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Fibrinogen Mumbai: intracellular retention due to a
novel G434D mutation in the Bββ-chain gene

Fibrinogen is a 340-kDa plasma glyco-
protein converted into insoluble fibrin
during the last step of the coagulation

process by thrombin proteolytic cleavage.1,2

The fibrinogen molecule is synthesized and
secreted into the bloodstream by hepatic
parenchymal cells as a hexamer composed
of two identical heterotrimers, each consist-
ing of one Aα, one Bβ, and one γ chain.1 The
three genes (FGA, FGB, and FGG) coding for
the fibrinogen chains (Aα, Bβ, and γ, respec-
tively) are clustered in a 50-kb region on
chromosome 4 (4q31.3)3 and their co-ordi-
nated transcription is up-regulated in
response to various stress stimuli, such as
inflammation and tissue injury.4 Fibrinogen
secretion requires the protein’s step-wise
assembly, which includes the formation of
an extensive network of both inter- and
intra-chain disulphide bonds.5 The 450-Å-
long trinodular structure of the fibrinogen
molecule is composed of two symmetrical
distal globular D domains (constituted by
the C-termini of the Bβ and γ chains) joined
to a central E domain (consisting of the N-
termini of the six chains) by coiled-coil
regions.6,7 Traditionally, inherited fibrinogen
abnormalities are classified on the basis of
the plasma concentration of the protein into
type I deficiencies (hypofibrinogenemia and
afibrinogenemia) with reduced or unmea-
surable antigen and functional levels, and
type II deficiencies (dysfibrinogenemia and

hypo-dysfibrinogenemia) with normal or
altered antigen levels associated with
reduced coagulant activity. Type I deficien-
cies (OMIM #202400, +134820, *134830,
*134850) are rare autosomal disorders char-
acterized by bleeding manifestations ranging
from mild to severe and by the complete
absence or reduced levels of fibrinogen.8 The
hemorrhagic diathesis in afibrinogenemic
patients is frequently manifested as umbili-
cal cord bleeding, hemarthrosis, menorrha-
gia, and post-partum bleeding; whereas
hypofibrinogenemic patients usually experi-
ence milder symptoms.8 Moreover, some
afibrinogenemic patients show thrombotic
complications.9 Afibrinogenemia and
hypofibrinogenemia have been traditionally
considered as two distinct clinical entities,
but they actually represent the same disor-
ders, being the phenotypic expression of the
homozygous or heterozygous condition for
mutations causing defects in fibrinogen syn-
thesis, assembly or secretion. All the 57
mutations causing type I deficiency so-far
reported are located within the fibrinogen
gene cluster.10-25 Seventy percent of them are
predicted to cause the synthesis of C-termi-
nal truncated polypeptides, not competent
for secretion. Among mutations occurring in
the FGB gene, ten are truncating mutations
(three splicing defects, six nonsense, one
frameshift) and seven are missense, most of
them being located within the globular D
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found in the proband’s fibrinogen Bβ-chain gene. The resulting G434D missense muta-
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C-terminal globular D domain. In vitro expression experiments demonstrated intracellu-
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domain of the fibrinogen Bβ chain.16,17,26-28

In this paper, we report the identification and the
molecular characterization of a novel missense muta-
tion (G434D or fibrinogen Mumbai) in the Bβ-chain
gene of a patient from India suffering from severe
hypofibrinogenemia. The role of this mutation was
investigated by expression experiments of the mutant
fibrinogen molecule in COS-1 cells, demonstrating that
G434D impairs fibrinogen secretion.

Design and Methods

This study was approved by the Institutional Review
Board of the University of Milan. Citrate-anticoagulated
blood samples were withdrawn from the patient after
acquiring appropriate informed consent.

Coagulation tests
Plasma functional and antigen fibrinogen levels were

measured by an assay based on fibrin polymerization
time (Laboratoire Stago, Asnières, France) and by an
enzyme-linked immunosorbent assay (ELISA),29 respec-
tively. The sensitivities of the functional and immuno-
logic assays were 5 and 0.0005 mg/dL, respectively (nor-
mal values for both tests ranged between 160 and 400
mg/dL).

