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A B S T R A C T

Background and Objectives. Early response after induction therapy is an independent
prognostic factor in acute myeloid leukemia (AML). We improved the identification of this
parameter by implementing multiparameter flow cytometry to quantify bone marrow
cells carrying leukemia-associated immunophenotypes (LAIP).

Design and Methods. In 106 uniformly treated patients flow cytometric analyses were
performed at diagnosis and one week after induction therapy (day 16). The log-difference
between LAIP-positive cells on day 1and day 16 (LD16) was determined for each patient.

Results. The LD16 (median, 2.11; range, -0.37 to 4.20) was significantly correlated to
CR rate, event-free survival (EFS), overall survival (0S), and relapse-free survival (RFS). Sep-
aration of patients by the median LD16 resulted in significant differences in CR rate (81%
vs. 51%, p=0.002), EFS (53% at 2 years vs. median 2.8 months, p<0.0001), 2-year OS (58%
vs. 43%, p=0.0133), and 2-year RFS (65% vs. 30%, p=0.0037). Multivariate analysis
revealed that LD16 was an independent prognostic parameter for CR rate, EFS, and RFS.

Interpretation and Conclusions. Flow cytometric evaluation of early response may
serve as a new response parameter in AML. It may be used for development of risk-adapt-
ed therapies. High-risk patients can be identified early after the first induction therapy
and assigned alternative and salvage treatment strategies.
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cute myeloid leukemia (AML) is a
Ahighly aggressive malignant disease

resulting from genetic alterations in
hematopoietic progenitor cells.' The man-
agement of patients with AML is based on
intensive chemotherapeutic regimens
applied for induction and consolidation as
well as autologous and allogeneic trans-
plantation procedures. Depending mainly
on the karyotype of the disease and the age
of the patient 50% to 800% of all individu-
als achieve a complete remission (CR) and
209% to 50% are cured.>* The main cause of
treatment failure is regrowth of minimal
residual disease (MRD) which is not
detectable by conventional methods such
as cytomorphology.

Various prognostic parameters have been
defined in patients with AML among which
the karyotype of the disease,® the age of
the patient,®* and the secondariness of the
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disease™™ are the most important ones.
These parameters can identify patients with
a favorable prognosis (e.g. young patients
with AML and t(15:17)) as well as of
patients with a particularly unfavorable
prognosis (e.g. older patients with AML and
a complex aberrant karyotype). However,
the majority of patients have an intermedi-
ate prognosis and no presently available
pre-therapeutic parameter predicts the
efficacy of standard therapies. Therapy-
dependent prognostic parameters may,
however, allow the prognosis to be esti-
mated in relation to the response of the dis-
ease in the individual patient.

For three decades the cytomorphologic
assessment of CR has been the only thera-
py-dependent parameter in AML which has
been used to stratify treatment.*’® Thus,
patients who achieve a CR receive standard
consolidation therapies while patients
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without a CR are assigned to salvage regimens. The
definition of a CR does, however, have the drawbacks
of a low sensitivity (5%), dependence on the individ-
ual skills of the morphologist, and the fact that there
is a relatively long time between the initiation of ther-
apy and the documentation of non-response. Further-
more, many patients suffer from relapses of the dis-
ease despite having achieved a CR, indicating the per-
sistence of treatment-refractory leukemic cells. Sev-
eral studies have shown that, in subsets of patients
with AML in complete remission, genetically or flow
cytometrically determined levels of minimal residual
disease are related to the patients” prognosis.** The
present report describes an approach which allows an
early and highly sensitive assessment of responsive-
ness of AML to induction therapy by multiparameter
flow cytometry yielding a new, powerful, and inde-
pendent prognostic parameter.

Design and Methods

AML samples

Fresh bone marrow samples which were sent for ref-
erence diagnostics to our laboratory from patients
with newly diagnosed and untreated de novo or sec-
ondary AML following MDS or chemotherapy for oth-
er malignancies were immunophenotyped as described
below. In all cases cytomorphology, cytochemistry,
cytogenetics, and molecular genetics were also applied
as detailed below.”? For inclusion in the study a fol-
low-up bone marrow sample had to be sent for early
response assessment during aplasia on day 16 after
start of TAD-9 induction (day 12 after HAM induc-
tion), i.e. one week after completion of the first course
of induction therapy. For the sake of simplicity this
time point is referred to as day 16 in the following
sections of the manuscript.

Antileukemic treatment

All patients were treated within the 1999 trial of
the German AML Cooperative Group. Patients older
than 16 years of age with newly diagnosed de novo or
secondary AML were eligible for this trial. Patients with
acute promyelocytic leukemia were treated in a sepa-
rate trial.” Patients with severe comorbidity preclud-
ing the initiation of intensive induction chemothera-
py (i.e., severe uncontrolled infections, coronary heart
disease WHO grade llI/IV, congestive heart failure
WHO grade IlI/IV, severe hyperbilirubinemia WHO
grade IlI/IV or severe creatinine elevation WHO grade
[11/IV unless due to leukemia) were excluded.

Patients were treated according to the double induc-
tion strategy for remission induction, irrespective of
response of the disease to the first course.?* Patients

haematologica 2004; 89(5):May 2004

Flow cytometric assessment of early response in AML

were randomized to receive either the TAD-9 combi-
nation® or the HAM combination as the first course.”
The second course of double induction was HAM in all
patients. The second course was applied to patients
older than 60 years only if they had = 5% residual
leukemic blasts in the bone marrow on day 16.
Consolidation therapy consisted of one course of
TAD-9. Patients with HLA-identical sibling donors sub-
sequently underwent allogeneic bone marrow or
peripheral blood stem cell transplantation. All other
patients received further treatment according to the
randomization performed at study entry. Patients
under the age of 60 were randomized upfront to main-
tenance therapy or to autologous stem cell transplan-
tation. Patients older than 60 years received mainte-
nance therapy without randomization. Maintenance
therapy was applied as described previously.>* Autol-
ogous stem cell transplantation was performed after
conditioning with busulfan and cyclophosphamide.

