Table 1. Comparison of our data and previously published data: incidence of submicroscopic deletions in leukemias with reciprocal translocations.

Disease	Reference
CML	22/245 (9%): this study
	23/250 (9.2%): Kolomietz <i>et al.</i> , 2001 39/241 (16.2%): Huntly <i>et al.</i> , 2001
BCR-ABL positive ALL	4/70 (6%): this study
	1/13 (7.7%) Kolomietz <i>et al.</i> , 2001 4/45 (9%) Specchia <i>et al.</i> , 2003
ALL with MLL rearrangements	1/29 (3%): this study
Ŭ	3/18 children (17%): Barber et al., 2004
AML with AML1-ETO	4/112 (4%): this study
	0/14 (0%): Kolomietz et al., 2001
AML with CBFB-MYH11	3/122 (2%): this study
	5/15 (33%): Martinet <i>et al.</i> , 1997 2/20 (10%): Kolomietz <i>et al.</i> , 2001 6/42 (14%): Marlton <i>et al.</i> , 1995
AML with PML-RARA	3/108 (3%): this study
	0/30 (0%): Kolomietz et al., 2001
AML with MLL rearrangements	8/96 (8%): this study
	0/22 children (0%): Mathew et al., 1999
ALL and AML with <i>MLL</i> rearrangements	7/43 (16%): Kolomietz <i>et al.</i> , 2001

tions in 8% of our cohort with AML with different MLL rearrangements. This is in contrast to the results of Mathew et al., who did not find submicroscopic deletions in 22 children with AML and MLL rearrangements.

In conclusion, we found a similar incidence of 2-9% of submicroscopic deletions in a variety of leukemias. Although we analyzed a high number of patients we were unable to determine the prognostic impact of these deletions in acute leukemias (data not shown) because of the limited number of patients with submicroscopic deletions and the specific individual prognoses: AML with favorable balanced translocations have a good prognosis; MLL rearrangements in acute leukemias and BCR-ABL positive ALL show a poor outcome.

Submicroscopic deletions could represent a non-specific event in different types of leukemia without an association with a specific entity.² Polymerase chain reaction and Southern blot analyses of reciprocal breakpoints in ALL with MLL rearrangements and in CML showed a high rate of submicroscopic deletions at the molecular level.^{8,9} The loss of tumor-suppressor genes due to submicroscopic deletions in CML might play a role in the worse prognosis of these patients.1 Given the very low incidence of cases with deletions accompanying reciprocal translocations in AML and ALL, definitive conclusions on prognosis cannot be drawn.

> Ulrike Bacher, Susanne Schnittger, Wolfgang Kern, Wolfgang Hiddemann, Torsten Haferlach, Claudia Schoch

Laboratory for Leukemia Diagnostics, Department for Internal Medicine III, Klinikum Grosshadern, Ludwig-Maximilians-University, Marchioninistr. 15, D-81377 Munich, Germany

Key words: submicroscopic deletions, interphase fluorescence in situ hybridization, balanced translocations, AML, BCR-ABL positive ÁIJ.

Correspondence: Ulrike Bacher, M.D., Laboratory for Leukemia Diagnostics, Klinikum Grosshadern Ludwig-Maximilians-University, Munich, Marchioninistr. 15, D-81377 Munich, Germany. Phone: international +49.89.70954972. Fax: international +49.89.70954971. E-mail: ulrike.bacher@med.unimuenchen.de

