

Chaim Hershko A. Victor Hoffbrand Dan Keret Moshe Souroujon Itzhak Maschler Yehudit Monselise Amnon Lahad Red Cell Disorders • Research Paper

Role of autoimmune gastritis, *Helicobacter pylori* and celiac disease in refractory or unexplained iron deficiency anemia

Background and Objectives. Conventional endoscopic and radiographic methods fail to identify a probable source of gastrointestinal blood loss in about one third of males and post-menopausal females and in most women of reproductive age with iron deficiency anemia (IDA). Such patients, as well as subjects refractory to oral iron treatment, are often referred for hematologic evaluation.

Design and Methods. We prospectively studied 150 consecutive IDA patients referred to a hematology outpatient clinic, screened for non-bleeding gastrointestinal conditions including celiac disease (antiendomysial antibodies), autoimmune atrophic gastritis (hypergastrinemia with strongly positive antiparietal cell antibodies) and *H. pylori* infection (IgG antibodies confirmed by urease breath test).

Results. The mean age of all subjects was 39 ± 18 years and 119 of the 150 patients were female. We identified 8 new cases of adult celiac disease (5%). Forty IDA patients (27%) had autoimmune atrophic gastritis of whom 22 had low serum vitamin B12 levels. *H. pylori* infection was the only finding in 29 patients (19%), but was a common co-existing finding in 77 (51%) of the entire group. Refractoriness to oral iron treatment was found in 100% of patients with celiac disease, 71% with autoimmune atrophic gastritis, 68% with *H. pylori* infection, but only 11% of subjects with no detected underlying abnormality. *H. pylori* eradication in previously refractory IDA patients in combination with continued oral iron therapy resulted in a significant increase in hemoglobin from 9.4 ± 1.5 (mean \pm 1SD) before treatment to 13.5 ± 1.2 g/ dL (*p*<0.001 by paired t test) within 3 to 6 months of treatment.

Interpretation and Conclusions. The recognition that autoimmune atrophic gastritis and *H. pylori* infection may have a significant role in the development of unexplained or refractory IDA in a high proportion of patients should have a strong impact on our daily practice of diagnosing and managing IDA.

Key words: iron deficiency, celiac disease, *Helicobacter pylori*, atrophic gastritis, vitamin B12 deficiency.

Haematologica 2005; 90:585-595

©2005 Ferrata Storti Foundation

From the Department of Hematology, Shaare Zedek Medical Center (CH), Department of Gastroenterology (DK), Central Clinical Laboratories (MS, IM), Clinical Immunology Laboratories Rabin Medical Center (YM), Department of Family Medicine, Clalit Health Services, Jerusalem, and Hebrew University Hadassah Med. School, Jerusalem, Israel (AL), Department of Hematology, Royal Free Hospital, London, UK (AVH),

Correspondence: Chaim Hershko M.D., Department of Hematology, Shaare Zedek Med Center, Jerusalem, Israel, PO Box 3235. E-mail: hershko@szmc.org.il

pontaneous iron excretion in adult subjects is minimal and iron deficien- \mathcal{O} cy anemia (IDA) is generally attributed to abnormal blood loss.1 This may be caused by gastrointestinal bleeding or, in young females of reproductive age, by increased menstrual flow and the increased requirements of pregnancy. However, in adult males and postmenopausal females, major studies evaluating the gastrointestinal tract for IDA employing endoscopic and radiographic methodologies have only been able to identify a probable source of upper or lower gastrointestinal bleeding in about 62 to 64% of patients.^{2,3} Similarly, no evidence of gastrointestinal blood loss can be found in the vast majority of young, fertile females with IDA. Such patients with a low likelihood of gastrointestinal blood loss, and patients refractory to oral iron treatment are often referred for hematologic evaluation. In recent years, there has been an increasing awareness of subtle, non-bleeding gastrointestinal conditions that may result in abnormal iron absorption leading to IDA in the absence of gastrointestinal symptoms. Thus, the importance of celiac disease as a possible cause of IDA refractory to oral iron treatment, without other apparent manifestations of malabsorption syndrome⁴⁻¹⁰ is increasingly being recognized. In addition, Helicobacter pylori infection has been implicated in several recent studies as a cause of IDA refractory to oral iron treatment with a favorable response to *H. pylori* eradication.¹¹⁻¹⁷ Likewise, achlorhydric gastric atrophy or autoimmune atrophic gastritis, a condition associated with chronic idiopathic iron deficiency, has been shown to be responsible for refractory IDA in over 20% of patients with no evidence of gastrointestinal blood loss.¹⁸⁻²⁰ Although achylia gastrica, a condition indistinguishable from autoimmune atrophic gastritis, was defined by Faber as a distinct clinical entity responsible for IDA as early as 1909²¹ and extensively studied subsequently by Wintrobe and others,²²⁻²⁵ this entity was almost completely forgotten and largely ignored in major studies of IDA.²³

The recent availability of convenient, non-invasive screening methods for identifying celiac disease. autoimmune atrophic gastritis and *H. pylori* gastritis, has greatly facilitated the recognition of patients with these entities, resulting in an increased awareness of these conditions and their possible role in the causation of IDA.^{18,19} Unlike IDA patients referred for evaluation of possible gastrointestinal bleeding in whom the causes of anemia are well documented, our knowledge of underlying conditions responsible for IDA in patients referred for hematologic evaluation with no apparent gastrointestinal disease is limited. The objective of the present study was to establish, in a systematic and prospective manner, the cause of IDA among patients referred for evaluation to a community hematology clinic over a period of two years with particular emphasis on non-bleeding gastrointestinal causes of IDA, employing non-invasive serological screening tests supplemented by currently accepted diagnostic methodologies.

Design and Methods

Target population

The population for this prospective study consisted of patients with IDA and a low apparent likelihood of gastrointestinal disease referred by family physicians to a community hematology clinic. All the patients had received oral iron treatment prior to referral and many were described as refractory to oral iron therapy. All newly referred patients with IDA were included, starting from September 1, 2001, for a period of 2 years, if their hemoglobin at referral was 11 g/dL or less, and if they fulfilled the following criteria for iron deficiency anemia: mean corpuscular volume (MCV) less than 80 fL, transferrin saturation less than 15%, and serum ferritin less than 12 μ g/L (143 patients) or two of the above and an increase in hemoglobin > 1.0 g/dL in response to iron therapy (7 patients). Although patient recruitment was terminated in September 2003, follow-up visits were continued allowing a follow-up period of at least 6 months from presentation. This prospective study was approved by the Institutional Ethics Committee of Shaare Zedek Medical Center.

The control group of 60 non-anemic subjects was recruited from among asymptomatic and apparently

healthy subjects of comparable age (see below) and gender (9 males and 51 females) referred within the same period for evaluation of minor problems such as suspected thrombophilia without evidence of thrombosis (n=44), no disease (n=10) or borderline white blood cell counts (n=6).