Normal bone marrow samples

Normal bone marrow, used as a control, was
obtained from healthy volunteers and analyzed by flow
cytometry as detailed below.

Flow cytometry

All studies were performed on bone marrow samples.
The samples were processed by a Ficoll-Hypaque gra-
dient centrifugation to isolate mononuclear cells both
at diagnosis and at day 16.** Applying triple-staining
and isotype controls, monoclonal antibodies against 31
antigens were used in the following combinations
designed for the detection of leukemia-associated aber-
rant immunophenotypes (LAIP) at diagnosis (conjugated
with the fluorochromes FITC, PE, and PC-5, respectively):
CD11b/CD117/CD34, CD14/CD13/CD4, CD15*/CD34/CD3,
CD34/NG2(7.1)/CD33, CD34/CD116/CD33, CD34/CD13/
CD19, CD34/CD135/CD117, CD34/CD15*/CD33, CD34/
CD19/CD13, CD34/CD2/CD33, CD34/CD56/CD, CD36/
CD235a/CD45, CD38/CD133**/CD34, CD38/CD34/CDIO,
CD4/CD64*/CD45, CD64*/CD4/CD45, CD65/CD87/CD34,
CD7/CD33/CD34, CD90/CD117/CD34, HLADR/CD33/
CD34,MPO**/LF**[cCD1*TdT/cCD33/cCD45, TdT/cyCD22/
cyCD3, TdT/ cyCD79a/cyCD3.

All antibodies were purchased from Immunotech
(Marseilles, France), except for: *Medarex (Annandale,
NJ, USA); *Milteny Biotech (Bergisch Gladbach, Ger-
many); **Caltag (Burlingame, CA, USA). After evalua-
tion of the diagnostic samples, the combinations of
antibodies which best covered the LAIP were selected
and applied to day 16 samples. The respective combi-
nations of antibodies were added to 10° mononuclear
cells (volume, 100 pL) and incubated for ten minutes.
After addition of 2 mL lysing solution (ammonium
chloride-based; prepared at a local pharmaceutical

529



W. Kern et al.

| I i
E - E e - (=R I
N . 1P i s |
Ml . S
- o = O - [ 8 g |
CD34 PC5 IT SSC-Height CD34 PC5 IT SSC-Height
- . —_— —— - S —
. d - t i i |
B 8 - = 8 = | Figure 1. Four different classes
5 - g " i & 1 of leukemia-associated aberrant
8 = O = X w O = | immunophenotypes. The 1 and
© 2" plots in a row are leukemic
T & ¥ - = F ko ! 3 bone marrow, the 3¢ and 4"
CD64 FITC Mdx SSC-Height CD64 FITC Mdx SSC-Height plots are normal bone marrow;
the 2™ and 4" plots display only
cells gated in the 1 and 3"
- - " | - plots (green cells), respective-
I e ° | ly; green dots represent cells
c 81 e £ ’r—- = | with  immunophenotype as
g . S . R | £ i defined in AML by first two anti-
9 | ; | g ) il < | gens, red dots represent cells
£ o S | with immunophenotype as
m— < N - | b2 defined in AML by three anti-
CD33 PE SSC-Height COTTPEIT SSC-Height gens and OLS-signal; A: cross-
lineage antigen expression,
CD33'CD34* and CD7'SSC""; B:
antigen overexpression, CD45*
i — * i i I~ D64 and CD4'SSC""; C: lack
Eoa E g P £y of antigen expression, CD34"
D & | ‘ 2 g S # = CD33* and HLA-DR-SSC"*; D:
g zi= r 3 Th - ey b asynchronous antigen expres-
o} 3. a . 2 sion, CD34'CD117 and
5 8 | 4 .
b (! CD11b*SSC".
CD117 PE IT SSC-Height CD117 PE IT SSC-Height

institute) the samples were incubated for an additional
10 minutes and were then washed twice in phosphate-
buffered saline (PBS) and resuspended in 0.5 mL PBS.
Multiparameter flow cytometry analysis was per-
formed using a FACSCalibur flow cytometer (Becton
Dickinson, San Jose, CA, USA). For AML samples at
diagnosis 20,000 events were acquired, for day 16 AML
samples and for normal bone marrow samples 250,000
events were acquired. Life-gating was not applied.
List-mode files were analyzed using the CellQuest
Software (Becton Dickinson).

Gating strategy

LAIP were defined individually for each patient by
gating on populations displaying an aberrant expres-
sion of surface or cytoplasmic antigens and by apply-
ing Boolean algebra.* LAIP were grouped into 1) asyn-
chronous antigen expression, 2) cross-lineage antigen
expression, 3) lack of antigen expression, and 4) anti-
gen overexpression (Figure 1). The combination of
gates obtained by this strategy was applied to the list
mode files obtained during acquisition of day 16 sam-
ples as well as to the list mode files containing the
measurements of normal bone marrow samples which
had been performed using the same combinations of
antibodies. In contrast to other diseases, such as acute
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lymphoblastic leukemia, which generally display homo-
geneous populations, many cases of AML present with
several leukemic subpopulations within a single sample.
Since it is not possible in these cases to include all
leukemic cells into one LAIP, the frequencies of LAIP-
positive cells are relatively low in these cases (see
Results). In fact, using this approach in some cases only
subpopulations are covered by the respective LAIP.
Therefore, the degree of reduction of the leukemic cell
mass at day 16 rather than the crude percentage of
cells carrying LAIP at day 16 was assessed for prognos-
tic relevance. Thus, for each patient, a log-difference
day 1-day 16 (LD16) was determined, which was
defined as the logarithm of the ratio percentage of
LAIP-positive cells at diagnosis/percentage of LAIP-pos-
itive cells at day 16. Accordingly, a reduction of LAIP-
positive cells from 30% to 0.3% would resultina LD16
of 2.00 while persistence of 30% LAIP-positive cells
would result in a LD16 of 0.00.

