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NQO1 C609T polymorphism in distinct entities
of pediatric hematologic neoplasms

The detoxification enzyme NAD(P)H:
quinone oxidoreductase 1 (NQO1), also
known as DT-diaphorase, is an obligate

two-electron reductase that is expressed in
a broad range of tissues in the human body,
including the epithelium of various organs,
vascular endothelium and nerve tissue.1-3

NQO1 protects cells against mutagenicity
from free radicals and toxic oxygen meta-
bolites generated by the one-electron
reductions catalyzed by cytochromes P450
and other enzymes4. Substrates for the
enzyme include quinones, quinone imines,
and azo-dyes. In addition, it was recently
shown that NQO1 has a direct role in the
protection against oxidative stress.5

The gene coding for NQO1 is subject to
polymorphism (C609T) with a C→T base
change at position 609 of the human NQO1
cDNA, leading to a change in the amino
acid sequence of the protein (P187S).6,7 Het-

erozygous individuals (C/T or NQO1*1/*2)
have intermediate activity and homozy-
gotes for the variant allele (T/T or
NQO1*2/*2) are deficient in NQO1 activi-
ty.8,9 In previous studies, the NQO1 C609T
polymorphism was associated with risk of
childhood and adult acute lymphoblastic
leukemia (ALL) as well as de novo and ther-
apy-associated acute myeloid leukemia
(AML).10-16 Inconsistent results have been
reported for solid malignancies (e.g., gas-
trointestinal tract, breast and lung can-
cer).17-23 Particularly strong associations
have been reported for infant leukemias
with chromosomal translocations involving
the MLL gene on chromosome band 11q23,
especially those carrying a t(4;11) where the
MLL gene is fused to the AF4 gene on chro-
mosome band 4q21.12,15 To analyze this asso-
ciation in our population and to investigate
potential associations of NQO1 deficiency

Background and Objectives. NAD(P)H:quinone oxidoreductase 1 (NQO1) is an enzyme
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with additional entities of hematologic malignancies
characterized by specific genetic aberrations, we geno-
typed 35 MLL/AF4-positive (+), 31 BCR/ABL+, and 72
TEL/AML1+ childhood ALL patients, 71 patients with
pediatric sporadic Burkitt's lymphoma, and 190
healthy control individuals for the NQO1 C609T poly-
morphism. 

Design and Methods

Patients and controls
Samples from patients diagnosed with de novo ALL

from October 1986 to December 2000 were collected
through the International Berlin-Frankfurt-Münster
Study Group (I-BFM-SG) from German, Austrian and
Czech study centers.24,25 The patients with Burkitt's lym-
phoma had been included in the German-Austrian-
Swiss NHL-BFM 86 and NHL-BFM 90 therapy trials on
non-Hodgkin's lymphoma (NHL) of childhood and ado-
lescence.26,27 For ALL, the diagnosis was established in
the respective central reference laboratory by mor-
phological FAB criteria and cytochemistry when there
were at least 25% lymphoblasts in the bone marrow,
or blasts in the peripheral blood. The immunopheno-
type and positivity for TEL/AML1, BCR/ABL, and
MLL/AF4 fusion transcripts were assessed as described
previously.28-31 The cases of NHL were classified as
Burkitt's lymphoma according to the criteria of the
updated Kiel and the World Health Organization clas-
sification.32,33 Tumor slides of all patients were reviewed
by central reference pathologists. Cytogenetic data for
Burkitt's lymphoma patients were not available. Stag-
ing was based on the criteria of the St. Jude staging
system for pediatric lymphoma.34 Controls consisted of
blood samples from healthy blood donors [18-68 years
of age, 130 males (68.4%) and 60 females (31.4%)],
with no history of malignant neoplastic disease. These
controls were collected through the Department of
Transfusion Medicine, Hannover Medical School, Ger-
many. All individuals included in the present study
were of Caucasian descent. Informed consent was
obtained from patients' parents or legal guardians and
control individuals. The study was approved by the
local ethics committee of the Hannover Medical
School.