Laboratory methods

Complete blood counts (CBC) were performed by a SysmexSE-9000 automated analyzer (KOBE, Japan) calibrated daily with standards provided by the manufacturer. Routine biochemical measurements including serum iron (normal range 59-158 μ g/dL), total iron binding capacity (TIBC; normal range 226-338 μ g/dL) and serum ferritin (normal range males 40-340, females 14-150 μ g/L) were performed by a Hitachi 747 automated analyzer with quality control assurance by UKNEQAS (Birmingham, UK). Fasting serum B12 levels were determined by the ADVIA Centaur VB12 assay which is an automated competitive immunoassay using direct chemiluminescent technology. The lower limit of normal was defined as <181 ng/L. Fasting serum gastrin levels were determined by GammaDab[®] Gastrin¹²⁵I RIA Kit (DiaSorin, Stillwater Minnesota, USA) and expressed as pg/mL. normal limits < 107. For the detection of IgG antibodies to *H. pylori* in human serum, the IMMULITE[®] 2000 H. pylori IgG, a solid-phase chemiluminescent immunometric assay (DPC Diagnostics, Los Angeles, CA, USA) with an analytical sensitivity limit of 0.4 U/mL was used; a value < 0.9 U/mL was considered to be negative. Anti-endomysial IgG and IgA antibodies and anti-gastric parietal cell IgG antibodies (APCA) were determined by an indirect immunofluorescence antibody test for semi-quantitative detection of antibodies using the ImmuGlo[™] Anti-Endomysial Antibody Test System (IMMCO® diagnostics, Buffalo, NY, USA). Results were considered positive if equal to or greater than 1:40 dilution. Intrinsic factor antibodies were assayed by enzymelinked immunoassay (ALPHADIA,® Belgium) detecting type I and type II antibodies. Results exceeding 1.1 were considered positive. Anti-gliadin antibodies were measured by an indirect assay employing peroxidase-labeled rabbit anti-human IgG and IgA antibodies employing the BINDAZYMETM Human Anti-Gliadin IgG and IgA kits (The Binding Site Ltd., Birmingham, UK). Results were considered positive if equal to or more than 10 U/mL for IgG and 5 for IgA antibodies

The ¹³C-urease breath test was performed as described by Gal *et al.*²⁶ Briefly, patients were given 75 mg urea labeled with ¹³C in 200 mL orange juice and breath samples were collected at immediately before (T0') and 30 minutes after (T30') ¹³C intake. Results were expressed as the difference between the

two scores (δ over baseline). The cut-off ¹³C/¹²C of T30' minus T0' was 3.5%. Patients were instructed to discontinue treatment with H2 antagonists, proton pump inhibitors or any antibiotics one week before the test. Repeat tests for validation of *H. pylori* eradication were performed at least 1 month after completing triple therapy.

Non-invasive studies

For each newly presenting patient satisfying the above criteria of IDA during the study period, the following assessments were completed and the results prospectively recorded. *Medical history*: gastrointestinal symptoms, results of previous gastrointestinal investigations, blood donation, history of epistaxis or gastrointestinal blood loss, use of aspirin or other non-steroidal anti-inflammatory drugs (NSAID), family history of gastrointestinal disease including cancer, cold intolerance or increased hair loss, dysphagia and brittle nails. Excessive menstrual bleeding was defined as more than two days of heavy bleeding and presence of formed clots. *Physical examination*: brittle or flat nails, pallor, abdominal mass, splenomegaly, mucosal or cutaneous telangiectasiae.

Complete blood count, serum iron, total iron binding capacity, serum ferritin, serum B₁₂, folate, erythrocyte sedimentation rate, fibrinogen and C-reactive protein. Routine biochemistry including serum albumin and cholesterol. Celiac serology: antiendomysial and antigliadin antibodies. *Helicobacter pylori* IgG antibodies. Antiparietal cell antibodies (APCA), and serum gastrin.

Invasive gastrointestinal studies

After completing the initial workup including noninvasive screening for celiac disease, atrophic gastritis and *H. pylori* infection, the following categories of patients were referred for additional invasive gastrointestinal studies: (i) all adult males (n=21), postmenopausal females (n=21) and fertile females with gastrointestinal symptoms or a history of familial cancer (n=6) were referred for full endoscopic investigation including colonoscopy and upper gastrointestinal tract endoscopy except for 5 subjects who had already recently had such studies; (ii) all 8 patients with positive endomysial antibodies were referred for upper gastrointestinal tract work-up, including jejunal biopsies; (iii) upper gastrointestinal endoscopic studies including multiple gastric mucosal biopsies, were also performed in 20 of the 40 patients with hypergastrinemia and positive antiparietal antibodies, and in 6 of the 8 patients aged below 16 years with H. pylori infection. Young females with a history of menorrhagia and/or H. pylori infection without gastrointestinal complaints and no history of familial cancer and those with a

negative diagnostic work-up had 5 occult blood (Hemoccult-II) tests each, and if negative, no gastrointestinal tract studies were considered necessary.

All patients with abnormal titers of H. pylori IgG antibodies were referred for a urease breath test for confirmation of H. pylori infection. The urease breath test was repeated one month after completing triple therapy.

Interventional studies

Oral iron treatment consisted of essicated ferrous sulphate at a twice daily dose of 50 mg elemental iron. In case of intolerance, the dose was reduced to 50 mg/d. Follow-up visits, including repetition of relevant laboratory tests, were performed at 1-month intervals for the first 3 months, and at 2- to 3-month intervals thereafter. Refractoriness to oral iron treatment was defined as a failure of the hemoglobin to increase by at least 1.0 g/dL after 2 months of treatment. Thirty-one patients received parenteral iron (Iron sucrose, Venofer, Vifor) because of continued refractoriness to oral treatment (n=21), advanced pregnancy (n=7) or personal preference (n=3).

Triple therapy for *H. pylori* eradication consisted of omeprazole 20 mg×2/day, amoxycillin 1 gm×2/day and clarithromycin 500 mg×2/day for 7 days. The method of selection for treatment, number of evaluable patients and their response to triple therapy are described in the *Results* section.

Statistical analysis

The Student t-test was used for continuous variables and the χ^2 test for categorical variables. For continuous variables that were measured before and after interventions, (for example hemoglobin levels) we used a paired t-test. All tests were two-tailed. SPSS 10.0 for windows was used for all the analyses.