In order to estimate the sensitivities of the respective
LAIP as well as the ranges in which quantification of the
LD16 is feasible, the percentages of LAIP-positive cells
within normal bone marrow were determined for each
of the applied LAIP. As for the definition of the LD16 for
AML blasts, a log-difference to normal bone marrow
was calculated which was defined as the logarithm of
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the ratio percentage of LAIP-positive cells in AML sam-
ple at diagnosis/median percentage of LAIP-positive
cellsin normal bone marrow. Thus, the log-difference to
normal bone marrow would equal 3.00 in a case in
which LAIP-positive cells formed 50% of the leukemic
bone marrow and a median of 0.05% of normal bone
marrow. If more than one LAIP was present in a patient,
analyses were performed using only the LAIP with the
highest log-difference to normal bone marrow in that
patient.

In case of a median frequency of 0.00% of LAIP-pos-
itive cells in AML samples at day 16 or in normal bone
marrow this frequency was set at 0.004% in order to
allow the calculation of the respective log-difference
(0.004% is the highest frequency displayed as 0.00% by
the Cell Quest Pro software and was chosen as the
worst case possible). If more than one LAIP was defined
in one patient the most sensitive LAIP was selected for
the respective evaluations as indicated on the basis of
the maximum log difference to normal bone marrow in
comparison to other LAIP in the same patient.

Cytomorphology, cytogenetics, molecular
genetics

Cytomorphologic assessment was based on May-
Griinwald-Giemsa stains, myeloperoxidase reaction,
and non-specific esterase using a-naphthyl-acetate
as described before.*>**> AML was diagnosed cytomor-
phologically according to the criteria defined in the
FAB classification.®

Cytogenetic analyses were performed centrally
according to standard protocols and the data classified
using the ISCN nomenclature.”* Patients were allocat-
ed into three subgroups based on cytogenetics: the
group considered to have a favorable prognosis includ-
ed patients with AML with t(8;21), inv(16), or t(16;16);
the group with an unfavorable prognosis contained cas-
es of AML with aberrations of chromosomes 5 or 7,
aberrations of 11923 or 17p, inv(3), t(3;3), or with a
complex aberrant karyotype (i.e. =3 clonal chromo-
some aberrations); the group associated with an inter-
mediate prognosis included AML patients with other
karyotypic aberrations as well as AML patients with a
normal karyotype.

Molecular genetic analyses were performed as
described previously in detail.** Samples were analyzed
for length mutations of the FLT3 gene (FLT3-LM) as well
as mutations around codon D835 of the FLT3 gene.

Study parameters

Bone marrow examinations were carried out on day
16 following TAD-9 induction and on day 12 following
HAM induction, i.e. one week after the end of
chemotherapy (for determination of LD16), and upon
full recovery of peripheral blood counts. Response to
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therapy was assessed according to CALGB criteria®* as
described before.” Cases in which the patient died
before the LD16 determination were excluded from the
present analyses. Relapse, overall survival (0S), event-
free survival (EFS), and relapse-free survival (RFS) were
defined as described elsewhere.®

Statistics

Dichotomous variables were compared between dif-
ferent groups using the x*-test and continuous vari-
ables by Student’s T-test. The time-dependent variables,
0S, EFS, and RFS, were estimated by Kaplan and Meier®
and differences between the respective groups were
calculated using the log rank test. Spearman'’s rank cor-
relation was used to analyze correlations between con-
tinuous parameters. A logistic regression model
(dependent variable: CR rate) and Cox models (depend-
ent variables: EFS, OS, and RFS) were used for multi-
variate analyses. The covariates entered into these mod-
els were age, WBC, bone marrow blasts at day 1, bone
marrow blasts at day 16, LAIP-positive bone marrow
cells at day 16, and LD16 as continuous variables,
respectively, as well as favorable cytogenetics, unfa-
vorable cytogenetics, presence of secondary AML, FLT3-
LM, and FLT3-D835 mutations as dichotomous vari-
ables. All calculations were performed using the SPSS
11.0.1 software (SPSS Inc., Chicago, IL, USA). All p val-
ues reported are two-sided.

Study conduct

Prior to therapy all patients gave their informed con-
sent to participation in the current evaluation after
having been advised about the purpose and investiga-
tional nature of the study as well as its potential risks.
The study design adhered to the declaration of Helsin-
ki and was approved by the ethics committees of the
participating institutions prior to its initiation.

Results

Patients

Between March 2000 and January 2003 bone mar-
row samples from 106 patients were analyzed both at
diagnosis, applying the complete panel of monoclon-
al antibodies as described above, and at day 16, apply-
ing only the selected combination of monoclonal anti-
bodies which allowed the best definition of a LAIP. The
patients” characteristics are given in Table 1. All
patients were treated within the 1999 trial of the Ger-
man AML Cooperative Group as detailed above. The
complete remission rate was 63%, the median event-
free survival was 7.3 months, the median overall sur-
vival was 19.5 months, and the relapse-free survival at
2 years was 53%. Induction therapy was HAM/HAM in
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47 patients and TAD/HAM in 59 patients. An allogeneic
stem cell transplantation was performed in 24
patients. The outcome of the analyzed patients was
not affected by the applied induction and post-remis-
sion therapies.

Normal bone marrow

A total of 26 normal bone marrow samples from
healthy volunteers were analyzed as controls. The
complete panel of monoclonal antibodies was applied.