References

- Huntly BJP, Reid AG, Bench AJ, Campbell LJ, Telford N, Shepherd P, et al. Deletions of the derivative chromosome 9 occur at the time of the Philadelphia translocation and provide a powerful and independent prognostic indicator in chronic myeloid leukemia. Blood 2001;98:1732-8.
 Kolomietz E, Al Maghrabi J, Brennan S, Karaskova J, Minkin S, Lipton J, et al. Primary chromosomal rearrangements of leukemia are frequently accompanied by extensive submicro-scopic deletions and may lead to altered prognosis. Blood 2001;97:3581-8.
 Specchia G, Albano F, Anelli L, Storlazzi CT, Zagaria A, Mancini
- Specchia G, Albano F, Anelli L, Storlazzi CT, Zagaria A, Mancini M, et al. Deletions on der(9) chromosome in adult Ph-positive acute lymphoblastic leukemia occur with a frequency similar to that observed in chronic myeloid leukemia. Leukemia 2003;17:528-31.
- Barber, Kerry, Ford A, Harris R, Harrison C, Moorman A. MLL translocations with concurrent 3' deletions: interpretation of FISH results. Genes Chromosomes Cancer 2005;41:266-71.
 Marlton P, Claxton DF, Liu P, Estey EH, Beran M, Lebeau M, et al. Molecular characterization of 16P deletions associated with inversion-16 defines the critical fusion for leukemogenesis. Blood 1995;85:772-9.
 Marlton M, Mullerentter D, Learner M, Berlin V, Hen H.
- Blood 1995;85:772-9.
 Martinet D, Muhlematter D, Leeman M, Parlier V, Hess U, Gmur J, et al. Detection of 16q deletions by FISH in patients with inv(16) or t(16;16) and acute myeloid leukemia (AML). Leukemia 1997;11:964-70.
 Mathew S, Behm FG, Dalton J, Raimondi SC. Comparison of cytogenetics, Southern blotting, and fluorescence in situ hybridization as methods for detecting MLL gene rearrangements in children with acute leukemia and with 11g23 abnor-
- ments in children with acute leukemia and with 11q23 abnormalities. Leukemia 1999;13:1713-20.
- Gillert E, Leis T, Repp R, Reichel M, Hosch A, Breitenlohner I, et al. A DNA damage repair mechanism is involved in the ori-gin of chromosomal translocations t(4;11) in primary leukemic cells. Oncogene 1999;18:4663-71.
- Reichel M, Gillert E, Nilson I, Siegler G, Greil J, Fey GH, et al. Fine structure of translocation breakpoints in leukemic blasts with chromosomal translocation t(4;11): the DNA damage-repair model of translocation. Oncogene 1998;17:3035-44.

Multiple Myeloma

Global real-time quantification/reverse transcription-polymerase chain reaction for detecting proto-oncogenes associated with 14q32 chromosomal translocation in multiple myeloma

A global real-time quantitative/reverse transcription-polymerase chain reaction technique for detecting the expression of six 14q32 chromosomal translocation-associated proto-oncogenes in marrow plasma cells was established and applied to myeloma specimens. This technique is an alternative method of detecting 14q32 rearrangements and allows investigation of the relationship between proto-oncogene expression and clinical features.

haematologica 2005; 90:559-562

(http://www.haematologica.org/journal/2005/5/.html)

Chromosomal translocations involving the immunoglobulin heavy chain gene (IGH) locus (14q⁺) play important roles in multiple myeloma (MM).^{1,2} The transcriptional activation of proto-oncogenes associated with the 14q+ chromosome such as *CCND1*, *FGFR3*, *c-MAF*, *MAFB*, *MUM1/IRF4*, and *c-MYC* may be involved not only in the development of MM but also in the treatment outcome.³⁴⁵ We established a global real-time quantitative/reverse transcription-polymerase chain reaction (RQ/RT-PCR) technique that can be performed on clinical material.