Results

Conditions associated with iron deficiency anemia

The age and main conditions associated with IDA in the 150 patients included in the present study are described in Table 1. There were 10 subjects younger than 16 years (6 boys and 4 girls) and 140 between 16 and 77 years (21 males and 119 females). Hypergastrinemia, characterized by grossly increased serum gastrin levels (552±450 [mean±1SD], range 125-1464 pg/mL) in combination with strongly positive (+3 to +4) antiparietal cell antibody titers, was encountered in 40 patients (27%), of whom 34 were females. Four of the 40 subjects with hypergastrinemia were younger than 16 years (3 girls and 1 boy). Of the 40 patients with combined hypergastrine-

Condition (n)	Age (years)	Hemoglobin g/dL	MCV fL	lron mg/dL	TIBC µg/dL	Ferritin mg/L	B12 μg/L	Gastrin pg/mL	
Hypergastrinemia	39*±17	9.32±1.11	70.8±8.3	25.0±12.5	336.6±37.0	5.4±5.7	225.7±130.1	551.5±450.4	
& APCA (40)	00 -11	0.02-1.11		2010-2210	00010-0110	011-011	22011-20012	00110-10011	
H. pylori ** (29)	38±16	9.03± 1.30	68.1±8.5	21.7±9.3	356.1±54.9	4.5±4.0	297.0±101.9	85.9±56.6	
Menorrhagia (37)	37±11	9.03± 1.12	71.4±6.7	27.6±13.7	358.3±54.1	5.9±5.0	271.5±107.1	61.4±18.4	
Gastrointestinal lesions (26)	59±19	9.37±1.18	75.2±9.4	24.9±9.9	341.7±44.0	9.8±18.8	380.9±344.6	89.3±47.1	
Celiac disease (8)	38±12	9.29±1.18	69.9±7.6	22.4±9.9	358.6±56.9	3.4±1.9	213.7±79.3	64.5±28.2	
Negative (10)	33±17	9.33±1.17	71.6±5.8	23.6±10.7	341.3±37.9	6.8±7.3	266.3±117.9	61.0±32.0	
Total (150)	39±18	9.13±3.06	69.0±14.4	24.7±12.1	336.9±249	6.5±9.5	270.6±165.9	205.9±314.7	
Normal controls (60)	36±15	12.6±2.1	86.7±4.5	95.8±40.0	282.9±56.5	51.0±63.3	287.5±130.4	61.3±17.4	

Table 1. Conditions associated with IDA: age and pertinent laboratory findings.

*Mean±SD; MCV: mean corpuscular volume; TIBC: total iron binding capacity; **H. pylori as only finding.

and antiparietal cell antibodies, 5 were already on B12 treatment at the time of referral, and an additional 17 had subnormal (39-181 pg/mL) serum B12 levels. H. pylori infection, documented by increased IgG antibody titers and confirmed by a positive urease breath test or positive gastric biopsy was the only finding established in 29 of the 150 patients (19%). Remarkably, the H. pylori group included 5 of the 10 patients below the age of 16 years in the entire survey. In addition to subjects in whom H pylori was the only finding, evidence of *H. pylori* infection was very common in all diagnostic categories, occurring in 77 of the 150 patients. A history suggestive of menorrhagia in the absence of other findings (apart from H. pylori seropositivity in 24) was found in 37 young females. Gastrointestinal lesions that may or may not have been relevant to the causation of IDA were encountered in 26 patients. These included hiatus hernia (n=12), bleeding hemorrhoids (n=5), gastroplasty performed for morbid obesity (n=4), polyps of colon (n=2), and one each with diverticulosis, nasopharyngeal bleeding and cancer of the colon. Positive evidence of blood loss was only present in 7 of the patients with anatomic gastrointestinal lesions (overt history of bleeding in 4 and positive occult blood in 3). Eight patients were newly diagnosed with celiac disease presenting with IDA as the only clinical manifestation. No underlying disease could be established in 10 subjects, all but one of whom were females. Many of the patients had more than one abnormality that may have contributed to the development of IDA. Thus, of the 40 patients with hypergastrinemia with antiparietal antibodies, additional findings included *H. pylori* (n=15), menorrhagia (n=4), use of aspirin (n=2), gastrointestinal lesions

(n=1) and in one patient celiac disease diagnosed 30 years previously but still positive for endomysial antibodies. Likewise, in addition to the 29 subjects in whom *H. pylori* was the only finding, *H. pylori* infection was also documented in most other diagnostic categories including the 15 patients with hypergastrinemia and APCA mentioned above, 24 with menorrhagia, 10 with gastrointestinal lesions and one with celiac disease. Menorrhagia, listed as the main diagnosis in 37 subjects was also present in 8 with hypergastrinemia and APCA and in 1 with celiac disease.

Concurrent use of aspirin was recorded in 9 patients and of rofecoxib (an NSAID) in one. The mean age of these patients was 60 ± 16 years. Six of these patients belonged to the group with anatomical evidence of gastrointestinal lesions and of the others, 2 had hypergastrinemia with positive APCA and 2 were *H. pylori*-positive.

Laboratory findings

Pertinent laboratory findings in the various diagnostic categories are shown in Table 1. The table also lists findings in 60 asymptomatic controls of comparable age and gender (9 males and 51 females) without anemia, referred for evaluation of minor abnormalities such as suspected thrombophilia, no disease or borderline white blood cell counts. None of the 60 non-anemic controls had positive serology for antiendomysial antibodies. In 2 of the 60 antiparietal cell antibodies were weakly positive (1+) but without hypergastrinemia. *H. pylori* seropositivity was equally common among controls (31 of 60 or 51.7%) and IDA patients (77 of 150 or 51.3%). While mean hemoglobin, MCV, serum iron and serum ferritin

were significantly lower and total iron binding capacity significantly higher in IDA than in controls (p <0.0001), there was remarkably little inter-group variation among the various subgroups of IDA except for age which was significantly higher in patients with gastrointestinal lesions (59±19 years) than in all other groups (p<0.001). Serum gastrin in the hypergastrinemia group was 9-fold higher than in the controls (552±450 vs 61±17 pg/mL; p<0.0001). Moderately increased gastrin values in IDA patients were also encountered in association with H. pylori (86±57 pg/mL; p=0.0097) and gastrointestinal lesions (89±47) pg/mL; p=0.0019), but many in the latter group of patients were on concurrent H2 antagonist or proton pump inhibitor treatment which may have contributed to their moderately increased gastrin values.

There were 10 patients younger than 16 years of age. One had gross epistaxis and is listed under gastrointestinal lesions. Of the remaining 9, 5 had *H. pylori* as the only diagnosis and 4 had hypergastrinemia with APCA of whom 3 had coexistent *H. pylori*. Of the 8 children with *H. pylori*, with or without hypergastrinemia and APCA, 6 had gastric biopsies. These showed antral gastritis and follicular gastritis in 5, and atrophic gastritis in 1. *H. pylori* infection was diagnosed by biopsy (histology and rapid staining CLO test) in 4, and by the urease breath test in 4.

Response to oral iron treatment

Of all 150 patients, 82 (63%) were refractory to oral iron treatment and 48 had an increase of more than 1.0 g/dL hemoglobin in 2 months. In the remaining 20 patients, response was not evaluable because of intolerance to oral iron (n=4), non-compliance including failure to attend follow-up (n=10), or the patients' decision to prefer upfront parenteral iron treatment (ferric sucrose, Venofer) (n=3). Two patients received iron and triple therapy simultaneously and one required blood transfusion because of active gastrointestinal bleeding. All 8 patients (100%) with celiac disease and the 4 with gastroplasty (listed under gastrointestinal lesions) were refractory to oral iron treatment. The rate of refractoriness to oral iron treatment in the other diagnostic groups listed in decreasing order of magnitude was: hypergastrinemia with antiparietal antibodies 24 of 34 (71%); H. pylori without other findings 15 of 22 (68%); gastrointestinal disease excluding gastroplasty 6 of 16 (38%); menorrhagia without other findings 5 of 13 (38%); and negative work-up, 1 of 9 (11%).