Leukemia-associated aberrant
immunophenotypes (LAIP)

One LAIP was defined for each patient from whom
samples at both time points (at diagnosis and at day
16) had been sent to our laboratory (Table 2). The dis-
tribution between different classes of LAIP was asyn-
chronous antigen expression (n=23), cross-lineage
expression of lymphoid antigens (n=38), lack of anti-
gen expression (n=11), and antigen overexpression
(n=34). The median percentage of bone marrow cells
which were LAIP-positive in the diagnostic sample was
19.07% (range, 4.20% to 71.45%). The corresponding
median percentage of cells which were LAIP-positive
in normal bone marrow samples was 0.05% (range:
0.00% to 3.01%). The highest levels were found in cas-
es with antigen overexpression (T-test: p=0.037 for
comparison of the antigen overexpression group with
all others; Table 2). The resulting median log-difference
day 1 - normal bone marrow was 2.60 (range, 0.46 to
4.23).

Assessment of early response at day 16

In day 16 follow-up samples from AML patients
the median percentage of bone marrow cells which
were LAIP-positive was 0.12% (range, 0.00% to
39.52%; Figures 2 and 3). The resulting median LD16
was 2.11 (range, -0.37 to 4.20).

The percentage of bone marrow cells which were
LAIP-positive correlated with the cytomorphologi-
cally quantified bone marrow blasts in the same
respective samples only in cases with bone marrow
blast counts higher than 5% (Spearman's rank cor-
relation: r=0.516, p=0.001) but not in cases with low-
er blast counts (r=0.059, p=0.708).

Figure 3 demonstrates that multiparameter flow
cytometric assessment of MRD at day 16 resultsin a
2 log broader range and a refined quantification as
compared to the cytomorphologic assessment of day
16 blasts.

Prognostic impact of log-difference day 1- day
16 (LD16)

As a continuous variable, LD16 was significantly cor-
related with achievement of complete remission
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Table 1. Patients’ characteristics.

Parameter n Median Range
Sex (male/female) 68/38
Age (years) 54 18to 79
Cytogenetics

favorable 18 (17%)

intermediate 55 (52%)

unfavorable 33 (31%)
de novo AML/secondary AML  90/16
FAB subtype

MO 5 (5%)

M1 24 (23%)

M2 37 (35%)

M4 13 (12%)

M4Eo 11 (10%)

M5a 5 (5%)

M5b 1(1%)

M6 5 (5%)

n.a. 5 (5%)
FLT3-LM (yes/no) 15/89
FLT3-D835 (yes/no) 5/82
WBC count (x10°/L) 152 0.6-544.0
Randomization for 47/59
induction therapy
(TAD+HAM/HAM+HAM)
Randomization for 33/73
post-remission therapy
(APBSCT/maint.)*
Allogeneic transplantation 24
in CR1
Bone marrow blasts day 1 75% 10-100%
Bone marrow blasts day 16 5% 0-82%
LAIP+ bone marrow cells day 1 19.07% 4.20-71.45%
LAIP+ bone marrow cells day 16 0.12% 0.00-39.52%
LD16 21 -0.37-4.20
Median LAIP+ cells in NBM 0.05% 0.00-3.01%
log-difference day 1~ NBM 2.60 0.46-4.23
Maximum LAIP+ cells in NBM 0.34% 0.00- 11.98%

*alifatlents older than 60 years were scheduled for maintenance therapy without
randomization; FLT3-LM: length mutations of the FLT3 gene; FLT3-D835: point
mutations of FLT3 at D835: APBSCT- autologous perip, eral blood stem cell
transplantation; maint.: maintenance therapy; LAIP: leukemia-associated aberrant
immunophenotype; LD16: log-difference day 1 — day 16; NBM: normal bone marrow.

(p=0.001), event-free survival (p<0.0001), overall sur-
vival (p=0.003), and relapse-free survival (RFS,
p=0.0003, Table 3). Separation of the patients accord-
ing to the median value of the LD16 (=2.11) resulted
in two groups with very different prognoses (CR: 81%
vs. 51%, p=0.002; EFS: 53% at 2 years vs. 2.8 months
(median), p<0.0001; OS: 58% vs. 43% at 2 years,
p=0.0133; RFS: 65% vs. 30% at 2 years, p=0.0037;
Figure 4).

Prognostic impact of conventional parameters

The prognostic impact of favorable cytogenetics,
unfavorable cytogenetics, AML as secondary disease,
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Table 2. Description of leukemia-associated aberrant immunophenotypes.

