Effects of administration styles of arsenic trioxide on intracellular arsenic concentration, cell differentiation and apoptosis

We studied the effects of varying and steadystate concentrations of arsenic trioxide (As₂O₃) on apoptosis and differentiation of several cell lines *in vitro*. We also studied the same effects of fluctuating vs constant concentrations of As₂O₃ *in vivo* in patients treated with daily 3-hour fast infusions or daily slow, continuous infusions. Intracellular concentrations of arsenic and apoptosis rate were higher whereas differentiation was reduced in cells exposed to constant concentrations of As₂O₃.

haematologica 2005; 90:1277-1279 (http://www.haematologica.org/journal/2005/9/1277.html)

Arsenic trioxide (As₂O₃) is an effective treatment for acute promyelocytic leukemia (APL) and many other hematologic malignancies and solid tumors.^{1,3} However, a common side effect is leukocytosis which can threaten the life of the patients. The effect of As₂O₃ on inducing partial differentiation is one of the primary mechanisms of arsenic-related leukocytosis. We examined whether constant concentrations of As₂O₃ are associated *in vitro* and *in vivo* with less leukocytosis.

The *in vitro* studies were conducted with NB4, K562 and APL cell lines. The cells were cultured in media containing varying or steady-state concentrations of As₂O₃ (provided by YI-DA Pharmaceutical Limited Company) for 24 hours. The steady-state concentration was 2 µmol/L. The concentration of As₂O₃ in the other cultures was as follows: 5 µmol/L for 0.5h, 2 µmol/L for 3h, 1 µmol/L for 9.5h, and then washed out to 0 µmol/L for the remaining 12h. The varying concentrations of As₂O₃ were established on the basis of previous research.⁴

The *in vivo* studies were approved by the ethics committee of Heilongjiang province. Two groups of patients were investigated. White cell counts, level of anemia, ratios of blast cells in the blood circulation, the age and sex of patients in the two groups were well matched. Once informed consent had been given, patients were randomized to enter the trial or control group. Intracellular arsenic concentrations, apoptosis rates and CD33⁻/CD11b⁺ ratios were assayed 24 hours after initiation of the first As₂O₃ infusion (just prior to the second As₂O₃ infusion).

The trial group was formed of 37 patients (acute promyelocytic leukemia, [APL] n=20, acute myeloid leukemia, [AML-M₂] n=5, chronic myeloid leukemia, [CML] n=12) who were treated with a continuous slow intravenous infusion of As₂O₃. The daily dose of As₂O₃ was 0.16 mg/kg of body weight diluted in 5% glucose 500 mL. The infusion speed was 8 drops/min, such that the whole infusion took about 18-21 hours to deliver.

The control group was formed of 38 patients (APL: 20, AML-M₂: 6, CML:12) who received the same total dosage of As₂O₃ at the same dilution as that in the trial group, but administered as 45-55 drops/min, such that the whole infusion was completed in about 2-3 hours daily.

The apoptosis rates and CD33⁻/CD11b⁺ ratios were assayed by flow cytometry (Becton Dickinson). The intracellular arsenic concentration was measured by

	C int	oncentrations o racellular As (μ	f g/L)		Percentage of apoptosis (%)			CD33⁻/CD11b⁺	
Cell type	Exposed to constant As₂O₃ conc.	Exposed to varied As ₂ O ₃ conc.	t-value	Exposed to constant As ₂ O ₃ conc.	Exposed to varied As ₂ O ₃ conc.	X²-value	Control	Exposed to constant As ₂ O ₃ conc.	Exposed to varied As ₂ O ₃ conc.
NB4	3.4±0.88	17.6 ±0.88	5.51*	56.6	23.2	49.8*	5.5±0.4	19.5±0.5	51.5±0.4**
K562	18.6±1.12	9.2±0.64	9.69*	27.6	11	21.3*	7.1±0.5	14.5±0.6	37.5±0.8**
APL	28.8±0.64	15.2±1.04	3.65**	52.2	21	43.9*	4.2±0.3	18.5±0.6	46.5±0.5**

Table 1. Intracellular arsenic concentrations, apoptosis rates and CD33⁻/CD11b⁺ ratios (mean±SD) n=1x10⁶

Note: cells in changing media compared with those in $2 \mu M/L$ constant media *p<0.01, **p<0.05.

Table 2. The intracellular arsenic concentrations, the apoptosis rates and the CD33-/CD11b⁺ ratios in trial patients and control patients.

	Intracellular cell As (µg/L)		t-value	Percentage apoptosis (%)		X²-value	CD33 ⁻ /CD11b ⁻		
Diagnosis	Trial	Control		Trial	Control		Self-blank	Trial	Control
APL	26.6±2.5	12.3±2.1	5.38*	28.5	8.5	13.2*	5±0.5	29.5±0.5**	53.55±0.8
AML-M ₂	15.5±3.1	5.5±2.3	6.27*	9.5	2.9	3.9**	3.2±0.2	28.5±0.6**	48.5±0.9
CML	18.5±2.3	8.5±2.7	5.86*	12.5	4.5	4.2**	7.5±0.5	23.5±0.5**	67.5±0.8

Note: the trial group compared with the control group. *p 0.01, **p< p0.05.

atomic fluorescence assay (AFS-820, China).