Genotyping 
DNA was extracted from either leukemic (ALL) or

tumor-free bone marrow smears (Burkitt's lymphoma)
and whole blood (controls) using the High Pure PCR
Template Preparation Kit (Roche Diagnostics,
Mannheim, Germany). NQO1 C609T genotyping was
performed as previously described.11

Statistical analysis
The association of NQO1 C609T genotype with risk

of chromosomal translocation/disease was examined
by unconditional logistic regression analysis to calcu-
late odds ratios (OR) and their 95% confidence inter-
vals (CI). p values of < 0.05 were considered statisti-
cally significant. Genotype was used as a categorical
variable in these analyses. The expected frequency of
control genotypes was analyzed by the Hardy-Wein-
berg equilibrium test. The SPSS statistical package
(SPSS Inc., Chicago, IL, USA) was used for computer-
ized calculations. 

Results 

In the present study, 399 Caucasian individuals (190
control subjects, 209 patients) were genotyped for the
NQO1 C609T polymorphism. The characteristics of the
patients divided by diagnostic entity are shown in Table
1. Genotype frequencies among controls were in
Hardy-Weinberg equilibrium (p=0.81). The genotype
distribution in controls and in the investigated entities
of pediatric hematologic neoplasms as well as associ-
ations with risk of chromosomal translocation/disease
are shown in Table 2. When compared to the healthy
control group, only patients with Burkitt's lymphoma
significantly more often displayed NQO1 genotypes
associated with lower NQO1 activity (p χ2=0.036). This
effect was predominant in younger Burkitt's patients
who carried a NQO1*2 allele significantly more often
than did their older counterparts (p χ2=0.029; split at
the rounded median of 9 years of age at diagnosis;
Table 2). No statistically significant difference with
regard to age distribution was observed in the other
entities analyzed in our study. No differences in geno-
type distributions within controls or the investigated
entities of pediatric hematologic neoplasms were
observed with regard to gender. Of interest, in the
largest set of patients reported so far, we were not able
to confirm the previously published association of low-
activity NQO1 genotypes and risk of a t(4;11) or
MLL/AF4 rearrangement.12,15 Even when restricting the
analysis to t(4;11) or MLL/AF4+ patients younger than
18 months at diagnosis, as investigated by Wiemels et
al.,12 no significant associations were observed (Table 2).

Discussion

This is the first study to demonstrate an association
of NQO1 C609T genotype with pediatric sporadic
Burkitt's lymphoma. However, with regard to MLL/AF4+

ALL, our results are in contrast to those of two previ-
ous reports demonstrating particularly strong associ-
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ations of low NQO1 activity genotypes with a t(4;11)
or MLL/AF4 rearrangement.12,15 There are different
explanations for these contrasting results. First, the
present study included patients from Central Europe
(Austria, Czech Republic, Germany) while the above
mentioned studies were carried out in the United King-
dom and the United States. It can be expected from
the literature that NQO1 genotype frequencies in Cau-
casians are relatively similar. Our controls show the
same NQO1 C609T genotype distribution as the con-
trol group in the work by Wiemels et al.12 However, it
is possible that there are differences between coun-
tries with regard to specific exposure histories for
leukemia cases. Furthermore, we cannot assess the
potential influence of any gene-gene or additional
gene-environment interactions that may differ
between the investigated populations. Secondly, con-
sidering the potential importance of parental geno-
type with respect to an in utero pathogenesis of a
MLL/AF4 rearrangement, our results may simply reflect
passage of the NQO1*1 allele from heterozygous par-

ents to their offspring with MLL/AF4+ leukemia. Third-
ly, selection bias is an issue in every case-control
approach and certainly may have had an effect on our
results, as well. Nevertheless, the characteristics and
treatment outcome of the patients investigated in the
present study did not significantly differ from the
respective study populations they were recruited from
(data not shown). Finally, as far concerns previous
investigations, our results may simply be due to chance
and the small numbers of patients. Thus, the results
presented in this study should be interpreted with the
necessary caution and need to be confirmed in future
investigations. An important perspective for associa-
tion studies that may help to resolve problems relat-
ed to the current practice of performing association
analysis at the SNP or the haplotype level, was recent-
ly published by Neale and Sham.35 They suggested a
move towards a gene-based approach in which all
variants within a putative gene are considered jointly
to facilitate the resolution of inconsistencies arising
from differences between populations. One require-