Class of LAIP LAIP % LAIP cells at day 1 median % LAIP+ cells in NBM
Asynchronous expression CD11b(+)CD117+CD34+ 29.09 0.25
CD11b+CD117+CD34- 6.74 0.03
CD11b+CD117+CD34- 27.09 0.04
CD11b+CD117+CD34- 14.41 0.21
CD11b+CD117+CD34- 4.97 0.08
CD11b+CD117+CD34- 23.03 0.06
CD11b+CD117+CD34+ 13.47 0.02
CD11b+CD117+CD34+ 9.29 0.07
CD11b+CD117+CD34+ 25.81 0.01
CD11b+CD117+CD34+ 5.56 0.03
CD11b+CD117-CD34+ 13.26 0.83
CD15+CD34+CD33+ 32.63 0.00
CD15+CD34+CD33+ 40.20 0.04
CD15+CD34+CD33+ 56.15 0.07
CD15+CD34+CD33+ 5.28 0.05
CD34++CD13++CD19- 26.33 0.02
CD34++CD13++CD19- 18.34 0.00
CD34+CD116+CD33+ 27.71 0.06
CD34+CD116+CD33+ 9.00 0.10
CD34+CD116+CD33+ 11.74 0.17
CD34+CD116+CD33+ 15.43 0.35
CD34+CD33+CD15+ 25.75 0.26
CD34+CD33+CD15+ 10.22 0.06
Cross-lineage expression CD7+CD33+CD34- 57.03 0.02
CD10+CD19-CD13+ 30.68 0.00
CD34+CD13+CD19+ 44.27 0.02
CD34+CD13+CD19+ 10.58 0.01
CD34+CD13+CD19+ 11.34 0.04
CD34+CD13+CD19+ 10.67 0.00
CD34+CD2+CD33+ 27.43 0.04
CD34+CD56+CD33+ 64.11 0.01
CD34+CD56+CD33+ 12.41 0.07
CD34+CD56+CD33+ 12.49 0.01
CD34+CD56+CD33+ 17.11 0.41
CD34+CD56+CD33+ 4.88 0.34
CD34+CD56+CD33+ 21.96 0.01
CD34-CD2+CD33+ 7.20 0.64
CD34-CD56+CD33+ 15.90 0.04
CD34-CD56+CD33+ 9.10 0.02
CD34-CD56+CD33+ 25.26 0.01
CD34-CD56+CD33+ 13.77 0.01
CD4+CD13+CD14- 7.7 0.06
CD4+CD13+CD14- 20.37 0.13
CD34(+)CD56+CD33(+) 63.66 0.02
CD7+CD33+CD34- 16.04 0.04
CD7+CD33+CD34- 22.57 0.25
CD7+CD33+CD34- 27.91 0.02
CD7+CD33+CD34+ 27.82 0.13
CD7+CD33+CD34+ 63.44 0.05
CD7+CD33+CD34+ 9.93 0.02
CD7+CD33+CD34+ 32.70 0.00
CD7+CD33+CD34+ 3512 0.04
CD7+CD33+CD34+ 21.70 0.02
CD7+CD33+CD34+ 56.11 0.03
CD7+CD33+CD34+ 15.60 0.09
CD7+CD33+CD34+ 19.16 0.01
CD7+CD33+CD34+ 12.58 0.05
CD7+CD33+CD34+ 32.48 0.02
CD7+CD33+CD34+ 15.21 0.01
CD7+CD33+CD34+ 18.98 0.08
CD7+CD33+CD34+ 6.16 0.28
Lack of expression HLA-DR+CD33-CD34+ 52.55 0.28
CD38+CD133-CD34+ 5.86 0.01
HLA-DR-CD33+CD34- 26.96 0.17
HLA-DR-CD33+CD34- 19.25 0.01
HLA-DR-CD33+CD34- 21.99 0.19
HLA-DR-CD33+CD34+ 16.76 0.05
HLA-DR-CD33+CD34+ 32.98 0.18
HLA-DR-CD33+CD34+ 51.18 0.10
HLA-DR-CD33+CD34+ 68.42 0.00
MPO+LF-cCD15- 14.78 0.00
MPO+LF-cCD15- 30.58 0.01

continued on the next page
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continued from previous page

CD15+CD34+CD33+
HLA-DR+CD33++CD34-
CD34++CD13++CD19-
CD34+7.1++CD33+
CD34+7.1++CD33+
CD34+7.1++CD33+
CD34+CD56-CD33++
CD34-CD117+CD135(+)
CD36(+)CD235a++CD45(+)
CD36++CD235a++CD45+
CD36++CD235a+CD45+
CD36++CD235a-CD45+
CD38++CD133++CD34++
CD38+CD34++CD90(+)
CD38+CD34++CD90+
CD64++CD4++CD45++
CD64++CD4++CD45++
CD64++CD4++CD45++
CD64++CD4++CD45++
CD64++CD4++CD45++
CD64++CD4++CD45++
CD64++CD4-CD45++
CD65++CD87++CD34-
CD65++CD87++CD34-
CD65++CD87++CD34-
HLA-DR+CD33++CD34++
TdT(+)cCD33++cCD45++
TdT(+)cCD33++cCD45++
TdT(+)cCD33++cCD45++
TdT(+)cCD33++cCD45++
TdT-cCD33++cCD45++
TdT-cCD33++cCD45++
TdT-cCD33++cCD45++
TdT-cCD33++cCD45++

Overexpression

Asynchronous expression (n=23)  (median, range)

Cross-lineage expression (n=38) median, range)

(
(
Lack of expression (n=11) (median, range)
Overexpression (n=34) (median, range)

4.75 0.06
11.09 1.14
12.41 0.03
7.31 0.03
27.34 0.14
43.77 0.03
11.21 0.19
49.84 0.04
47.77 0.12
9.76 0.08
64.03 0.01
9.97 0.14
71.45 0.08
62.95 0.01
12.18 0.32
7.43 0.45
4.20 0.00
32.55 0.01
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Figure 2. Identification of MRD on day 16. The 1** and 2™
plots in a row are analyses at diagnosis and at day 16,
respectively. A: Patient with aberrant cross-lineage
expression of CD7 on cells positive for CD33 and CD34;
residual leukemia is detected at day 16. B: Patient with
aberrant asynchronous expression of CD15 on cells pos-
itive for CD33 and CD34; no residual leukemia is detect-
ed at day 16.
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Figure 3. Decrease in leukemic cell mass as assessed by
cytomorphology (A) and by multiparameter flow cytome-
try (B). The cytomorphologic evaluation results in a 2-log
distribution at the response checkpoint on day 16 and
tends to result in categorized data such as 0%, 5%, and
10%. The flow cytometric evaluation results in a nearly
4-log distribution at day 16 and shows, due to the
autolrtnation, no tendency towards a categorization of
results.
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Table 3. Univariate analyses.
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CR
) RR (95%-Cl) P
Favorable karyotype 0.039 5.037 0.003
(1.089-23.293)
Unfavorable 0.0002 0.182 <0.0001
karyotype (0.075-0.445)
Age 0.135 0.979 0.086
(0.953-1.007)
WBC 0.342 1.554 0.865
(0.412- 11.697)*
sAML 0.013 0.244 0.0003
(0.080-0.740)
FLT3-LM 0.236 2.246 0.587
(0.590-8.552)
FLT3-D835 0.523 2.074 0.214
(0.221-19.449)
BM blasts day 1 0.837 1.002 0.634
(0.986-1.018)
BM blasts day 16 0.050 0.982 0.002
(0.964-1.000)
LAIP+ BM cellsday 16~ 0.027 0.933 0.0002
(0.878-0.992)
LD16 0.001 1.888 <0.0001