After obtaining written informed consent from patients, plasma cells were purified from mononuclear cells that had been derived from 1~2 mL of marrow aspirate by positive selection using anti-CD138 antibodycoated beads and an automatic magnetic cell sorting system (Miltenyi Biotec, Auburn, CA, USA).6 One microgram of total RNA was reverse-transcribed to singlestrand cDNA with a random primer and Superscript II (Invitrogen Life Technologies, Carlsbad, CA, USA) and the final volume was adjusted to 42 µL. The cDNA solution was diluted in ddH2O at 1:128. RQ/RT-PCR was carried out in a total volume of 20 µL of reaction mixture containing 2 µL of diluted cDNA, 2 µL of FastStart DNA master SYBR Green I (Roche Molecular Biochemicals, Mannheim, Germany), and $0.5 \,\mu\text{M}$ of each primer with a LightCycler Quick System 330 (Roche Molecular Biochemicals). Table 1 shows the oligonucleotide sequences of the primers and PCR conditions used for amplification of each gene. For precise quantification of the transcripts, we assessed the expression level of β -actin mRNA as an internal control. The primer set for β -actin was purchased from Roche Molecular Biochemicals, and PCR was carried out according to the manufacturer's instructions. The standard curve for each gene was generated by evaluating serially diluted plasmid clones containing cDNA inserts of the gene as templates. The absolute expression level of the target gene was calculated from the standard curve. Quantitative assessment of the mRNA of interest was performed by dividing its expression level by that of β -actin mRNA to obtain the copy-number ratio. RT-PCR for the IGH-MMSET chimeric transcript was performed using primers IGJH1 (5'-CCCTGGTCACCGTCTCCT-CA-3') and MMSET (5'-CCTCAATTTCCTGAAATTG-GTT-3') as described by Chesi *et al.*⁷ To test for mutations in codons 12, 13 and 61 of the N- and K-Ras genes at the mRNA level,⁸ real-time PCR was carried out in a total volume of 20 µL reaction mixture containing 2 µL of diluted cDNA and 10 pmol of each primer (Table 1). A second PCR was carried out using 1 µL of the real-time PCR product. After purification, the PCR product was sequenced by an ABI3100 capillary DNA sequencer (Applied Biosystems, Foster City, CA, USA).

Both the sensitivity and reproducibility of our RQ/RT-PCR system were validated using serial dilutions of plasmid clones in ddH₂O ranging from 15 to 2.8×10⁸ copies. These samples were amplified in triplicate. For each of the 6 genes, the plot of log concentration of the gene (xaxis) versus cycle number (y-axis) showed a linear relationship between 60 and 3.8×10^3 copies with minimal deviation (data not shown). We examined 19 MM cell lines for the expression status of the CCND1, FGFR3, c-MAF, and MAFB genes and found that the expression level was extremely high in MM cell lines that contained chromosomal translocations involving these gene loci (data not shown). However, the mRNA levels of *MUM1* and *c*-*MYC* were generally higher in the 19 MM cell lines than in fresh samples irrespective of the status of the chromosomal rearrangements involving these two gene loci (data not shown). This seemed to be due to the presence of a larger fraction of proliferating MM

Table 1. Primer sets and conditions of the real-time PCR assay.					
Oligonucleotide Sequence	Primer*	MgCl ₂	Condition**		
CCND1					
Forward tacaccgacaactccatcc (5'-3') Reverse accaggagcagctccattt (5'-3')	0.5 μM	6 mM	95°C 180s 95°C 15s 54°C 10s 72°C 10s		
FGFR3					
Forward atcggcattgacaaggacc (5'-3') Reverse tctccatctcagacaccag (5'-3')	0.5 μM	5 mM	95°C 180s 95°C 15s 54°C 10s 72°C 10s		
CMAF	05 14		0500.400		
Forward tcataactgagcccactcg (5'-3') Reverse gaacacactggtaagtacac (5'-3')	0.5 μΜ	5 MM	95°C 180s 95°C 15s 52°C 10s 72°C 10s		
MAFB					
Forward ttcaaccttgttggtgctg (5'-3') Reverse aatttgaccataagacaaggctgtagt (5'-3')	0.5 μM	5 mM	95°C 600s 95°C 15s 52°C 10s 72°C 10s		
MUM1					
Forward agccaagcataaggtctgc (5'-3') Reverse gctccttcacgaggatttc (5'-3')	0.5 μM	5 mM	95°C 600s 95°C 15s 54°C 10s 72°C 10s		
с-МҮС					
Forward totoottgoagotgottag (5'-3') Reverse gtogtagtogaggtoatag (5'-3')	0.5 μM	5 MM	95°C 600s 95°C 15s 54°C 10s 72°C 10s		
K-Ras					
Forward ggcctgctgaaaatgactgaata (5'-3') Reverse cccacctataatggtgaatatct (5'-3')	0.5 μM	5 mM	95°C 600s 95°C 15s 54°C 10s 72°C 15s		
N-Ras					
Forward atgactgagtacaaactggtggtggtggt (5'-3') Reverse caaatgacttgctattattgatg (5'-3')	0.5 μM	5 mM	95°C 600s 95°C 15s 54°C 10s 72°C 15s		

*The concentration of each of the forward and reverse primers in the PCR reaction mixture is shown. **The conditions of the primary denaturation, denaturation, annealing and extension are shown.

cells in MM cell lines than in fresh specimens.

