in non-Hodgkin's lymphoma: safety and efficacy of re-treatment. J Clin Oncol 2000;18:3135-43.

- Maloney DG, Grillo-Lopez A, White CA, Bodkin D, Schilder RJ, Neidhart JA, et al. IDEC-C2B8 (rituximab) anti CD-20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin's lymphoma. Blood 1992;6:2188-95.
- Maloney DG, Liles TM, Czerwinski DK, Waldichuk C, Rosenberg J, Grillo-Lopez A, et al. Phase I clinical trial using escalating single dose infusion of chimeric anti-CD20 monoclonal antibody (IDEC-C2B8) in patients with recurrent B-cell lymphoma. Blood 1994; 8:2457-66.
- McLaughlin P, Grillo-Lopez A, Link KB, Levy R, Czuczman MS, Williams ME, et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a 4-dose treatment program. J Clin Oncol 1998;16: 2825-33.
- 7. Horwitz SM, Negrin RS, Blume KJ, Breslin S, Stuart MJ, Stockerl-

Acute Myeloid Leukemia

Differences in the expression pattern of apoptosis-related molecules between childhood and adult *de novo* acute myeloid leukemia

Distinct expression patterns of pro- and anti-apoptotic proteins may contribute to different prognoses and therapy outcomes in adult versus childhood acute myeloid leukemia (AML). Therefore, we investigated whether expression levels of apoptosis-related proteins CD95, Bcl-2, Bax, Bcl-xL, procaspase-3, XIAP, cIAP-1, and survivin differ between children and adults with *de novo* AML.

haematologica 2004; 89:363-364

(http://www.haematologica.org/journal/2004/3/363)

Prognosis in acute myeloid leukemia (AML) is age-related, with childhood AML having a better treatment outcome than adult AML. Within adults, patients < 60 years old have a better prognosis than patients \geq 60 years old. For the current chemotherapy regimens, these prognostic differences are valid for response to induction chemotherapy, event-free survival (EFS) as well as overall survival (OS).¹⁻⁴

It has been speculated that differences in the expression patterns of anti- and pro-apoptotic molecules between childhood and adult acute leukemia might contribute to the different treatment outcomes of age-stratified leukemia groups.⁵ However, systematic investigations on possible expression differences of apoptosis-related molecules in children and adults with acute leukemia are rare. To evaluate this hypothesis, we examined consecutively collected leukemic cell samples from children (n=45) and adults (n=92; < 60 years: n=44, \geq 60 years: n=48) with *de novo* AML for the expression levels of several apoptosisrelated molecules (CD95, Bcl-2, Bax, Bcl-xL, caspase-3, XIAP, cIAP-1, survivin). All samples contained more than 80% leukemic cells based on morphologic criteria.

Surface CD95 expression and intracellular expression of Bcl-2 and Bax were determined by flow cytometry, as described previously, using the PE-conjugated anti-CD95 monoclonal antibody DX2, the FITC-conjugated anti-Bcl-2 monoclonal antibody 124, and the polyclonal rabbitanti-human antibody I-19 raised against Bax-specific peptide sequences.⁶ Antigen expression distribution in individual cell samples was quantified as relative fluorescence intensity (RFI), determined by the ratio of mean fluorescence intensity of cells stained for the respective antigen to mean fluorescence intensity of the corresponding negGoldstein KE, et al. Rituximab as adjuvant to high-dose therapy and autologous hematopoietic cell transplantation for aggressive non-Hodgkin's lymphoma. Blood 2004;103:777-83.

- Lazzarino M, Arcaini L, Bernasconi P, Alessandrino EP, Gargantini L, Cairoli R, et al. A sequence of immuno-chemotherapy with rituximab, mobilization of in vivo purged stem cells, high dose chemotherapy and autotransplantation is an effective and nontoxic treatment for advance follicular and mantle cell lymphoma. Br J Haematol 2002;116:229-35.
- Flinn IW, O' Donnell PV, Goodrich A, Vogelsang G, Abrams R, Noga S, et al. Immunotherapy with rituximab during peripheral blood stem cell transplantation for non-Hodgkin's lymphoma. Biol Bone Marrow Transplant 2000;6:628-32.
- Papadaki T, Stamatopoulos K, Anagnostopoulos A, Fassas A. Rituximab-associated immune myelopathy. Blood 2003;102:1557-8.
- 11. Voog E, Morschhauser F, Solal-Céligny P. Neutropenia in patients treated with rituximab. N Engl J Med 2003;348:2691-4.

