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Letters to the Editor

Chronic Myeloid Leukemias

c-myc expression in cell lines derived from chronic myeloid
leukemia

We analyzed proliferation and c-myc expression in three
chronic myeloid leukemia (CML)-derived cell lines treat-
ed with interferon-αa, hydroxyurea, busulfan and imatinib.
We found that c-Myc levels did not universally correlate
with CML cell proliferation and that c-Myc down-regu-
lation correlated to imatinib activity but not to imatinib-
induced apoptosis.
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The molecular hallmark of chronic myeloid leukemia
(CML) is the Bcr-Abl kinase, generated by the 9;22 translo-
cation.1 CML has been treated with busulfan, hydroxyurea
and interferon-α.2 Recently, the Bcr-Abl inhibitor imatinib
(STI571, Gleevec®) was introduced for CML therapy and
has displaced other drugs.1,3 c-Myc is a transcription fac-
tor involved in cell proliferation,4 and c-myc expression
has been found to be elevated in CML blast crisis.5,6 Bcr-

Abl  and c-Myc co-operate in cell transformation7 and Bcr-
Abl activates c-myc transcription.8,9

We studied c-myc expression in response to the four
drugs used to treat CML (hydroxyurea, busulfan, interfer-
on-α and imatinib) on three CML-derived cell lines (KU812,
MEG01 and K562). We used drug concentrations slightly
above the minimal cytostatic concentrations for the three
cell lines: 2000 UI/mL interferon-α, 0.5 mM hydroxyurea,
0.5 mM busulfan and 0.5 µM imatinib. Proliferation (as
determined by cell counting and 3H-thymidine incorpora-
tion) and c-myc expression (analyzed by Northern and
Western blots) were monitored during 3 days of treatment.
The results are summarized in Table 1. We found that each
drug inhibited cell growth. However, growth arrest was
reversed when imatinib, interferon-α , and hydroxyurea
were removed from the media. Consistent with the differ-
ent mechanisms of action, we found a differential regula-
tion of c-myc in response to the drugs. It was expected
that c-myc expression would correlate with proliferation,
as shown for the KU812 and MEG01 cell lines treated with
hydroxyurea and busulfan. Cells with repressed c-myc were
always non-proliferating, suggesting that CML growth
requires c-Myc. However, there was no universal correla-
tion between c-myc repression and cessation of prolifer-
ation: a) in the three cell lines, interferon-α arrested

Table 1.  Effects of interferon-αa, hydroxyurea, busulfan and imatinib on c-myc expression and cell proliferation of CML-
derived cells. 

Cell line Effect IFNα Hydroxyurea Busulfan Imatinib
(2000 UI/mL) (0.5 mM) (0.5 mM) (0.5 µM)

KU812 Growth arrest +   reversible ++   reversible ++  irreversible ++  reversible
c-myc no change ↓ reversible ↓ irreversible ↓ NT

MEG01 Growth arrest +  reversible ++  reversible ++  irreversible ++  reversible 
c-myc no change ↓ reversible  ↓ reversible ↓ NT

K562 Growth arrest +    reversible +    reversible ++  irreversible ++  reversible
c-myc no change no change no change ↓ reversible

++ denotes a faster or more profound inhibition of cell growth than + , as assessed by thymidine incorporation and cell counting. The data are summarized from three
independent experiments in each case. ↓ denotes c-myc down-regulation, as assessed by Northern blot analysis. “Reversible” refers to the recovery of c-myc mRNA levels
after removal of the corresponding drug by cell washing. NT: not tested. 
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growth after 48 h, but c-myc expression remained unabat-
ed; b) in MEG01 cells, c-myc expression increased after
removal of busulfan but cells did not resume growth; c) in
the K562 line, c-myc expression was unchanged in
response to interferon-α , hydroxyurea, and busulfan,
despite the antiproliferative effect of these drugs. 

Imatinib was the only drug that down-regulated c-myc
in K562 cells, and did so in a time- and dose-dependent
manner (Figure 1A). When imatinib was removed, cells

resumed normal growth rates after 72 h (Figure 1B),
whereas c-myc expression reached control levels after 24
h (Figure 1C) when Bcr-Abl kinase activity was recovered.
Moreover, imatinib repressed c-myc in K562-Bcl2 trans-
fectants10 (Figure 1D) despite their partial resistance to
imatinib-mediated proliferative arrest and total resistance
to imatinib-induced apoptosis (Figure 1E). 