DNA sequence analysis
Genomic DNA was extracted from whole blood

using the PUREGENE Kit (Gentra Systems,
Minneapolis, MN, USA), following the manufacturer’s
instructions. Polymerase chain reaction (PCR) amplifica-
tions were performed on genomic DNA under standard
conditions in a PTC-100 thermal cycler (MJ-Research,
Watertown, MA, USA). Oligonucleotides (purchased
from Invitrogen, Carlsbad, CA, USA) were designed on
the basis of known sequences of the three fibrinogen
genes and intergenic regions (GenBank accession num-
bers M64982, M64983, M10014, U36478, and
AF229198). PCR conditions and primer sequences are
available on request. The amplified fragments were
purified by ammonium acetate precipitation and direct-
ly sequenced on both strands using the BigDye
Terminator Cycle Sequencing v3.1 Kit (Applied
Biosystems, Foster City, CA, USA). Sequencing primers
were the same as the ones used in the amplification
reactions except those used for the long exon 5 of the
Aα-chain gene, which was sequenced using additional
internal primers. Sequencing products were analyzed on
an ABI-3100 DNA sequencer (Applied Biosystems).
Factura and Sequence navigator software (Applied
Biosystems) were used for mutation detection.

Site-directed mutagenesis
The pRSV-Neo-B‚ plasmid, containing the full-length

cDNA coding for the fibrinogen Bβ chain,30 was used as
the template for site-directed mutagenesis using the
QuickChange Site-Directed Mutagenesis Kit
(Stratagene, La Jolla, CA, USA), according to the proto-
col provided with the kit. The mutagenic primer couple

5’-ATGGCACAGATGATGATGTAGTATGGATGAA-
3’ and 5’-TTCATCCATACTACATCATCATCTGTGC-
CAT-3’ (underlined letters indicate the mismatch), cor-
responding to nucleotide positions 8002-8032 (GenBank
accession number M64983), was used. The resulting
mutant plasmid (pRSV-Neo-Bβ-G434D) was checked
by sequencing.

Cell cultures, transfections, and metabolic labeling
Human hepatoma HepG2 cells were cultured in

Dulbecco’s modified Eagle’s Medium (DMEM) and
Ham’s F12 media (1:1 vol/vol), supplemented with 10%
fetal calf serum. The African green monkey kidney
COS-1 cell line was maintained in DMEM containing
10% fetal calf serum. Glutamine (1%) and antibiotics
(100 IU/mL penicillin and 100 µg/mL streptomycin)
were added to both media. Cells were grown at 37°C in
a humidified atmosphere of 5% CO2 and 95% air,
according to standard procedures. Semiconfluent COS-
1 cells were transfected with either the wild-type or
mutant pRSV-Neo-Bβ plasmid, together with equimolar
amounts of pRSV-Neo-Aα and pRSV-Neo-γ vectors,
containing the cDNA encoding the Aα and γ chain,
respectively.31 As a negative control, COS-1 cells were
also mock transfected with the unrelated pUC18 plas-
mid. All plasmids were extracted using the EndoFree
Plasmid Maxi Kit (Qiagen, Hilden, Germany). Cells
were transfected using the Lipofectamine 2000™
reagent (Invitrogen), following the manufacturer’s
instructions. For immunoprecipitation analyses, trans-
fections were performed in six-well plates. Thirty-six
hours after transfection, cells were washed twice with
methionine- and cysteine-free DMEM (ICN
Biomedicals, High Wycombe, Berks, UK) and incubated
in 1.5 mL/well of methionine- and cysteine-free DMEM
supplemented with 200 µCi [35S]-labeled methionine
and cysteine (Translable; ICN Biomedicals), 10% dia-
lyzed fetal calf serum, 2 mM L-glutamine, 2.5 mM
CaCl2, 5 mg/mL bovine serum albumin, and 0.1 mg/mL
heparin. After labeling for 2-hours, cells were washed
twice with phosphate-buffered saline (PBS) and chasing
was performed for various time periods (0, 1, 2, 4, and
8 hours) by adding 1 mL/well of DMEM supplemented
with a 10-fold excess of cold methionine and a 5-fold
excess of cold cysteine, 10% fetal calf serum, 2 mM L-
glutamine, 2.5 mM CaCl2, 5 mg/mL bovine serum albu-
min, and 0.1 mg/mL heparin.