(1.287-2.770)

EFS

os
RR (95%-Cl)  p

RFS
RR (95%-Cl)  p RR (95%-Cl)
0.167
(0.052-0.538)

0.030 0.204

(0.048-0.855)

0.021 0.094

(0.013-0.704)

4.200
(2.412-7.312)

<0.0001 4.247

(2.121-8.501)

0.001 4.837

(1.929-12.127)

1.016
(0.998-1.034)

0.218 1.014

(0.992-1.037)

0.385 1.012

(0.986-1.038)

1.035
(0.630-1.44)*

0.085 1.313 0.061

(0.957-1.668)*

1.409
(1.000- 1.836)*

11.281
(2.775-45.867)

3.360
(1.735-6.508)

0.003 3.271

(1.507-7.099)

0.001

1.220
(0.596-2.497)

0.427 1.433

(0.590-3.481)

0.023 3.043

(1.168-7.927)

0.284
(0.039-2.065)

0.863 0.880

(0.207-3.747)

0430  0.044
(0.000-103.305)

1.003
(0.992-1.014)

0.922 0.999

(0.985-1.013)

0.861 1.002

(0.984-1.019)

1.016
(1.006-1.026)

0.056 1.012

(1.000-1.025)

0.064 1.015

(0.999-1.031)

1.053
(1.025-1.082)

0.033 1.036

(1.003-1.069)

0.007 1.076

(1.020-1.135)

0.535
(0.415-0.690)

0.003 0.635  0.0003

(0.469-0.859)

0.419
(0.263-0.668)

CR: complete remission; EFS: event-free survival; OS: overall survival; RFS: relapse-free survival; RR: risk ratio; FLT3-LM: length mutations of the FLT3 gene;
FLT3-D835: point mutations of FLT3 at D835; LAIP: leukemia-associated aberrant immunophenotype; BM: bone marrow; *per 100X10°/L;

LD16: log-difference day 1 —day 16.

FLT3-LM, and D835 mutations of the FLT3 gene as
dichotomous variables as well as of age, WBC count
at diagnosis, percentage of bone marrow blasts at
diagnosis, and percentage of bone marrow blasts at
day 16 as continuous variables was analyzed using
achievement of CR, EFS, O0S, and RFS as dependent
variables. Favorable and unfavorable cytogenetics as
well as AML as secondary disease were significantly
related to all tested dependent variables. Table 3
details the results of these univariate analyses.

Multivariate analysis of prognostic parameters
All prognostic parameters which were identified in
univariate analyses to carry significant prognostic
impact were further evaluated in multivariate analy-
ses. The three therapy-dependent parameters, day 16
bone marrow blasts, LAIP-positive bone marrow cells
at day 16, and LD16, were included into a logistic
regression model and into a Cox model, respectively,
to analyze for the anticipated dependences of these
variables. LD16 proved to be the only independent
prognostic parameter (CR: p=0.145; EFS: p=0.007; OS:
p=0.127; RFS: p=0.009) and was subsequently includ-
ed into multivariate analyses while day 16 bone mar-
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row blasts and LAIP-positive bone marrow cells at day
16 were not.

A logistic regression model was used to evaluate the
achievement of CR and Cox models were used for the
evaluation of EFS, 0S, and RFS (Table 4).

Supporting the concept that LD16 is an early in vivo
indicator of chemosensitivity, the results of these
analyses show that the LD16 is the most important
prognostic parameter being for EFS (the only other
significant parameter, unfavorable cytogenetics) and
the only independent parameter for RFS. Unfavorable
cytogenetics were the only independent parameter
with impact on 0S. Both unfavorable cytogenetics and
LD16 were parameters independently influencing the
CR rate.

Prognostic impact of LD16 in subgroups
defined by a cut-off of 5% day 16 bone marrow
blasts

To determine whether the prognostic impact of the
LD16 was limited to cases with <5% day 16 bone mar-
row blasts and whether it could add to the prognostic
power of the day 16 bone marrow blasts if these
accounted for more than 5% of the cellularity, two
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Figure 4. Separation of patients into two groups accord-
ing to the median log-difference day 1 -day 16 (medi-
an=2.11). The separation results in significant differ-
ences for EFS (A), OS (B), and RFS (C).

Table 4. Multivariate analyses.

analyses were performed with patients separated into
two groups, one with <5% and the other with >5%
day 16 bone marrow blasts (Table 5). It is evident that,
as a continuous variable, the LD16 had a significant
impact on EFS and RFS in cases with <5% day 16 bone
marrow blasts and also tended to influence the
achievement of CR and the OS. In cases with >5% day
16 bone marrow blasts the LD16 was significantly cor-
related to all end-points. To define the respective roles
of the LD16 and the day 16 bone marrow blasts fur-
ther, multivariate analyses of EFS were performed
within the identical two groups taking into consider-
ation both parameters. These analyses confirmed that
the LD16 had independent prognostic power in both
groups of patients with either <5% or more than 5%
day 16 blasts (p=0.020 and p=0.014), while the day 16
blasts did not (p=0.293 and p=0.401).

Prognostic impact of LD16 in cytogenetically
defined subgroups

In order to further strengthen the independent prog-
nostic power of the LD16, analyses within cytogenet-
ically defined subgroups were performed (favorable,
intermediate, and unfavorable cytogenetics) (Table 6).
The median LD16 values and their ranges within these
three groups were 2.73 (0.45 to 3.91), 2.34 (0.12 to
4.20), and 1.20 (-0.37 to 4.15). There were strong
trends for relations between the LD16 and CR rate,
EFS, and RFS within all cytogenetically defined sub-
groups although a signficant relation was found only
for EFS and RFS in the group with intermediate cyto-
genetics.