Hypergastrinemia with antiparietal antibodies

This combination of findings, encountered in 40 of the 150 patients (27%), is described in detail in Table 2. The mean age of these patients was 39 ± 17 years and all but 6 were females. They all had mod-

erate to severe IDA as judged by their hemoglobin, MCV, and ferritin measurements. Many of them had evidence supporting a high likelihood of increased blood loss including 8 with a history of menorrhagia, 4 with positive occult blood tests, and 3 with bleeding gastrointestinal lesions including colon cancer, gastric polyps and gastric erosions. Two patients were referred with anemia of pregnancy and one was known to have celiac disease. Altogether, 18 of these patients had common and well established causes of IDA and in the rest, the very high proportion of young females indicated an increased likelihood of menstrual blood loss as the underlying cause of IDA.

Reports of histologic studies of the gastric mucosa were available for 20 patients. These showed chronic gastritis or atrophic gastritis (n=7), antral gastritis or follicular gastritis (n=4), apparently normal mucosa (n=6), gastric polyp (n=1), celiac disease documented by duodenal biopsy and serology (n=1) and deformed duodenum (n=1). Anti-intrinsic factor antibodies were tested in 16 patients and were positive (> 1.0) in 8 (50%). Thyroid disease (myxedema in 3 and thyrotoxicosis in 2 patients) was quite common. Of the 40 patients with IDA associated with hypergastrinemia and antiparietal antibodies, 5 were already on B₁₂ replacement therapy at the time of presentation and another 14 had low serum B12 values ranging from 39 to 181 pg/mL. Three additional patients with normal initial serum B12 developed low B12 levels within one to two years of follow-up.

Evidence of coexistent active H. pylori infection was found in 15 patients, with positive H. pylori serology confirmed by positive urease breath test or gastric biopsy. In nine of these, H. pylori was eradicated by triple therapy, as described in the following section. Successful H. pylori eradication was indicated by a negative repeat urease breath test and a slow but steady decline in *H. pylori* antibody titers. Although this was followed by decreased serum gastrin levels in most cases, as shown later, in none of the patients did we observe the disappearance of serum antiparietal antibodies. Moreover, the first of our patients described in the next section as IDA associated with H. pylori gastritis diagnosed at the age of 14 years old and cured of refractory IDA by triple therapy, developed after 3 years of follow-up hypergastrinemia, positive APCA, positive anti-intrinsic factor antibodies, and low serum B12 consistent with autoimmune atrophic gastritis, and is presently on B12 eplacement therapy.

H. pylori infection

In order to examine the possible effect of *H. pylori* seropositivity on iron status in normal subjects, serum iron, TIBC, ferritin and serum gastrin were compared within the subgroups of *H. pylori* seroneg-

				-	-					
Age yrs.	Sex	Hemoglobin g/dL	MCV fL	Ferritin µg/L	B12 pg/mL	Gastrin pg/mL	APCA	Anti IF IU	Gastric mucosa	Additional findings
44	F	9.8	74	6	237	339	3+	0.1	Atrophic gastritis	
40 37 47	F	9.3 9.2	81 66 76	3 3 3	153 570 Tx 242	734 856 371	3+ 3+ 2+		Normal	
34 28	F	8	67 67	2	242 238 100 >	185 338	2+ 3+ 1+	1.7 0.1	Atrophic gastritis	Myxedema Thyrotoxicosis
47 57	F F	8.8 10	65 76	3	141	580 1088	2+ 4+	1.3	Atrophic gastritis	Hyrotoxioosio
76 68	F F	10.2 9.6	90 79	8 21	127 230	187 1464	3+ 4+	1.2	Atrophic gastritis	DM DM
72 9	F F	9.8 10.2	82 60	4 3	323 460	125 799	3+ 4+	0.7 4	Normal Chronic folliular gastritis	DM, thyrotoxicosis Occult blood +
39 48	F F	10 8.5	82 55	3 4	155 211	904 567	4+ 3+	0.3 0.7	Thick antral mucosa	Occult blood + Menorrhagia
24 28	F	7.9 9.4	62 68	1 3	202 138	610 1312	3+ 3+		2	Menorrhagia, myxedema Menorrhagia
42 34	F	9.3 9.3	82 67	3	94 Ix 180	251 472	3+ 3+		Atrophic gastritis	Menorrhagia Menorrhagia Menorrhagia
18 31 41	F	8.3 8.3 0.1	69 69	1 7 2	225 175 Tx 142	246 961 62	4+ 3+ 2+	0.1		Menormagia Menorrhagia, myxedema Programov
53 77	M	8.8 6.8	50 73	1 18	142 186 186	676 1112	2+ 2+ 3+	0.8	Gastric polyp Deformed duodenum	Thal minor
47 57	F	7.9 7.7	66 60	2	237 167	327 80	3+ 3+	0.0	Chronic gastritis, erosions	Celiac disease Hiatus hernia
29 41	F	7.5 10.9	80 69	6 6	39 1000 Tx	83 289	4+			HP, pregnancy HP
19 42	F M	10.8 11.2	76 78	3 9	225 181	482 556	4+ 3+		Normal	HP HP
41 31	F M	8.1 9.3	68 62	5 8	207 200	1459 421	4+	0.1 5.4	Chronic gastritis Normal	HP HP
47 13	F M E	9.4 11.9	76 78	3 6 1	236 546 242	536 108	3+ 4+ 2+	5.6		HP HP HD
45 38	F	8.7 10.5	09 77 76	30 5	155 142	173	3+ 3+ 3+	1.7	Antral gastritis	HP, menorrhagia HP
42 29	F F	9.7 10.3	70 69	2 5	150 284 Tx	2000 158	4+ 3+		Normal	HP HP
18 11	M F	10.7 9.2	75 62	6 2	234 727	205 160	4+ 4+	3.1	Normal Mild antral gastritis	HP, occult blood + HP, occult blood +

Table 2. IDA patients with hypergastrinemia and parietal cell antibodies.

MCV: mean corpuscular volume; APCA: antiparietal cell antibodies; Tx: on concurrent B12 treatment; DM: diabetes mellitus; HP: Helicobacter pylori; IF: intrinsic factor.

ative (n=29) and seropositive (n=31) controls. There was no significant difference in parameters reflecting iron status between the two groups, although serum iron (92±37 vs 102±44; p=0.6) and serum ferritin (42±35 vs 60±87; p=0.17) were slightly lower in *H. pylori*-positive subjects. Conversely, serum gastrin values were slightly but significantly higher (67±18 vs 57±12, p= 0.016) in *H. pylori* seropositive subjects.