Immunoprecipitation, sodium dodecyl
sulphate-polyacrylamide gel electrophoresis
(SDS-PAGE), and endoglycosidase-H treatment

Preparation of cell lysates and conditioned media, and
immunoprecipitations were performed as previously
described.16 The immunoprecipitated proteins were
released from protein A by boiling for 5 min in SDS-
PAGE non-reducing Laemmli loading buffer32 and were
resolved by 4% SDS-PAGE under non-reducing condi-
tions. Gels were dried under vacuum at 80°C for 1 hour.
Labeled proteins were visualized by exposing gels
overnight to a storage phosphor screen (Amersham
Pharmacia Biotech, Uppsala, Sweden) and analyzed
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using a Typhoon 9200 phosphor imager (Amersham
Pharmacia Biotech). Endoglycosidase-H (endo-H) treat-
ment was carried out as described elsewhere.33

Results

Clinical details of the proband
The analyzed proband was a woman from India born

from a first-degree consanguineous marriage. The
patient suffered from prolonged umbilical cord bleed-
ing at birth; subsequently, her symptoms were an
increased tendency to bleed in response to light trau-
mas, and menorrhagia. The proband died due to a cere-
bral hemorrhage at the age of 25, a few months before
the completion of the molecular characterization
reported here. The proband’s fibrinogen plasma
levels were 35 mg/dL (antigen) and 39 mg/dL (func-
tional). However, these values could be overesti-
mates since the patient received a whole-blood
transfusion 12 days before the fibrinogen measure-
ments. The proband’s 22-year old brother and 19-year
old sister are asymptomatic. Unfortunately, no biologi-
cal samples were available from any of the proband’s
relatives.

Identification of the G434D mutation
The proband’s fibrinogen chain genes were subject-

ed to direct sequencing as previously described.26 A
novel homozygous transition (G to A), located in exon
8 of the fibrinogen Bβ-chain gene at nucleotide posi-
tion 8017 (numbering according to GenBank accession
number M64983), was the only nucleotide variation
identified. This genetic defect results in a novel mis-
sense mutation, from glycine (GGT) to aspartate
(GAT) at codon 434 (numbering omitting the signal
peptide). Gly434 is a highly conserved amino acid
residue localized in the C-terminal globular D domain
of the Bβ chain6 (Figure 1A-B).

Analysis of wild-type and mutant fibrinogen
molecules

The effects of the G434D substitution on fibrinogen
synthesis, stability, and secretion, were investigated by
in vitro expression of the mutant fibrinogen molecule
using the pRSV-Neo-Aα, pRSV-Neo-Bβ, and pRSV-
Neo-γ mammalian expression vectors. The identified
mutation was inserted into the pRSV-Neo-Bβ vector
by site-directed mutagenesis, to produce the mutant
pRSV-Neo-Bβ-G434D construct. Wild-type and
mutant homozygous phenotypes were mimicked by
transiently co-transfecting COS-1 cells (not expressing
fibrinogen). A 2-hour pulse with [35S]-labeled methion-
ine and cysteine was followed by various chase peri-
ods (0, 1, 2, 4, and 8 hours). Recombinant fibrinogen
molecules were collected by immunoprecipitation
from radiolabeled media and cell lysates after each
chase period. As for the wild-type protein, SDS-PAGE
under non-reducing conditions showed, as expected,
the specific 340-kDa fibrinogen band decreasing in
intensity in cell lysates and increasing in culture media
(from 1 to 8 hours of chase), concordant with normal

secretion of the protein (Figure 2A,B, left). By contrast,
the G434D mutant fibrinogen was always detected
intracellularly but it was undetectable in conditioned
media at the corresponding periods of chase, suggest-
ing impaired secretion of the mutant molecule (Figure
2A,B, right). Positive and negative controls (fibrinogen-
expressing HepG2 cells and pUC18-transfected COS-1
cells, respectively) gave the expected results (Figure
2A,B). Endoglycosidase H treatment was used to evaluate
translocation of the G434D mutant protein from the
endoplasmic reticulum to the trans-Golgi compartment.35