In a series of samples from 45 patients with MM and 3 with monoclonal gammopathy of undetermined significances (MGUS), 13 (27.1%), 9 (18.8%), 4 (8.3%) and 2 samples (4.2%) showed expression of CCND1, *FGFR3, c-MAF* and *MAFB,* respectively (Table 2). MM sample n. 21 showed *IGH-MMSET* expression but not *FGFR3* expression, resembling previously reported findings.⁹ More interestingly, the expression of *CCND4* on the one hand and *FGFR3* or *c-MAF* or *MAFB* on the other were mutually exclusive in the same samples, whereas 3 of 10 samples that expressed *FGFR3* and/or *IGH-MMSET* coexpressed c-MAF or MAFB, partially contradicting a previous report.¹⁰ *N-RAS* mutation was detected in five MM samples (10.4%). Our global *RQ/RT-PCR* technique performed on

No.	CCND1	FGFR3	RQ/RT-PCR c-MAF	MAFB	MUM1	c-MYC	RT-PCR IgH-MMSET	Ras	
MM 1	999	_	_	_	79	_	_	_	
MM 2	938	_	_	_	327	_	_	-	
MM 2	900 9/				51/				
MM A	002	-	-	_	105	2/2	_	_	
MM 5	7720	-	-	-	105	243	-	-	
MM 6	1017	-	-	-	120	-	-	-	
	1917	-	-	-	15	_	-	-	
	190	-	-	-	50	Z	-	-	
	30	-	-	-	04	-	-	-	
MM 9	135	-	-	-	-	-	-	-	
MM10	42	-	-	-	57	_	-	-	
MM11	/8	-	-	-	29	4	-	-	
MM12	437	_	-	-	79	-	-	-	
MM13	-	284	-	-	249	-	1007 bp	-	
MM14	-	548	-	-	108	-	1007 bp	-	
MM15	-	2361	-	-	208	-	218 bp	-	
MM16	-	839	-	-	65	-	1007 bp	-	
MM17	-	239	-	-	122	14	218 bp	-	
MM18	-	605	3060	-	170	-	218 bp	-	
MM19	-	334	8960	-	114	126	1007 bp	-	
MM20	-	378	-	11	415	45	218 bp	-	
MM21	-	-	-	-	-	- LA	1007 bp	-	
MM22	-	-	2067	-	593	387	-	-	
MM23	-	-	94713	-	68	<u> </u>	-	-	
MM24	-	-	-	44	62	CO-	-	N-ras61	
MM25	-	-	-	-	85	24	-	N-ras13	
MM26	-	-	-	-	595		-	N-ras12	
MM27	-	-	-	-	751	-	-	N-ras61	
MM28	-	-	-	-	30	-	-	-	
MM29	-	-	-		183	-	-	-	
MM30	-	-	-		. 🔾 –	-	-	-	
MM31	-	-	-		698	-	-	-	
MM32	-	-	-	-	484	148	-	N-ras61	
MM33	-	-	-	_	146	-	-	-	
MM34	-	_	-		117	-	-	-	
MM35	-	_	_	_	48	-	_	-	
MM36	_	_	-	<u> </u>	202	6	_	-	
MM37	-	_		_	47	6	_	-	
MM38	_	_	- Ca	_	174	_	_	-	
MM39	_	_	_	_	33	_	_	-	
MM40	_	_	_	_	435	15	_	-	
MM41	_	_		_	272	_	_	-	
MM42	_	_	XU	_	180	21	_	-	
MM43	_	_		-	490	_	_	-	
MM44	_	_	· () -	_	561	106	_	-	
MM45	_			_	214	-	_	-	
					217				
MGUS 1	168	E VI	-	-	92	-	-	-	
MGUS 2	-	213	-	-	266	7	1007 bp	-	
MGUS 3	-		-	-	310	-	-	-	

Table 2. Proto-oncogene	mRNA expression	and Ras gene status	in a series of MM	I and MGUS samples	from patients.
-------------------------	-----------------	---------------------	-------------------	--------------------	----------------

RQ/RT-PCR⁻: copy-number ratio <10². The copy-number ratio defined as the absolute expression level × 10², is shown. IgH-MMSET: The size of the IgH-MMSET fusion transcript obtained by RT-PCR and confirmed by direct sequencing is shown, whereas – indicates negativity for IgH-MMSET fusion transcript. Ras: no mutation in codons 12, 13 and 61 of the N- and K-Ras genes.