ative control. Expression levels of Bcl-xL, caspase-3, XIAP, cIAP-1 and survivin were determined by Western blotting using monoclonal antibodies specific for XIAP (Transduction Laboratories, Lexington, KY, USA), cIAP-1, survivin (R&D Systems, Minneapolis, MN, USA), procaspase-3 (Pharmingen, San Diego, CA, USA), and Bcl-xL (Santa Cruz Biotechnology, Santa Cruz, CA, USA). Data on X-ray films were quantified by scanning-densitometry using the NIH Image analysis system. To normalize for variation in antibody concentration or time of exposure, the protein signal from the respective patient was normalized against the protein signal of the control cell line BJAB (human Burkittlike lymphoma cell line). Western blot results are expressed in terms of this ratio (relative optical density, ROD).7 Differences in the expression levels of apoptosis-related molecules between childhood and adult AML were evaluated using the Mann Whitney-test.

As outlined in Table 1, expression of Bax, procaspase-3, XIAP and c-IAP1 differed between the age groups. The most striking finding in our study was the much higher expression of cIAP-1 in childhood AML than in adult AML. In contrast, all other observed statistically significant age-related expression differences (Bax, procaspase-3, XIAP) were for higher protein levels among the adults than among the children. However, neither the higher expression of cIAP-1 nor the lower expression levels of Bax and procaspase-3 in childhood AML observed in this series fits with the general expectation that expression levels of anti-apoptotic proteins (e.g. cIAP-1) would be lower and expression levels of pro-apoptotic proteins (e.g. Bax, Procaspase-3) would be higher in the prognostically more favorable pediatric AML group.⁵

Only the higher expression of the anti-apoptotic molecule XIAP in the prognostically more unfavorable adult AML matches this expectation.⁷ Possible explanations for these rather unexpected findings may include: (i): the intracellular location of these molecules influences their apoptotic activity. For example, to be pro-apoptotic, Bax must translocate from the cytoplasm to mitochondria, where it triggers cytochrome c release; (ii) post-translational modifications (e.g. phosphorylation) of Bcl-2 fami-ly members might be of importance for their functional activity; (iii) measurement of the active form of caspase-3 rather than the inactive proform might be more informative as a potential prognostic marker; (iv) expression analysis of recently characterized molecules (e.g. Diabolo/Smac) counteracting the anti-apoptotic activity of IAP molecules might be helpful to understand the observed expression pattern of apoptosis-related molecules within this study; (v) protein families other than apoptosis-requ-

AML	Expression	CD95	Bax	Bcl-2	Bax/Bcl-2	Pro-caspase	XIAP	Bcl-xL	Survivin	cIAP-1	
groups	levels				ratio	-3					
Children	mean	37	5 1	2.6	2.2	3837	2455	2006	378	7827	
< 18 yrs	n	39	38	38	38	44	44	44	44	23	
	SEM	0.3	0.4	0.2	0.2	415	457	339	114	1153	
Adults	mean	4.0	6.9	2.2	3.5	3714	2647	2499	641	2739	
< 60 yrs	n	43	43	43	43	44	44	44	44	17	
	SEM	0.3	0.8	0.2	0.5	540	455	376	176	833	
Adults	mean	3.5	8.4	2.3	4,6	5488	4064	3082	616	2035	
\geq 60 yrs	n	44	47	47	47	46	46	46	46	25	
	SEM	0.3	0.8	0.1	0.6	656	502	407	151	399	
p value		ns	< 0.001	ns	< 0.001	< 0.05	< 0.05	ns	ns	< 0.001	

n: number of examined samples; SEM: standard error of the mean; ns: not significant. CD95, Bax, Bcl-2, P-gp, LRP, and MRP mean expression levels are given as RFI values and procaspase-3, XIAP, Bcl-xL, survivin and cIAP-1 expression levels are given as standardized mean values as described in the text.

lating molecules might be more important for therapy response and prognosis in AML.^{8,9} In contrast to the expression patterns of apoptosis-related proteins, neither FAB subtype nor cytogenentics differed significantly between childhood and adult *de novo* AML in these series (*data not shown*).