Prognostic impact of LD16 in subgroups
defined by class of LAIP

To analyze whether the prognostic impact of LD16
was influenced by the LAIP class, all dependent vari-
ables were assessed within the four classes of LAIP
(Table 7). There were significant relations to EFS in all
LAIP classes and strong trends for relations to the oth-

CR EFS oS RFS
p RR (95%-Cl) P RR (95%-Cl) p RR (95%-Cl) p RR (95%-Cl)

Favorable karyotype 0.367 2111 0.044 0.289 0.170 0.351 0.101 0.175
(0.416-10.715) (0.086-0.969) (0.079-1.567) (0.022-1.401)

Unfavorable karyotype  0.032 0.330 0.007 2.293 0.021 2.604 0.115 2.421
(0.120-0.909) (1.251-4.205) (1.157-5.863) (0.806-7.271)

sAML 0.435 0.612 0.280 1.466 0.406 1.442 0.198 2.824
(0.179-2.098) (0.732-2.936) (0.608-3.417) (0.582-13.707)

FLT3-LM n.a. n.a. n.a. n.a. n.a. n.a. 0.215 1.996
(0.670-5.945)

LD16 0.062 1.490 0.004 0.678 0.355 0.852 0.031 0.555

(0.980-2.265)

(0.519-0.885)

(0.608-1.196) (0.325-0.948)

CR: complete remission; EFS: event-free survival; OS: overall survival; RFS: relapse-free survival; RR: risk ratio; FLT3-LM: length mutations of the FLT3 gene;

n.a.: not applicable; LD16: log-difference day 1 — day 16.
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Table 5. Impact of log-difference day 1 - day 16 (LD16) on outcome in subgroups defined by a cut-off of 5% day 16

bone marrow blasts.

CR EFS os RFS
p RR (95%-Cl) P RR(95%-Cl) p RR(95%-Cl) RR (95%-Cl)
day 16 blasts <5%  0.169 1.642 0.025  0.601 0186  0.686 0.023 0382
(0.810-3.331) (0.385-0.940) (0.392-1.200) (0.166-0.877)
day 16 blasts >5%  0.014 1.800 0.0001  0.531 0.023  0.642 0.005 0.428

(1.126-2.875)

(0.385-0.733)

(0.439-0.940)

(0.235-0.779)

CR: complete remission; EFS: event-free survival; OS: overall survival; RFS: relapse-free survival; RR: risk ratio.

Table 6. Impact of log-difference day 1 - day 16 (LD16) on outcome in cytogenetically defined subgroups.

Subgroup CR EFS RFS
p RR (95%-Cl) P RR (95%-Cl) p RR (95%-Cl)
Favorable karyotype (n=18) 0.099 6.530 0.162 0.367 0.368 6.024
(0.702-60.767) (0.090-1.498) (0.121-299.493)
Intermediate karyotype (n=55) 0.121 1.567 0.010 0.603 0.036 0.528
(0.888-2.766) (0.410-0.888) (0.290-0.961)
Unfavorable karyotype (n=33)  0.584 1.195 0.187 0.780 0.152 0.553

(0.632-2.261)

(0.540-1.128)

(0.246-1.244)

CR: complete remission; EFS: event-free survival; RFS: relapse-free survival; RR: risk ratio.

Table 7. Impact of log-difference day 1 - day 16 (LD16) on prognosis in subgroups defined by class of LAIP.

Class of LAIP CR EFS
RR (95%-Cl) p

p RR (95%-Cl) P

oS RFS

RR(95%-Cl) p  RR(95%Cl)

0.025 2.582

(1.125-5.923)

asynchronous 0.010

expression (n=23)

0.425
(0.222-0.817)

0.264 0.596

(0.240-1.478)

0.379 0.007

(0.000-416.665)

cross-lineage 0.153 1.568 0.021 0.604 0.064 0.653 0.034 0.390
expression (n=38) (0.847-2.904) (0.394-0.925) (0.416-1.025) (0.163-0.930)
lack of expression 0.083 7.567 0.039 0.159 0.219 0.397 0.253 0.100
(n=11) (0.771-74.316) (0.028-0.907) (0.091-1.732) (0.002-5.180)
overexpression 0.340 1.380 0.048 0.656 0.053 0.535 0.083 0.588

(n=34) (0.712-2.676)

(0.432-0.997)

(0.284-1.007) (0.323-1.071)

CR: complete remission; EFS: event-free survival; OS: overall survival; RFS: relapse-free survival; RR: risk ratio.

er dependent variables. Strengthening the concept
that MRD assessment by multiparameter flow cytom-
etry could be usefully applied to all cases with AML,
there was absolutely no indication that relations of
the LD16 to prognosis would be inferior for the LAIP
class with the lowest level of LAIP-positive cells in the
leukemic bone marrow and the highest level of LAIP-
positive cells in the normal bone marrow (i.e. the class
with overexpression of antigens) than they would be
for the other classes of LAIP.

Discussion

The present data demonstrate that the multipara-
meter flow cytometric assessment of MRD is feasible

haematologica 2004; 89(5):May 2004

and clinically useful in patients with AML. This assess-
ment results in a powerful and independent prognos-
tic parameter which can be used as a basis for early
treatment stratification. The present data are partic-
ularly important because of a) the early checkpoint
during aplasia following induction therapy, b) the
methodological applicability of the approach to all
unselected patients with AML, and c) the comprehen-
sive multivariate analysis with inclusion of complete
data sets on cytogenetics, secondary AML, and other
parameters in a population with no upper age limit.
The only established and clinically accepted therapy-
dependent prognostic parameter which is broadly used
for treatment stratification has been the achievement
of CR.” Patients not achieving a CR have a poorer prog-
nosis and are assigned to salvage regimens. Although