RNA extracted from sorted plasma cells may be an alternative method of determining the expression of 14q32 chromosomal translocation-associated proto-oncogenes and can be easily performed on clinical samples. This technique may be more efficient and cost-effective than conventional cytogenetic fluorescence *in situ* hybridization.⁴⁶

> Emi Tajima,*° Miyuki Uranishi,* Shinsuke Iida,* Hirokazu Komatsu,* Masakazu Nitta,° Ryuzo Ueda*

*Department of Internal Medicine and Molecular Science, Nagoya City University Graduate School of Medical Science, Kawasumi 1, Mizuho-chou, Mizuho-ku, Nagoya 467-8601; °Department of Hematology, Aichi Medical University, Nagakute-chou, Aichi-gun 480-1195, Japan

Acknowledgments: we are grateful to Drs. Y. Hayami, S. Kayukawa, T. Kataoka, K. Miura, M. Itoh and H. Miwa for providing us patients' samples. Funding: this work was supported by the Ministry of Education, Science, Sports and Culture, Japan (S. Iida and R. Ueda), the Ministry of Health, Labor and Welfare (S. Iida and R. Ueda), Regional R&D Consortium Project of the Ministry of Economy, Trade and Industry (S. Iida), the Japan Society for the Promotion of Science (M. Uranishi), and a Research Grant of the Princess Takamatsu Cancer Research Fund (S. Iida: 02-23401).

Key words: multiple myeloma, proto-oncogene, 14q+ chromosome, Ras mutation, real-time polymerase chain reaction.

Correspondence: Shinsuke Iida, M.D., Department of Internal Medicine and Molecular Science, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-chou, Mizuho-ku, Nagoya 467-8601, Japan. Phone: international +81.52.8538216. Fax: international +81.52.8520849. E-mail: iida@med.nagoya-cu.ac.jp

References

- 1. Kuehl WM, Bergsagel PL. Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer 2002;2:175-87.
- 2. Iida S, Ueda R. Multistep tumorigenesis of multiple myeloma: its molecular delineation. Int J Hematol 2003;77:207-12.
- Moreau P, Facon T, Leleu X, Morineau N, Huyghe P, Harousseau JL, et al. Recurrent 14q32 translocations determine the prognosis of multiple myeloma, especially in patients receiving intensive chemotherapy. Blood 2002;100:1579-83.
- Fonseca R, Blood E, Rue M, Harrington D, Oken MM, Kyle RA, et al. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood 2003;101:4569-75.
 Soverini S, Cavo M, Cellini C, Terragna C, Zamagni E, Ruggeri
- Šoverini S, Cavo M, Cellini C, Terragna C, Zamagni E, Ruggeri D, et al. Cyclin D1 overexpression is a favorable prognostic variable for newly diagnosed multiple myeloma patients treated with high-dose chemotherapy and single or double autologous transplantation. Blood 2003;102:1588-94.
- Miura K, Iida S, Hanamura I, Kato M, Banno S, Ishida T, et al. Frequent occurrence of CCND1 deregulation in patients with early stage of plasma cell dyscrasia. Cancer Science 2003;94:1-5.
- 7. Chesi M, Nardini E, Lim RS, Smith KD, Kuehl WM, Bergsagel PL. The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood 1998;92:3025-34.
- Neri A, Murphy JP, Cro L, Ferrero D, Tarella C, Baldini L, et al. Ras oncogene mutation in multiple myeloma. J Exp Med 1989; 170:1715-25.
- Santra M, Zhan F, Tian E, Barlogie B, Shaughnessy J Jr. A subset of multiple myeloma harboring the t(4;14)(p16;q32) translocation lacks FGFR3 expression but maintains an IGH/MMSET fusion transcript. Blood 2003;101:2374-6.
- Hurt EM, Wiestner A, Rosenwald A, Shaffer AL, Campo E, Grogan T, et al. Overexpression of c-maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow stroma. Cancer Cell 2004;5:191-9.