In the next phase of our study, we examined the effect of *H. pylori* infection and its subsequent eradication on response to oral iron therapy. Information on response to oral iron treatment prior to *H. pylori* eradication was available for 77 patients (Table 3). This analysis excluded subjects with hypergastrinemia with APCA, celiac disease, and gastroplasty as in these conditions the underlying disease was already believed to preclude a normal response. Both the *H. pylori*-negative, and positive groups consisted of three categories: patients with no underlying disease, menorrhagia, or gastrointestinal lesions. Of these, 29 were *H. pylori*-negative, and 48 *H. pylori*-positive (serology confirmed by urease breath test). Of the 29 *H. pylori*-negative patients, 21 (72%) responded to oral iron treatment and 8 (28%) were refractory. By contrast, of the 48 *H. pylori*-positive patients, 15 (31%) were responsive and 33 (69%) were refractory. Thus, failure to respond to oral iron treatment in *H. pylori*-positive patients was more than twice as common as in the *H. pylori*-negative group (χ^2 square p=0.007).

 Table 3. Effect of *H. pylori* status on response to oral iron treatment prior to triple therapy.

Condition	Responsive	Refractory	Total
Negative	8	1	9
Menorrhagia	8	5	13
Gastrointestinal	5	2	7
All Hp negative	21 (72%)	8 (28%)	29 (100%)
Negative + Hp*	7	15	22
Menorrhagia +Hp	3	14	17
Gastrointestinal +Hp	5	4	9
All Hp positive	15 (31%)	33 (69%)	48 (100%)

*Hp: H. pylori; χ² p=0.007.

Response to triple therapy

Of the 77 patients in whom *H. pylori* seropositivity was confirmed by the urease breath test, 22 were not treated because failure to attend follow-up (n=10). improvement of anemia on iron alone (n=5) or advanced pregnancy managed by intravenous iron (n=7). Of the 55 subjects who received triple therapy, 15 failed to complete the follow-up and 40 had a complete evaluation including repeat urease breath test one month after treatment. In all patients, H. pylori eradication was documented by conversion of a positive urease breath test to a negative one month or more after treatment, and monitored by subsequent changes in hemoglobin, serum gastrin and H. pylori antibody titers. All patients were maintained on the same oral iron treatment before and after triple therapy. Successful eradication was achieved in 29 (73%) of the 40 patients. The effect of H. pylori eradication is illustrated in Figures 1 A-C. H. pylori eradication was followed by an increase in hemoglobin from 9.7±1.3 (mean±SD) before, to 13.2±1.4 within 3 to 6 months after eradication (p < 0.001 by the paired t test). Simultaneously, H. pylori eradication was followed by a decrease in serum gastrin from 233±296 to 94±75 (*p*=0.04) and a decrease in *H*. pylori IgG antibody titer from 4.58±2.19 to 1.78±0.87 (p=0.02).

Finally, the effect of *H. pylori* eradication and continued iron treatment was examined in the subgroup of 26 evaluable patients who were refractory to oral iron treatment prior to triple therapy (Figures 2 A-B). Successful *H. pylori* eradication and continued oral iron treatment in 19 previously refractory patients resulted in an increase in hemoglobin from 9.4 ± 1.5 (mean \pm SD) before, to 13.5 ± 1.2 within 3 to 6 months after eradication (p<0.001 by the paired t test). By

Figure 1. Effect of *H. pylori* eradication on anemia (A), serum gastrin (B) and *H. pylori* antibodies (C). Paired values for individual patients on continued oral iron treatment before, and after (3 to 6 months) eradication of *H. pylori*, documented by negative urease breath test.

contrast, in the 7 patients failing *H. pylori* eradication, the increase in hemoglobin following antibiotic treatment was less than 1 g/dL, from 9.2 \pm 1.1 (mean \pm 1SD) before, to 9.8 \pm 1.2 after treatment (NS, *p*=0.2).

Discussion

Patients with unexplained or refractory IDA are often referred for hematologic evaluation when the likelihood of gastrointestinal pathology is *a priori* low, such as in fertile females, or subjects in whom a routine gastrointestinal work-up failed to document a source of blood loss. Based on current literature, we anticipated that a certain proportion of our patients would have celiac disease with IDA as the only apparent clinical manifestation.⁴⁻¹⁰ Indeed, 5% of our patients have been diagnosed *de novo* as having celiac disease identified first by serological tests and subsequently confirmed by duodenal biopsy and a satisfactory response to a gluten-free diet. Excessive menstrual blood loss and low compliance with iron therapy are important factors in the causation and per-

Figure 2. Effect of *H. pylori* eradication on anemia in patients previously refractory to oral iron treatment. Paired values for individual patients before and after (3 months or more) triple therapy and continued oral iron treatment. A. Effective eradication of *H. pylori* documented by a negative urease breath test. B. Failure of eradication documented by continuously positive urease breath tests.

petuation of unexplained or refractory anemia in fertile women. The prevalence of IDA in fertile women is about 10 times higher than in men of comparable age' and this is largely attributed to increased menstrual blood loss even if this cannot be established by a careful menstrual history. Indeed, the vast majority of the present series and all but one of the 10 patients with no underlying disease demonstrated were women of reproductive age with no clinical evidence of gastrointestinal blood loss. Low compliance in some of these patients is reflected in the proportion of subjects failing to return for the follow-up visits required to evaluate their response to treatment.

Nevertheless, the present findings provide strong evidence supporting the role of the gastric mucosa in unexplained or refractory IDA in two clinical entities which are not yet widely recognized as common causes of IDA: *autoimmune atrophic gastritis* manifested by hypergastrinemia in combination with antiparietal antibodies (APCA) and *H. pylori gastritis*, with considerable overlap between these two conditions.

Autoimmune atrophic gastritis, manifested by hypergastrinemia with strongly positive APCA, was encountered in 40 (27%) of our 150 subjects with IDA. These patients were much younger than patients with classical pernicious anemia presenting with macrocytic anemia and, unlike pernicious anemia in the elderly, in which males and females are similarly affected²⁷ all but 6 of our 40 patients were females. Abnormal gastric mucosa including atrophic gastritis, chronic gastritis, antral or follicular gastritis was present in 14 of the 20 patients for whom information on this was available. The apparently normal appearance of gastric mucosa in 6 of our patients is probably explained by the lack of multiple mucosal biopsies in these subjects. The close relation of this

| 592 | haematologica/the hematology journal | 2005; 90(5)

condition to pernicious anemia is further indicated by the high prevalence of thyroid disease and the observation that 22 (55%) of our patients had low concentrations (39-181 pg/mL) of serum B_{12} or were already on cobalamin treatment at presentation, or developed low serum B_{12} during the follow-up. Finally, the finding of increased intrinsic factor antibody titers in 50% of the 16 subjects tested confirms a high degree of overlap between hypergastrinemia and APCA presenting as IDA and classical pernicious anemia.