Table 1. Patients’ characteristics by diagnostic entity.

MLL/AF4+ BCR/ABL+ TEL/AML1+ Burkitt's
n = 35 n = 31 n = 72 n = 71 

Number of subjects (%)

Gendera

Male 19 (54.3) 20 (64.5) 39 (54.2) 57 (80.3)
Female 16 (45.7) 11 (35.5) 33 (45.8) 14 (19.7)

Age at diagnosis (y)b,c

≤ 1 20 (57.1) − − −
> 1-10 8 (22.9) 17 (54.8) 63 (87.5) 44 (62.0)
> 10-15 6 (17.1) 11 (35.5) 8 (11.1) 22 (31.0)
> 15-19 1 (2.9) 3 (9.7) 1 (1.4) 5 (7.0)

Initial WBC (103/µL)
< 50 6 (17.1) 13 (41.9) 65 (90.3) 71 (100)
50 - 100 6 (17.1) 4 (12.9) 5 (6.9) −
> 100 23 (65.7) 14 (54.2) 2 (2.8) −

Stage (St. Jude classification)d

I − − − 11 (15.5)
II − − − 21 (29.6)
III − − − 32 (45.1)
IV − − − 7 (9.9)

Immunophenotype
Pro-B 25 (71.4) - 2 (2.8) −
Pre-B 1 (2.9) 6 (19.4) 8 (11.1) −
Common 9 (25.7) 24 (77.4) 60 (83.3) −
Mature B − − − 71 (100)
B, not further specified − − 1 (1.4) −
T − 1 (3.2) − −
Hybrid − − 1 (1.4) −

atotal patient sample: 64.6% male, 35.4%female; by: years; cmedian age: MLL/AF4 = 0.77 y, BCR/ABL: 8.33 y, TEL/AML1: 4.21 y, Burkitt's lymphoma: 8.55 y;
dsee reference 34.
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ment for a chromosomal translocation is the occur-
rence of DNA double-stranded breaks in the respective
partner loci at the same time.36,37 The MLL gene at chro-
mosome band 11q23 is frequently involved in chro-
mosomal rearrangements in acute leukemias and the
c-myc gene at chromosome band 8q24 is rearranged
in Burkitt's lymphoma.38,39 It has been shown for both
genes, MLL and c-myc, that apoptosis-inducing sub-
stances can induce double-stranded breaks in DNA
within the breakpoint cluster regions.40,41 As an addi-
tional requirement for chromosomal translocation
upon generation of DNA double-strand breaks, it is
necessary for the respective cells to survive this genet-
ic damage. With regard to this issue, differences in the
sensitivity of cells to undergo apoptosis upon acquir-
ing DNA double-stranded breaks have been suggest-
ed to play a role in the pathogenesis of chromosomal
translocations.42,43 Intriguingly, NQO1 was shown to
sensitize cells to undergo apoptosis by tumor necrosis
factor-α and, more recently, it was shown that wild-

type NQO1 stabilized wild-type p53 whereas the
NQO1*2 coded inactive NQO1 did not.44,45 Asher et al.
suggested that exposure towards carcinogenic sub-
strates of NQO1 could lead to increased genotoxic
damage at lower p53 levels in individuals with lower
NQO1 activity than in wild-type NQO1 individuals.45

As accumulation of p53 is important for growth arrest
and induction of apoptosis, lower NQO1 activity upon
carcinogenic exposure may, therefore, confer a high-
er susceptibility to accumulation of genetic mutations
(e.g., chromosomal translocations) in hematopoietic
precursor cells and finally lead to neoplastic disease. 