Endoglycosidase-H cleaves high-mannose N-linked
oligosaccharides (typical of proteins found in the endo-
plasmic reticulum and cis-Golgi compartments) but does
not affect complex oligosaccharides (typical of trans-Golgi
proteins). Immunoprecipitated wild-type and G434D
mutant fibrinogens from cell lysates were treated with
endoglycosidase-H and analyzed by SDS–PAGE under
reducing conditions. Both mutant and wild-type Bβ
and γ chains showed a shift in electrophoretic mobili-
ty (data not shown), suggesting sensitivity to the endo-
glycosidase-H treatment. 

L. Monaldini et al.

Figure 1. Localization of the G434D mutation within the fibrinogen
Bβ-chain structure. A. Ribbon diagram of the fibrinogen Bβ-chain
C-terminal domain produced using the DeepView/Swiss-
PdbViewer v3.7 software34 and the PDB (Protein Data Bank) 1FZA
entry.6 The four missense mutations so far reported as responsi-
ble for congenital afibrinogenemia (L353R,26 G400D,26 G414S,17

and W437G16) and the two Bβ-chain missense mutations respon-
sible for hypofibrinogenemia (R255H27 and D316Y28) are indicat-
ed. The novel missense mutation characterized in this paper
(G434D) is boxed. An appropriate reference is given for each
mutation. B. Multiple alignment of the C-terminal regions of fib-
rinogen Bβ chains from humans, cattle, mouse, rat, chicken, xeno-
pus, and lamprey. Protein sequences were obtained from the
Swiss-Prot database (http://www.expasy.org/sprot/) under the
accession numbers P02675, P02676, Q8K0E8, Q02020, P14480,
Q091589, and P02678, respectively. Residues are numbered
omitting the signal peptide. Conserved amino acids are boxed,
identical residues are shaded in gray, and the highly conserved
mutant residue Gly434 is in bold type. Black arrows highlight β-
strands and refer to the human protein.
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Discussion

In this study, we report a novel genetic defect causing
severe hypofibrinogenemia in an Indian patient, born
from a consanguineous marriage. The proband had
severe bleeding manifestations (hemorrhage from the
umbilical cord and menorrhagia) and she died recently
as a consequence of a cerebral hemorrhage, an uncom-
mon severe complication of type I fibrinogen deficien-
cies.36 Sequence analysis of the three fibrinogen genes
revealed a novel homozygous G to A transition in the
Bβ-chain gene. The newly identified nucleotide varia-
tion results in a Gly→Asp missense mutation (G434D),
whose pathogenic role is suggested by the extremely
high degree of conservation of the involved residue
among vertebrates (Figure 1B). The large and acidic
aspartate residue introduced by this mutation substi-
tutes a small, neutral glycine, most likely disrupting
domain folding. Strikingly, Gly434 lies in the C-terminal
globular D domain (residues 198-461) of the fibrinogen
Bβ-chain (Figure 1A), a region where six of the seven
Bβ-chain missense mutations so far reported as respon-
sible for afibrinogenemia and hypofibrinogenemia are
tightly clustered.16,17,26-28,37 In fact, considering that the
trimeric fibrinogen half-molecule measures approxi-
mately 230 Å in length, all but one of the missense
mutations affecting the Bβ chain are localized in a
region spanning only 20 Å. These data are consistent
with the hypothesis that the D domain is essential for
correct folding and secretion of fibrinogen, as recently
confirmed by Vu and colleagues.38 