Data were recorded as mean \pm standard deviation; the *t*-test and X^2 -test were used. *p*-values less than 0.05 were considered statistically significant.

In vitro a positive correlation was found between intracellular arsenic concentration and apoptosis rate (correlation coefficient r=0.761) (Table 1). The intracellular arsenic concentrations and apoptosis rates of leukemia cells incubated in a constant concentration of 2 µmol/L As₂O₃ were higher than those of cells exposed to varying concentrations of As₂O₃, despite the initial level of As₂O₃ being 5 µmol/L in the latter system. The ratio of CD33⁻/CD11b⁺ cells was higher following As₂O₃ at varying concentrations than after exposure to a constant concentration of 2.0 µmol/L As₂O₃, suggesting that cells incubated in varying A₂O₃ concentrations had a high tendency to differentiate.

In vivo, samples were isolated from peripheral blood of newly diagnosed leukenia patients at baseline before received As²O³ treatment and again 24 hours after initiation of the first As²O³ infusion (just prior to the second As²O³ administration).

The intracellular arsenic concentrations and the apoptosis rates in the trial group were higher than those in the control group. The proportion of CD33⁻/CD11b⁺ cells in the trial group was lower than that in the control group (Table 2).

The effects of A_2O_3 on leukemia cells of inducing partial differentiation at low concentrations (0.1–0.5 μ mol/L) and promoting apoptosis at high concentrations,⁴ and the

| 1278 | haematologica/the hematology journal | 2005; 90(9)

pharmacokinetics of usual rate As2O3 infusions, causing a high As₂O₃ peak level (5-7 µmol/L) and fluctuating but diminishing concentrations in blood circulation, means that the arsenic concentration that effectively promotes apoptosis is maintained for less than 12h after each As₂O₃ infusion, thus giving leukemia cells the opportunity to recovery and survive. On this basis we investigated the effects of varying concentrations and the steady-state concentration of As2O3 in vitro and in vivo by using a continuous slow As₂O₃ infusion regimen. Table 1 shows the relationship between constant As₂O₃ exposure and increased rate of apoptosis. Since CD33 is the surface marker of primitive cells and CD11b is the marker of bone marrow leukocytes, changes of CD33⁺/ CD11b⁻ to CD33⁻/ CD11b⁺ ratios can be used to evaluate differentiation.5 The continuous slow intravenous infusion of As₂O₃ inhibited differentiation and promoted apoptosis. Administered continuously in this manner, As2O3 showed a curve, without a marked peak, and apoptosis-promoting concentrations were maintained in the blood circulation for long periods by the continuous micro-dosage As₂O₃ infusion. In consequence, this regimen should give maximal therapeutic benefit and diminish leukocytosis, confirming previous clinical results.6

Jin Zhou,* Ran Meng,° Xinhua Sui,* Lu Meng,® Jianping Jia,° Baofeng Yang* First Hospital of Harbin Medical University, China;* Xuanwu Hospital of Capital Medical University, China;° Mu Danjiang Medical College;* Biochemistry & Molecular Biology Department, University of Georgia, USA® Funding: this research received financial assistance from the National Natural Science Foundation (approval number: 30370507) and Hei longjiang Excellent Youth Foundation (approval number: 2003AA9CS188-12).

Key words: arsenic trioxide, steady-state, leukocytosis, apoptosis.

Correspondence: Jin Zhou, M.D., Ph.D., 150001, The First Hospital of Harbin Medical University, Harbin, China. E-mail: jinzhouh85@163.com

References

- Carmosino I, Latagliata R, Avvisati G, Breccia M, Finolezzi E, Lo Coco F, et al. Arsenic trioxide in the treatment of advanced acute promyelocytic leukemia. Haematologica 2004;89:615-7.
- Griffin RG, Williams BW, Park HJ, Song CW. Preferential action of arsenic trioxide in solid-tumor microenvironment enhances radiation therapy. Int J Radiat Oncol Biol Phys 2005; 61:1516-22.
- Karlsson J, Ora I, Porn-Ares I, Pahlman S. Arsenic trioxideinduced death of neuroblastoma cells involves activation of Bax and does not require p53. Clin Cancer Res 2004;10:3179-88.
- Ni J, Chen G, Shen Z, Li X, Liu H, Huang Y, et al. Pharmacokinetics of intravenous arsenic trioxide in the treatment of acute promyelocytic leukemia. Zhonghua Xue Ye Xue Za Zhi 1997;18:250-3.
- Wu MH, Smith SL, Dolan ME. High efficiency electroporation of human umbilical cord blood CD34+ hematopoietic precursor cells. Stem Cells 2001;19:492-9
- Zhou J, Meng R, Yang BF. Comparing two arsenic trioxide administration method in APL therapy. Chin Med J (Engl) 2004;117:1411-3.