NQO1 genotype frequencies differ significantly
between different ethnic groups, with the NQO1*2
allele being reported to be approximately twice as
common in Asian and Hispanic populations (allele fre-
quencies 0.45 and 0.39, respectively).4,46 Of interest,
children of Asian ethnic origin in Britain have consis-
tently been found to have a higher incidence of
leukemias and lymphomas, particularly lymphomas in

Table 2. Distribution of NQO1 C609T genotype and its association with risk of chromosomal translocation/disease.

NQO1 Number of subjects (%) Odds ratioa (CIb) p

Controls
(n=190) *1/*1 126 (66.3) − −

*1/*2 61 (32.1) − −
*2/*2 3 (1.6) − −

MLL/AF4+

(n=35) *1/*1 25 (71.4) 1.00c

*1/*2 9 (25.7) 0.79 (0.36 - 1.74) 0.56
*2/*2 1 (2.9)

MLL/AF4+

< 18 mo at diagnosisd *1/*1 18 (81.8) 1.00c

(n=22) *1/*2 4 (18.2) 0.44  (0.14-1.35) 0.15
*2/*2 -

TEL/AML1+

(n=72) *1/*1 49 (68.1) 1.00c

*1/*2 21 (29.2) 0.92 (0.52-1.65) 0.79
*2/*2 2 (2.8)

BCR/ABL+

(n=31) *1/*1 18 (58.1) 1.00c

*1/*2 12 (38.7) 1.42 (0.38-3.78) 0.37
*2/*2 1 (3.2)

Burkitt's lymphoma
(n=71) *1/*1 37 (52.1) 1.00c

*1/*2 29 (40.8) 1.81 (1.04-3.15) 0.036
*2/*2 5 (7.0)

Burkitt's lymphoma
≤ 9 y at diagnosise *1/*1 15 (39.5) 1.00c

(n=38) *1/*2 21 (55.3) 3.02 (1.47-6.18) 0.003
*2/*2 2 (5.3)

acompared to healthy controls; individuals heterozygous or homozygous for NQO*2 were combined into one category; bconfidence interval; creference category; dpatients < 18
month at diagnosis, as investigated by Wiemels et al.;12 edivided at rounded median age of diagnosis. 
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early childhood (0-4 years of age), and children of His-
panic origin have been reported to have higher inci-
dences of ALL and lymphomas in the USA.47-49 Howev-
er, the lack of information on potential lifestyle-spe-
cific environmental exposures and incidence rates of
well characterized molecular subgroups in different
populations makes it difficult to speculate on a poten-
tial role for NQO1 deficiency in association with the
above mentioned obervations. Of interest, with regard
to environmental exposure and molecularly defined
leukemia subgroups, a case-control study by Alexan-
der and colleagues identified, for example, carbamate-
based insecticides as a risk factor for MLL-rearranged
infant leukemias.50 Although no specific substances
were identified, exposure to pesticides has been
repeatedly identified as a risk factor, also for pediatric
Burkitt's lymphoma.51,52 A potential link between expo-
sure to pesticides and NQO1 could be that NQO1 has
a direct role in the protection against oxidative stress
and pesticides induce oxidative stress as one mecha-
nism of their toxic action.5,53 Another important obser-
vation is that pesticides are potent inducers of NQO1
in rat livers.54 The different results for MLL/AF4+ ALL

and NQO1 deficiency that we and others observed are
not necessarily contradictory. They may point towards
potential differences in exposure between different
populations and could be useful in elucidating the eti-
ology of chromosomal translocation/disease when
incorporated in well-designed molecular epidemio-
logic studies. In conclusion, we suggest a common
exposure (e.g., pesticides) with its effects modulated
through NQO1 is associated with risk of different
hematologic neoplasms.
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