The concept of gastric atrophy as a cause of iron deficiency anemia is not new. Achylia gastrica associated with iron deficiency anemia was described as a clinical entity by Faber as early as 1909²¹ and *achlorhydric gastric atrophy*, a synonym for the same entity, has long been recognized as a major cause of iron deficiency anemia^{22,23,28} but largely forgotten, and completely ignored in subsequent major surveys of gastrointestinal causes of iron deficiency anemia.^{2,3} More recently, achlorhydric gastric atrophy was rediscovered by Dickey et al.,18 and information on this condition greatly extended in a series of important studies by Annibale et al.^{19,20} Iron absorption is heavily dependent on normal gastric secretion for solubilizing and reducing dietary iron and is impaired by the achlorhydria associated with atrophic gastritis.²⁹⁻³¹ Age, gender, and severity of disease may be critical in determining whether the clinical presentation is in the form of microcytic iron deficiency anemia or macrocytic megaloblastic anemia. Although atrophic gastritis may impair both B12 and iron absorption simultaneously, in young women in whom menstruation represents an added strain on iron requirements, iron deficiency will develop many vears before the depletion of B12 stores. Helicobacter pylori. The role of H. pylori in the causation of IDA is at present unsettled as *H. pylori* infection is very common in the normal population³² Major population surveys involving thousands of subjects³³⁻³⁶ conducted over diverse geographic areas all indicate that H. pylori positivity is associated with a slight and significant decrease in serum ferritin levels implying diminished iron stores. but there was no evidence of a high prevalence of iron deficiency anemia associated with *H. pylori* seropositivity in the populations at large. Nevertheless, in a subset of patients, a causeand-effect relation between H. pylori and serious gastrointestinal pathology including duodenal ulcer, atrophy of the gastric body predisposing to gastric ulcer and cancer, and the formation of mucosa-associated lymphoid tissue (MALT) lymphoma has been established and strongly supported by the beneficial effect of H pylori eradication in these conditions.³⁷ Consequently, if evidence is sought for a cause-andeffect relation between H. pylori and IDA, it could be more rewarding to focus on the functional effects of H. pylori eradication on refractory IDA than to study large numbers of unselected and apparently healthy individuals.

Because refractoriness to oral iron treatment was very common, we first examined the effect of H. pylori status on response to oral iron treatment prior to triple therapy. Patients with menorrhagia, gastrointestinal lesions or no abnormal findings were compared with the same diagnostic categories who in addition were also *H. pylori* positive. All patients with hypergastrinemia and antiparietal antibodies were excluded from this comparison because in advanced gastric mucosal atrophy. H. pylori infection is spontaneously eliminated³⁸ due to the unfavorable effect of achlorhydria on the growth and colonization of this pathogen. Our observation that failure to respond to oral iron treatment was more than twice as common in *H. pylori* positive patients than in the H. pylori negative group suggests that H. pylori infection has an unfavorable effect on response to oral iron treatment in IDA.

In view of these considerations, it was reasonable to ask whether eradication of *H. pylori* would be followed by improved response to oral iron in previously refractory patients. Indeed, successful *H. pylori* eradication resulted not only in a significant posttreatment decrease of serum gastrin and *H. pylori* IgG antibody titers, but an increase in hemoglobin levels indistinguishable from that in previously responsive IDA patients. Conversely, in patients in whom *H. pylori* eradication failed, the increment in hemoglobin despite continued oral iron treatment was insignificant. Our findings indicate that whether encountered alone or in combination with other, established causes of IDA, *H. pylori* infection may be a cause of refractoriness to oral iron treatment with improved response to oral iron following its eradication. Our observations are in agreement with a number of previous studies on the effect of *H. pylori* eradication on IDA in patients in whom no other cause of anemia could be identified.^{12-17,39,40}

A number of possible mechanisms have been invoked to explain the relation between H. pylori gastritis and IDA including occult gastrointestinal bleeding⁴¹ and competition for dietary iron by the bacteria.42 However, the most likely explanation is the effect of H. pylori on the composition of gastric juice.⁴⁵⁻⁴⁷ Studies by Annibale and others⁴⁴ have shown that gastric acidity and ascorbate content, both of which are critical for normal iron absorption,^{29,48,49} are adversely effected by *H. pylori* infection and, that *H. pylori* eradication results in normalization of intragastric pH and ascorbate content. The possibility that *H. pylori* may also play a role in the pathogenesis of autioimmune type A atrophic gastritis and pernicious anemia^{20,50-52} is intriguing, but outside the scope of the present study. Although in our patients with autoimmune gastritis and coexistent H pylori infection, successful H. pylori eradication was followed by decreased serum gastrin levels in most cases, in none of these patients did we observe the complete disappearance of antiparietal antibodies.

In view of the data presented here, there are two categories of patients in whom simple non-invasive screening may be recommended: (a) males and postmenopausal females with IDA in whom no cause has been identified by endoscopic and radiological studies, representing 36 to 38% of subjects, and (b) fertile females and children/adolescents who are refractory to oral iron treatment. In such patients a rapid screening for celiac disease (anti-endomysial antibodies) autoimmune type A atrophic gastritis (gastrin, antiparietal antibodies) and H. pylori (IgG antibodies followed by a urease breath test) may provide a highsensitivity screening and an effective starting point for further investigations. The implications of diagnosing celiac disease or autoimmune atrophic gastritis for abnormal iron absorption are obvious. Interpretation of positive serology for H. pylori confirmed by a positive urease breath test requires clinical judgment as 20 to 50% of the general and largely healthy population in industrialized countries will have such findings. In such patients, refractoriness to oral iron treatment may justify a test-and-treat approach of *H. pylori* eradication as currently advocated for the management of dyspeptic patients.⁵⁴⁻⁵⁹ Cure of previously refractory IDA by H. pylori eradication could then be regarded as evidence supporting a cause-and-effect relation between *H. pylori* and refractory IDA.

Capsule endoscopy is an innovative technology for the documentation of obscure gastrointestinal blood loss undiagnosed by conventional endoscopy. It is highly effective in patients with active bleeding and IDA patients with guaiac-positive stools. However its efficacy in the absence of such findings is limited⁶⁰ and it is not recommended for a young female population with no evidence of gastrointestinal blood loss.

Renewed awareness of the critical importance of gastric secretion for iron absorption, and the recognition that chronic iron malabsorption may be a significant factor contributing to the development of unexplained, or refractory IDA in a high proportion of patients, should have a strong impact on the daily practice of diagnosing and managing IDA. Optimally, this should involve a multidisciplinary approach with close collaboration of hematologists and gastroenterologists. Because abnormal gastric secretion is the

common underlying abnormality responsible for poor iron absorption in both H. pylori gastritis and autoimmune type A atrophic gastritis, and because these two entities often overlap and may represent the two ends of the same spectrum, the term gastropathic sideropenia may be appropriate for underlining the role of abnormal gastric mucosa in the pathogenesis of IDA.

