherapy. Although
not statistically significant, an early attempt to explore
candidate genes with potential biological significance
overexpressed in AML patients in whom treatment
failed included HOXA9.5 HOXA9, a gene known to be
frequently activated in AML,29 has recently been asso-
ciated with NPM1 mutations,18 which have been
shown to be of prognostic relevance.19,30 Recently,
Heuser and colleagues also made an attempt to identi-
fy a characteristic gene expression profile distinguish-
ing AML samples from patients with good or poor

response to induction chemotherapy.31 Based on super-
vised data analysis, the authors successfully character-
ized a gene expression pattern associated with induc-
tion chemotherapy resistance. Importantly, this signa-
ture provided significant prognostic information in a
previously published independent set of AML
patients,9 and in multivariate analysis this treatment-
response signature proved to be an independent prog-
nostic factor.31

However, other supervised approaches looking for
signatures correlated with AML outcome have been
less successful as in acute leukemia survival or survival
time represent noisy surrogates for the underlying
prognostically relevant tumor subclasses. For example,
a prognostic signature generated in childhood AML by
comparing patients with good and poor outcome,32 did
not allow a significant risk stratification when the
respective gene expression pattern was applied to an
independent data set.12

Semi-supervised outcome prediction approaches
To discover novel prognostically relevant and biolog-

ically meaningful subclasses in AML, a strategy com-
bining the strengths of both supervised and unsuper-
vised approaches has been shown to provide a better
means for outcome prediction.33 Using such a semi-
supervised method called supervised clustering, we were
able to devise an outcome class predictor in AML that
was an independent prognostic factor in multivariate
proportional hazards analysis.9 Importantly, this pre-
dictive gene expression signature also defined good
and poor outcome classes when applied to AML sam-
ples with normal karyotype only, and this result has
recently been validated by an independent study group
analyzing 68 AML cases with normal karyotype.34 On
the other hand, as in the study by Heuser et al,.31 our
AML data also served as an independent test set for a
prognostic signature defined in prostate cancer that
displays a stem cell-like expression profile.35 This sig-
nature possessed prognostic power in independent
samples obtained from 1,153 cancer patients diag-
nosed with 11 different types of cancer including
AML. Thus, several prognostic signatures might be
found in gene expression data sets, thereby clearly
demonstrating the importance of making data sets
publicly available, as ongoing data mining of existing
data sets will significantly contribute to our better
understanding of leukemogenesis.

Future challenges in AML: integration of GEP and
whole genome approaches

Hematologic malignancies have been an attractive
field for genomic approaches such as DNA microarray
technology,36,37 and GEP has contributed an important
new facet to the exploration of AML.38 Nevertheless,
while the above-mentioned findings are definitely
encouraging, further validation of these observations
in larger cohorts and in independent studies is clearly
required before clinical implementation becomes feasi-
ble in AML. However, this requires that large sets of
expression profiles are collected and that cross-plat-
form classification and validation are introduced. First
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analyses have already demonstrated the feasibility of
such approaches, but in order to make cross-platform
classification a powerful, diagnostically accurate tool,
standardized statistical methods are needed. By testing
several data normalization algorithms Nilsson and col-
leagues clearly demonstrated that cautious data pro-
cessing represents an effective way to overcome
microarray platform differences.39 Using a normaliza-
tion method based on relative ranks with unit variance,
the authors were able to show that cross-platform
classification is feasible with high consistency and
reproducibility in both childhood ALL and adult AML
data sets. As increasing numbers of well-annotated
gene expression data sets have recently become pub-
licly available, this powerful approach will contribute
significantly to a successful exploration and compari-
son of existing data sets, thereby providing the prereq-
uisite for the future contribution of GEP towards a
comprehensive molecular leukemia classification and
improved risk-adapted AML management.

An additional challenge for the future will be the
integration of DNA microarray technology and other
whole genome approaches to validate the numerous
biological hypotheses generated by GEP in AML.
Integrative analyses evaluating the AML transcriptome
in the context of other data sources derived, for exam-
ple from comparative genome hybridization arrays
(Figure 2), single nucleotide polymorphism arrays,
tiling arrays, promoter arrays, and proteomics, will
provide new insights into leukemogenesis. However,
for a successful integration, a common language for
communicating genomic profiles across diverse exper-
imental systems will have to be defined, and integra-
tive bioinformatics solutions for sharing and analyzing
the data will have to be developed.
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