Multiple Myeloma

Double versus single autotransplantation in multiple myeloma; a single center experience of 100 patients

One hundred patients with newly diagnosed multiple myeloma (MM) were treated with highdose chemotherapy followed by single or double autologous stem cell transplantation (ASCT). Upfront treatment with a double ASCT tended to prolong progression-free and overall survival.

haematologica 2005; 90:562-563	
(http://www.haematologica.org/journal/2005/4/562.html)	

High dose therapy (HDT) and autologous stem cells transplantation (ASCT) are superior to conventional chemotherapy in multiple myeloma (MM),¹ and double autografting may be even better.² A total of 100 consecutive patients with newly diagnosed MM were treated with HDT and ASCT between 2/1992 and 3/2003: 73 patients (upper age limit 70 years) received a single and 27 patients (<61 years; 4 older patients) received a double translant (Table 1). Informed consent was obtained, and the double ASCT protocol was approved by the local Ethics Committee. After initial debulking therapy, usually 3-4 cycles of VAD, stem cells were mobilized with 2-4 g/m² of cyclophosphamide + granulocyte colony-stimulating factor. Details of the HDT are shown in Table 1. All patients received a blood graft. The EBMT response criteria were used.³ A very good partial response (VGPR) was included and was otherwise similar to complete response (CR) but serum/urine immunofixation was positive. Overall survival

Table 1. Patients' characteristics.

	Single ASCT	Double ASCT
Adaption (marks)		
Age; years, median (range)	59 (37-73)	55 (45-66) ⁴
Sex (female/male)	32/41	12/15
Myeloma type IgG IgA IgD Light chain	42 (58%) 12 (16%) 1 (1.3%) 16 (22%)	14 (52%) 1 (4%) 0 11 (40%)
Plasmacytoma Nonsecretory	1 (1.3%) 1 (1.3%)	1 (4%) 0
Stage I/II/III	7/37/29	2/10/15
B2microglobulin >4 mg/L	18 (38%) ²	5 (26%) ³
Treatment line I/II/III	54/16/3	22/2/3
Local radiation therapy	7 (9%)	3 (11%)
T from onset Ther to Tx I; months, median (range)	6 (3-12.5)	5 (3-11)
T from onset Ther to Tx II; months, median (range)		11 (6-18)
HDT: Melphalan 140 mg/m² + TBI 12 Gy	20 (27 %)	1 (2 %)
Melphalan 200 mg/m ²	54 (73 %)	53 (98 %) ⁴
Interferon (IFN) maintenance therapy	42 (57 %)	11 (41 %)
Duration of IFN therapy; months, median (range)	11 (1-101)	16 (2-45)

¹4 patients of more than 60 years of age: ²not available for 27 patients; ³not available for 8 patients: ⁴total number of HDT (incl. 1st and 2^{std} transplants) in the double ASCT group.

(OS) and progression-free survival (PFS) were calculated from the first transplant to death.

HDT supported by both the single and double ASCT was well tolerated. There was only one transplant-related death in the single transplant group. Organ-specific toxicities and engraftment kinetics were comparable between the first and second transplant procedures in the double ASCT group. The rate of good responses (CR + VGPR) increased from 18 to 71% (CR rate from 4 to 41%) with the single ASCT, and from 7 to 70% (CR rate from 0 to 52%) with the double ASCT. All patients responded to double autografting whereas there were three patients (4%) in the single ASCT group who did not. The median follow-up time from HDT is 51 (4-138) months in the single ASCT group and 46 (10-78) months in the double transplant group. For these groups, the median PFS was 29 (0-112) and 72+(5-75) months (p=0.098), and the median OS 60 (0-138) and 78+ (10-78) months (p=0.078), respectively (Figure 1).

This non-randomized comparison between single and double autotransplantation as an up-front treatment of patients with MM shows that double autografting tends to