CH, MS, IM: clinical and laboratory workup for hematological evaluation; DK: gastroenterological evaluation; YM: immunological evaluation; AL: statistical analysis; VH: critical analysis and reorganization of data, and active participation in preparation of the manuscript. CH was personally responsible for the conception of the study, clinical care of all patients, data collection, interpretation of results and preparation of the manuscript. The authors declare that they have no potential conflict of interest. The outstanding skills and dedication of Nicole Adar and Edna Assis in the processing and recording of data are gratefully

acknowledged.

Manuscript received January 9, 2005. Accepted April 7, 2005.

References

- Cook JD. Iron deficiency anaemia. Clin Haematol 1994;7:787-804.
 Rockey DC, Cello JP. Evaluation of the
- gastrointestinal tract in patients with iron-deficiency anemia. N Engl J Med 1993; 329:1691-5.
- 3. McIntyre AS, Long RG. Prospective survey of investigations in outpatients referred with iron deficiency anaemia. Gut 1993;34:1102-7.
- 4. Carrocció A, Iannitto E, Cavataio F, Montalto G, Tumminello M, Campagna P, et al. Sideropenic anemia and celiac disease: one study, two points of view. Digest Dis Sci 1998; 3:673-8.
- Barton R. Iron deficiency anaemia. Patients must be screened for coeliac dis-ease. Br Med J 1997;314:1759-60. Kolho KL, Farkkila MA, Savilahti E. Undiagnosed coeliac disease is common 5.
- in Finnish adults. Scand J Gastroenterol 1998;33:1280-3.
- 7. Volpe C, Festini G, Torre G, Lucchesi A. Occult coeliac disease and iron-deficien-cy anaemia. Minerva Med 1997;88:401-3. Corazza GR, Valentini RA, Andreani ML,
- D'Anchino M, Leva MT, Ginaldi L, et al. Subclinical coeliac disease is a frequent
- Gastroenterol 1995;30:153-6. Johnston SD, Watson RG, McMillan SA, Sloan J, Love AH. Prevalence of coeliac disease in Northern Ireland. Lancet 1997; 570-1570, Northern Ireland. Lancet 1997; 350:1370
- 10. Dickey W, Hughes D. Prevalence of celi-ac disease and its endoscopic markers among patients having routine upper gas-trointestinal endoscopy. Am J Gastr 1999; 94:2182-6.
- 11. Konno M, Muraoka S, Takahashi M, Imai
- Konno M, Mutraoka S, Takahashi M, Imai T. Iron-deficiency anemia associated with Helicobacter pylori gastritis. J Ped Gastr Nutr 2000;31:52-6.
 Choe YH, Kim SK, Son BK, Lee DH, Hong YC, Pai SH. Randomized placebo-controlled trial of Helicobacter pylori eradication for iron-deficiency anemia in eradication for iron-deficiency anemia in preadolescent children and adolescents. Helicobacter 1999;4:135-9.
- Choe YH, Lee JE, Kim SK. Effect of heli-cobacter pylori eradication on sidero-penic refractory anaemia in adolescent girls with Helicobacter pylori infection.

- Acta Paediatr 2000;89:154-7.
 14. Choe YH, Hwang TS, Kim HJ, Shin SH, Song SU, Choi MS. A possible relation of the Helicobacter pylori Pfr gene to iron deficiency anemia? Helicobacter 2001; 6.55-9
- Choe YH, Kwon YS, Jung MK, Kang SK, Hwang TS, Hong YC. Helicobacter pylori-associated iron-deficiency anemia in adolescent female athletes. J Pediatr 15. 2001;139:100-4.
- Ashorn M, Ruuska T, Makipernaa A. Helicobacter pylori and iron deficiency anaemia in children. Scand J Gastr 2001; 16. 36:701-5
- Annibale B, Marignani M, Monarca B, Antonelli G, Marcheggiano A, Martino 17. Antonelli G, Marcheggiano A, Martino G, et al. Reversal of iron deficiency ane-mia after Helicobacter pylori eradication in patients with asymptomatic gastritis. Ann Intern Med 1999; 131:668-72. Dickey W, Kenny BD, McMillan SA, Porter KG, McConnell JB. Gastric as well
- 18. as duodenal biopsies may be useful in the investigation of iron deficiency anaemia. Scand J Gastr 1997;32:469-72. Annibale B, Capurso G, Chistolini A, D'Ambra G, DiGiulio E, Monarca B, et al.
- 19. Gastrointestinal causes of refractory iron deficiency anemia in patients without gastrointestinal symptoms. Am J Med 2001;111:439-45.
- Annibale B, Negrini R, Caruana P, Lahner E, Grossi C, Bordi C, et al. Two-thirds of atrophic body gastritis patients have evi-dence of Helicobacter pylori infection. Helicobacter 2001;6:225-33. 20.
- Faber K. Achylia gastrica mit Anamie. Medizinishe Klinik 1909;5:1310-25. Wintrobe MM, Beebe RT. Idiopathic
- hypochromic anemia. Medicine 1933; 12: 187-243.
- Delamore IW, Shearman DJC. Chronic iron-deficiency anaemia and atrophic 23. gastritis. Lancet 1965;1:889-91.
- Jacobs A, Kawrie JH, Entwistle CC, Campbell H. Gastric acid secretion in 24 chronic iron-deficiency anaemia. Lancet 1966;2:190-2.
- Wintrobe MM. Clinical Hematology, Lea and Febiger, Philadelphia; Fifth Edition:
- 1961. p. 737. Gal E, Abuksis G, Fraser G, Koren R, Shmueli C, Yahav Y, et al. ¹⁹C-urea breath test to validate eradication of Helicobacter pylori in an Israeli population. Isr

- Med Ass J 2003;5:98-100. 27. Marignani M, Delle Fave G, Mecarocci S, Bordi C, Angeletti S, D'Ambra G, et al. High prevalence of atrophic body gastri-tis in patients with unexplained microcytic and macrocytic anemia: a prospec-tive screening study. Am J Gastr 1999;94: 766-72
- Dagg JH, Goldberg A, Gibbs WN, Anderson JR. Detection of latent pernicious anaemia in iron-deficiency anaemia. Br Med J 1966;2:619-21.
- Cook JD, Brown GM, Valberg LS. The 29.
- Cook JD, Brown GM, Valberg LS. The effect of achylia gastrica on iron absorption. J Clin Invest 1964;43:1185-91.
 Shade SG, Cohen RJ, Conrad ME. The effect of hydrochloric acid on iron absorption. N Engl J Med 1968;279:621-4.
 Bezwoda W, Charlton R, Bothwell T, Torrance J, Mayet F. The importance of gastric hydrochloric acid in the absorption of nonheme food iron. I ab Clin tion of nonheme food iron. J Lab Clin Med 1978;92:108-16.
- 32. Bini EJ. Helicobacter pylori and iron deficiency anemia: guilty as charged? Am J Med 2001;111:495-7. Peach HG, Bath, NE, Farish SJ. Helico-bacter pylori infection: an added stressor
- 33. on iron status of women in the community. Med J Austral 1998;169:188-90.
- Milman N, Rosenstock S, Andersen L, Jorgensen T, Bonnevie O. Serum ferritin, hemoglobin, and Helicobacter pylori infection: a seroepidemiologic survey compris-ing 2794 Danish adults. Gastroenterology
- 1998;115:268-74. Seo JK, Ko JS, Choi KD. Serum ferritin and Helicobacter pylori infection in children: a sero-epidemiologic study in Korea. J Gastr Hepatol 2002;17:754-7.
 36. Parkinson AJ, Gold BD, Bulkow L, Wain-wright RB, Swaminathan B, Khanna B, et
- al. High prevalence of Helicobacter pylori in the Alaska native population and association with low serum ferritin levels in young adults. Clin Diagn Lab Immun 2000; 7:885-8.
- Suerbaum S, Michetti P. Helicobacter pylori infection. N Engl J Med 2002; 347: 37 1175-86.
- Perez-Perez GI. Role of Helicobacter pylori infection in the development of pernicious anemia. Clin Infect Dis 1997; 25:1020-2.
- 39. Sugiyama T, Tsuchida M, Yokota K Shimodan M, Asaka M. Improvement of