537



W. Kern et al.

this parameter is very powerful it has the drawback of
being evaluated relatively late, several weeks after the
start of therapy. In contrast, recent data indicate that
the identification of patients with refractory disease is
possible as early as one week after the end of the first
course of induction therapy.” Following pivotal studies
which provided the basis for the concept of assessing
residual leukemic bone marrow blasts on day 16 as a
surrogate in vivo marker for chemosensitivity,”* day 16
blasts were proven to be an independent prognostic
parameter in a large prospective study.” This parame-
ter has been assessed even two weeks earlier than the
bone marrow CR as defined by the British MRC which
was also shown to have a significant impact on prog-
nosis.” Interestingly, the parameters in both studies
were most powerful in patients with an otherwise inter-
mediate prognosis but had no prognostic impact in
patients with CBF leukemias.”®' The MRC definition of
CR, which differs from the CALGB and NCI criteria by
the lack of a full recovery of peripheral blood counts,
already aimed at defining the therapy-dependent prog-
nosis very early in order to allow a timely adaptation of
therapy. This is in line with data on the lack of prog-
nostic impact of achievement of 1,500/uL neutrophils
as well as of the presence of peripheral blasts during the
remission evaluation of bone marrow.® Overall, these
data strongly argue in favor of an early bone marrow
evaluation for response to therapy in AML to yield a
powerful and clinically applicable prognostic parame-
ter. The present study provides a substantial improve-
ment of these studies and of the parameter, day 16
blasts, in particular. Thus, we show that the LD16 is
prognostically more relevant than the morphologically
evaluated day 16 blasts. Accordingly, a prognostic
impact was demonstrated for both cases with <5% and
>500 day 16 blasts. This result was achieved using mul-
tiparameter flow cytometry, which has both higher sen-
sitivity and greater reproducibility than cytomorpholo-
gy. These data suggest that assessment of day 16 blasts,
despite its prognostic usefulness, should be replaced by
the multiparameter flow cytometric quantification of
disease response.

Previous studies dealing with the flow cytometric
detection and quantification of MRD in AML demon-
strated that MRD levels after achievement of CR and
following consolidation therapy are highly predictive of
the patients” outcome.?” However, these studies only
included patients in whom a highly aberrant LAIP had
been identified. Thus, 25% to 40% of the cases had to
be excluded from the analyses due to leukemic cells not
displaying a LAIP as aberrant as required in the respec-
tive studies. These excluded cases amounted to only
20% in further reports, however, these reports did not
put their data into the context of clinical follow-up
assessment and the analysis of the prognostic impact of
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flow cytometrically detected MRD levels.?s* The pres-
ent report describes a different approach to this issue
by anticipating that it is possible to define a LAIP in all
AML patients by using a large panel of triple combina-
tions of antibodies and by analyzing the prognostic sig-
nificance of MRD levels obtained in this way. In fact, a
LAIP was identified in all of the unselected samples sent
to the laboratory at diagnosis and on day 16 and the
LD16 independently predicted the probability of achiev-
ing a CR as well as EFS and RFS. Moreover, analyses in
subgroups indicated that the prognostic value was not
limited to highly aberrant LAIP but was also present for
less aberrant LAIP which were excluded from previous
studies.”® Thus, the group of AML displaying an over-
expression of an antigen has been anticipated to reveal
the least sensitive LAIP and, in fact, cases within this
group displayed LAIP which were present in significantly
more cells within normal bone marrow than all other
cases. Nonetheless, even in this group there were sig-
nificant relations between the LD16 and EFS, 0S, and
RFS. This is further evidence that flow cytometrically
based MRD detection and quantification could be use-
ful in the vast majority of patients with AML.

In contrast to previous reports on immunologic mon-
itoring of AML,2% no distinct level of MRD was identi-
fied to carry prognostic importance. While in these oth-
er reports, most of the analyzed cases had more than
50% LAIP-positive cells in the bone marrow at diagno-
sis, in our study this percentage ranged from 4.20% to
71.45% due to the inclusion of unselected patients with
AML. The percentage of LAIP-positive cells at day 16 is
influenced not only be the degree of leukemic cell mass
reduction but also by the percentage of LAIP-positive
cells at diagnosis. However, it has been shown that the
LD16 is prognostically more important than the
absolute percentage of LAIP-positive cells at day 16.
Thus, when applying immunologic monitoring to un-
selected cases of AML the degree of leukemic cell mass
reduction should be used for prognostication rather
than the percentage of LAIP-positive cells.

The present data are of particular value with regard
to the analyses of the prognostic impact of the LD16
together with a complete data set on the karyotype
aberrations of the leukemic cells in each patient. In
previous analyses, data on cytogenetics were available
for only 60% to 889% of the cases thus leaving open
the question of whether MRD levels would have a
prognostic impact in addition to that of the karyotype
aberrations or whether they would just reflect these
aberrations.?» The present report demonstrates that
the LD16 independently influences the probability of
achieving a CR and the EFS and the RFS rates. Accord-
ingly, there are strong relations between these param-
eters within cytogenetically defined risk-groups
although they were significant only in the group with
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prognostically intermediate karyotypes. It was expect-
ed that the influence of the LD16 on OS would be less
strong since the LD16 is an in vivo surrogate marker for
chemosensitivity and thus not suited to reflecting 0S
achieved by the 24 patients who received an allogeneic
transplantation. As a consequence, it was possible to
separate all patients according to the median LD16,
which resulted in two groups with significantly dif-
fering OS, however, the LD16 did not add prognostic
information independent from that offered by the
presence of an unfavorable karyotype.

Although the LD16 already is a very powerful prog-
nostic parameter, its strength may be further enhanced
by technical improvements, such as the use of four
flourescence dyes and the introduction of CD45 gat-
ing,” as well as by the detection of new proteins which
are aberrantly expressed in leukemic cells.*s Qverall,
the concept of the LD16 as presented in this report

Flow cytometric assessment of early response in AML

provides the impetus and basis for starting a revision
of response assessment in patients with AML, with a
view to improving the individual and risk-adapted
management of this disease.
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