In order to study the predicted pathogenic role of the
G434D mutation, in vitro expression experiments were
performed. Wild-type and G434D mutant fibrinogens
were independently and transiently expressed in COS-
1 cells, a cell line widely used to study fibrinogen assem-
bly and secretion.26,31 Pulse-chase experiments showed
normal synthesis but altered secretion of the hexameric
mutant molecule, which persisted intracellularly (Figure
2A,B). The observed complete impairment of fibrinogen
secretion is somewhat in contrast with the antigen and
functional fibrinogen levels measured in the proband’s

plasma. In fact, our experimental data are consistent
with those described for afibrinogenemia causing mis-
sense mutations.16,17,26 However, it should be stressed
that the fibrinogen levels of the patient were assessed
after a whole-blood transfusion and that her severe
bleeding history is suggestive of afibrinogenemia rather
than hypofibrinogenemia. In this regard it would have
been particularly interesting to assess fibrinogen levels
in the proband’s consanguineous parents, who are
expected to be heterozygous for the G434D mutation
and, therefore, have true hypofibrinogenemia.

To further investigate the suggested role of G434D in
impairing fibrinogen secretion, the sensitivity of wild-
type and mutant fibrinogens to endoglycosidase H was
assayed at different times after transfection. In fact, the
N-linked oligosaccharides in the Bβ- and γ-fibrinogen
chains normally become endoglycosidase-H resistant
only when they are processed through the Golgi stacks
and their oligosaccharide chains are mature.5,39 Both
mutant and wild-type Bβ and γ chains were sensitive to
endoglycosidase H at each analyzed period (data not
shown) suggesting that intracellular retention of the
G434D fibrinogen is likely to result from a block during
its post-translational pathway in the endoplasmic retic-
ulum or, at the farthest, in the cis-Golgi, where endogly-
cosidase-H resistance is still not acquired.35 The impos-
sibility of distinguishing between the wild-type and the
mutant protein is probably due to the quick post-endo-
plasmic reticulum processing that does not allow endo-
glycosidase-H resistant protein to be visible in the wild-
type lysate while it is clearly recognizable in condi-
tioned media. This approach is further complicated by
the low efficiency of fibrinogen secretion by over-
expressing COS-1 cells, resulting in retention of fibrino-
gen in the endoplasmic reticulum also in cells expressing
the wild-type chains.33

Missense mutations affecting secretory proteins are
known as possible causes of endoplasmic reticulum
storage diseases (ERSDS), characterized by plasma defi-
ciency and by hepatic storage of the corresponding pro-
tein.40 Fibrinogen missense mutations are good candi-
dates for causing hepatic storage disease, even though
this phenotype has been associated with such muta-
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Figure 2. In vitro expression of wild-type and
G434D mutant fibrinogen. Immunoprecipitated fib-
rinogen from cell lysates (A) and conditioned
media (B) of COS-1 cells transfected with equimo-
lar mixtures of wild-type Aα and γ chains, together
with either wild-type (left panels) or G434D Bβ
(right panels) chains. Untransfected HepG2 cells
and mock-transfected (pUC18) COS-1 cells repre-
sent the positive and negative controls, respective-
ly. Cells were labeled with [35S]-methionine and
[35S]-cysteine for 2 hours and subsequently chased
for 0, 1, 2, 4, and 8 hours. Samples were separat-
ed on 4% SDS-PAGE under non-reducing condi-
tions. The arrowhead indicates the 340-kDa hexa-
meric fibrinogen molecule. Mutant fibrinogen is
synthesized and assembled by the cells but fails to
be secreted into the medium.
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tions in only two cases.41,42 This is due to the fact that
ERSDS require years to become clinically evident and
that liver specimens from patients with coagulation
defects are not commonly available for ethical reasons,
thus hampering an unambiguous diagnosis of ERSD.33

The results of the expression studies and endoglycosi-
dase-H sensitivity assays described in this paper are
compatible with an ERSD phenotype, but this outcome
of G434D remains highly hypothetical and not  verifi-
able in vivo. In conclusion, the elucidation of the patho-
genic role of the G434D mutation increases the number
of naturally occurring mutations that support the struc-
tural importance of the Bβ-chain D domain in fibrino-
gen assembly and secretion.
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