long-standing iron deficiency anemia in adults after eradication of Helicobacter pylori infection. Intern Med 2002;41: 491-4.

- 40. Kostaki M, Fessatou S, Karpathios T. Refractory iron-deficiency anaemia due to silent Helicobacter pylori gastritis in children. Eur J Ped 2003;162:177-9.
 Yip R, Limburg PJ, Ahlquist DA, Car-penter HA, O'Neill A, Kruse D, et al.
- Pervasive occult gastrointestinal bleeding in an Alaska native population with prevalent iron deficiency. Role of Helicobacter pylori gastritis. JAMA 1997; 277:1135-9.
- 42. Perez-Perez GI, Israel DA. Role of iron in Helicobacter pylori: its influence in outer membrane protein expression and in pathogenicity. Eur J Gastr Hepatol 2000; 12:1263-5.
- 43. Capurso G, Lahner E, Marcheggiano A, Caruana P, Carnuccio A, Bordi C, et al. Involvement of the corporal mucosa and related changes in gastric acid secretion characterize patients with iron deficiency anaemia associated with Helicobacter pylori infection. Aliment Pharm Ther 2001;15:1753-61.
- Annibale B, Capurso G, Lahner E, Passi S, Ricci R, Maggio F, et al. Concomitant alterations in intragastric pH and ascorbic acid concentration in patients with Helicobacter pylori gastritis and associated iron deficiency anaemia. Gut 2003; 52:496-501.
- 45. El-Omar EM, Oien K, El-Nujumi A, Gillen D, Wirz A, Dahill S, et al. Helicobacter pylori infection and chron-ic gastric acid hyposecretion. Gastro-enterology 1997;113:15-24.
 46. Ruiz B, Rood JC, Fontham ET, Malcom GT, Hunter FM, Sobhan M, et al. Wirrin Conservation in carticipation.
- Vitamin C concentration in gastric juice Ferrata

before and after anti-Helicobacter pylori

- treatment. Amer J Gastr 1994; 89:533-9. Banerjee S, Hawksby C, Miller S, Dahill S, Beattie AD, McColl KE. Effect of 47. Helicobacter pylori and its eradication on gastric juice ascorbic acid. Gut 1994; 35:317-22.
- Bothwell TH, Baynes RD, MacFarlane BJ, MacPhail AP, Nutritional iron require-48 ments and food iron absorption. J Intern
- Med 1989;226:357-65. Zhang ZW, Patchett SE, Perrett D, Katelaris PH, Domizio P, Farthing MJ. The relation between gastric vitamin C concentrations, mucosal histology, and CagA seropositivity in the human stom-ach. Gut 1998;43:322-6.
- 50 Stopeck A. Links between Helicobacter pylori infection, cobalamin deficiency, and pernicious anemia. Arch Intern Med
- 2000;160:1229-30. Varis O, Valle J, Siurala M. Is Helico-bacter pylori involved in the pathogene-sis of the gastritis characteristic of permi-cious anaemia? Comparison between 51 pernicious anaemia relatives and duodenal ulcer relatives. Scand J Gastr 1993; 28:705-8.
- Haruma K, Mihara M, Okamoto E, Kusunoki H, Hananoki M, Tanaka S, et al. Eradication of Helicobacter pylori 52 Haruma K, increases gastric acidity in patients with Increases gastric acidity in patients with atrophic gastritis of the corpus-evalua-tion of 24-h pH monitoring. Aliment Pharm Ther 1999;13:155-62. Bini EJ, Micale PL, Weinshel EH. Evaluation of the gastrointestinal tract in premenopausal women with iron defi-inger compared and Mark 1009, 105, 291
- 53. ciency anemia Am J Med 1998; 105:281-
- McColl KEL, Murray LS, Gillen D, Walker A, Wirz A, Fletcher J, et al. Randomized trial of endoscopy with

testing for Helicobacter pylori compared with non-invasive H pylori testing alone in the management of dyspepsia. Br Med J 2002;324:999-1002

- Hawtin PR. Serology and urea breath test in the diagnosis of H pylori infec-tion. Mol Biotechnol 1999;1:85-92.
 Lassen AT, Pedersen FM, Bytzer P, Schaffalitzky de Muckadell OB. Helico-logitation and the second sec
- bacter pylori test-and-eradicate versus bacter pylori test-and-eradicate versus prompt endoscopy for management of dyspeptic patients: a randomised trial. Lancet 2000;356:455-60. Arents NL, Thijs JC, van Zwet AA, Oudkerk Pool M, Gotz JM, et al. Approach to treatment of dyspepsia in
- 57 primary care: a randomized trial com-paring "test-and-treat" with prompt endoscopy. Arch Intern Med 2003; 163: 1606-12
- Heaney A, Collins JS, Watson RG, McFarland RJ, Bamford KB, Tham TC. A 58 prospective randomised trial of a "test and treat" policy versus endoscopy and treat policy versus endoscopy based management in young Helico-bacter pylori positive patients with ulcer-like dyspepsia, referred to a hospi-tal clinic. Gut 1999; 45:186-90. Chiba N, Van Zanten SJ, Sinclair P, Ferguson RA, Escobedo S, Grace E. Treating Helicobacter pylori infection in minore care petients with uninversion
- primary care patients with uninvestigat-ed dyspepsia: the Canadian adult dys-pepsia empiric treatment-Helicobacter pylori positive (CADET-Hp) randomised controlled trial. Br Med J 2002;324:1012-
- 60. Pennazio M, Santucci R, Rondonotti E, Abbiati C, Beccari G, Rossini FP, et al. Outcome of patients with obscure gastrointestinal bleeding after capsule endoscopy: report of 100 consecutive cases. Gastroenterology 2004;126:914-6.