To our knowledge, this is the first systematic study investigating possible expression differences of apoptosis-related molecules between childhood and adult AML.

The results obtained indicate that the assumption that anti-apoptotic proteins will be preferentially expressed in adult leukemia whereas pro-apoptotic molecules will be more prominent in childhood leukemia might not be sufficient to explain different therapy outcomes and prognoses in different age groups of patients with AML. As this was a retrospective study with cryopreserved cell samples, further prospective studies should confirm our findings. Additionally, new approaches (e.g. microarry technique) might identify apoptosis-related genes with different expression patterns between childhood and adult acute leukemia.

Christian Wuchter,** Stephan Richter,*° Doreen Oltersdorf,* Leonid Karawajew,* Wolf-Dieter Ludwig,* Ingo Tamm° *HELIOS Klinikum Berlin, Robert-Rössle-Klinik, Dept. of Hematology, Oncology, and Tumor Immunology, Charité, Campus Berlin-Buch, Humboldt-University of Berlin; °Dept. of Hematology and Oncology, Charité, Campus Virchow, Universitätsmedizin Berlin, Germany

Current address: PAREXEL Medical Services Europe, Klinikum Westend, Haus 18, Spandauer Damm 130, 14050 Berlin, Germany

Funding: this study was supported in part by grants from the Carreras-Foundation, Mildred-Scheel-Stiftung für Krebsforschung and Deutsche Forschungsgemeinschaft. We would like to thank G. Czerwony, M. Martin and K. Liebezeit for their excellent technical assistance. The cell samples included in this study were sent from various hospitals in Germany participating in the AML-BFM (co-ordinators: U. Creutzig and J.Ritter, Münster) and AML-CG (co-ordinators: T.Büchner and W.Berdel, Münster; W.Hiddemann, München; B.Wörmann, Braunschweig) trials. We would like to thank the co-ordinators of the above studies for their continuous support as well as all clinicians who provided cell samples for our investigations.

Key words: childhood AML, adult AML, apoptosis

Correspondence: Ingo Tamm, MD, Dept. of Hematology and Oncology, Charité, Campus Virchow, Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany. Phone: international +49.30.450559438. Fax: international +49.30.450559958. E-mail: ingo.tamm@charite.de

References

- Kern W, Haferlach T, Schoch C, Löffler H, Gassmann W, Heinecke A, et al. Early blast clearance by remission induction therapy is a major independent prognostic factor for both achievement of complete remission and long-term outcome in acute myeloid leukemia: data from the German AML Cooperative Group (AML-CG) 1992 Trial. Blood 2003;101:64-70.
- O'Brien TA, Russell SJ, Vowels MR, Oswald CM, Tiedemann K, Shaw PJ, et al. Results of consecutive trials for children newly diagnosed with acute myeloid leukemia from the Australian and New Zealand Children's Cancer Study Group. Blood 2002;100:2708-16.
- Creutzig U, Berthold F, Boos J, Fleischhack G, Gadner H, Gnekow A, et al. Improved treatment results in children with AML: results of study AML- BFM 93. Klin Pädiatr 2001;213:175-85.
- Hiddemann W, Kern W, Schoch C, Fonatsch C, Heinecke A, Wörmann B, et al. Management of acute myeloid leukemia in elderly patients. J Clin Oncol 1999;17:3569–76.
- Schimmer AD, Hedley DW, Penn LZ, Minden MD. Receptor- and mitochondrial-mediated apoptosis in acute leukemia: a translational view. Blood 2001;98:3541-53.
- 6. Wuchter C, Karawajew L, Ruppert V, Büchner T, Schoch C, Haferlach T, et al. Clinical significance of CD95, Bcl-2 and Bax expression and CD95 function in adult de novo acute myeloid leukemia in context of P-glycoprotein function, maturation stage, and cytogenetics. Leukemia 1999;13:1943-53.
- Tamm I, Kornblau SM, Segall H, Krajewski S, Welsh K, Kitada S, et al. Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res 2000;6:1796-803.
- 8. Altieri DC. Validating survivin as a cancer therapeutic target. Nat Rev Cancer 2003;3:46-54.
- 9. Tamm I, Schriever F, Dörken B. Apoptosis: implications of basic research for clinical oncology. Lancet Oncol 2001;2:33-42.