Thus, c-myc repression correlated with imatinib-medi-
ated inhibition of Bcr-Abl (confirming that Bcr-Abl acti-

Letters to the Editor

Figure 1. c-myc down-regulation mediated by imatinib in K562 correlates with imatinib activity but not with apoptosis. (A) Cells
were treated for the indicated periods of time with imatinib and the expression of c-myc RNA and protein was determined by North-
ern blot analysis (upper panel) and Western blot analysis (lower panel). A picture of the filter after transfer, showing the rRNA stained
with ethidium bromide and an immunoblot for αa-tubulin are shown to assess the loading of RNA and protein, respectively.  (B) Cells
were treated for 2 days with the indicated imatinib concentrations, washed, and placed in fresh medium. Cell counts were taken for
3 more days after washing. (C) c-myc expression in cells treated with 0.5 µmM or 2.5 µmM imatinib for 1 or 2 days, washed and fur-
ther incubated in media without imatinib for 1, 2 or 3 days as indicated. The filter was also hybridized to histone H4 probe to eval-
uate DNA synthesis (linked to histone expression) in the same samples. (D) c-myc expression in K562 and K562-Bcl2 cells treat-
ed for 1, 2 or 3 days with 0.5 µmM imatinib, as analyzed by Northern blot analysis. The filter was consecutively hybridized to c-myc,
bcl-2, and histone H4 probes. (E) Apoptosis of K562 and K56-Bcl2 cells in the presence of imatinib. Cells were treated for 2 days
with 0.5 µmm imatinib and the apoptosis was measured by annexin V binding as determined by flow cytometry.
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vates c-myc expression) but not with imatinib’s pro-apop-
totic effects. In summary, c-myc expression is not linked
to CML cell proliferation as the growth of cells can be
arrested in the presence of high c-myc expression, indi-
cating that c-Myc is not sufficient to trigger cell prolifer-
ation. However, c-myc expression could serve as a molec-
ular marker of imatinib activity.
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Letters to the Editor

Disorders of Hemostasis

Recombinant factor VIIa for the management of severe
hemorrhages in patients with hematologic malignancies

Seven patients with hematologic malignancies were
treated with recombinant activated factor VII (rFVIIa) for
severe bleeding episodes complicating diagnostic proce-
dures or high-dose chemotherapy associated or not with
stem cell transplantation. All patients were thrombocy-
topenic and refractory to standard support. After admin-
istration of rFVIIa, 2 complete responses, 3 partial
responses and 2 failures were documented. 
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Severe bleeding can be a fatal complication of intensive
treatment for acute leukemia, and is thus associated with
reduced survival. Administration of platelet concentrates is
the most common treatment but substantial limitations fre-
quently make this approach unsatisfactory. Recently, recom-
binant activated factor VII (rFVIIa, Novoseven) has been suc-
cessfully used for the management of bleeding in patients
with hemophilia A and B with inhibitors, congenital or
acquired platelet disorders, severe thrombocytopenia associ-
ated with hematologic malignancies, or bleeding complica-
tions after bone marrow transplantation.1-6 The mechanism by
which rFVIIa can stop bleeding in patients with thrombocy-
topenia and the doses needed are currently being investigat-
ed.7 From March 2001 to December 2002, seven patients with
hematologic malignancies were treated with rFVIIa for severe

bleeding episodes that were refractory to standard anti-hem-
orrhagic therapies. The clinical characteristics, the type and
probable cause of the hemorrhage and the planned treat-
ment are reported in Table 1. Two patients affected by acute
myeloid leukemia (AML) received rFVIIa during or before
induction therapy. Five patients received rFVIIa during the
course of allogeneic stem cell transplantation. The initial indi-
cations for rFVIIa were a post-liver biopsy hemorrhage and
uterine bleeding in the two AML patients; subsequently, gas-
trointestinal bleeding in the context of severe acute graft-
versus-host disease (GVHD) in 3 cases, gastrointestinal bleed-
ing and hemorrhagic cystitis in 1 were treated during the
course of allogeneic stem cell transplantation. The type of
bleeding was evaluated through a score proposed by Nevo et
al.8 Hemorrhages were diffuse in all cases, except in 1 patient
in whom bleeding followed a liver biopsy, and were objectively
assessed by instrumental procedures. All patients were throm-
bocytopenic at the time of rFVIIa infusion and had proved
refractory to standard anti-hemorrhagic measures, including
intravesicular administration of prostaglandin in the patients
with hemorrhagic cystitis. No patient had evidence of dis-
seminated intravascular coagulation or a history of a prior
bleeding diathesis. Informed consent for the experimental
use of rFVIIa was obtained from all the patients or the minor’s
legal guardian.

The planned administration of rFVIIa was 100 µg/kg (or 40
µg/kg in the case of the presence or a history of thrombosis)
every 6 hours, for a total of 6 doses (Table 2). Platelet trans-
fusions were continued during rFVIIa administration to pro-
vide a substrate useful for the action of the drug.9 Treatment
efficacy was evaluated 96 hours after the last dose of rFVIIa
and was based on daily clinical records and on the number of
red blood cell units required to maintain the hemoglobin lev-

                               




