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FLT3 inhibition as tailored therapy for acute
myeloid leukemia

The clinical success of the specific tyrosine kinase
inhibitor, STI5711,2 (otherwise known as Glivec or
imatinib, Novartis Pharma), has fostered onco-hema-
tologic research worldwide to  develop new molecu-
larly targeted forms of therapy. The target of ima-
tinib is preferentially BCR-ABL, an intracellular onco-
genic tyrosine kinase that shares several homologies
with the class III receptor tyrosine kinase (RTK) fam-
ily, whose members include the FLT3, KIT, FMS, and
PDGF receptors.3,4 Most of these RTKs are implicated,
either in mutated or wild-type conformations, in the
constitutive activation and proliferation of human
leukemias, especially acute myeloid leukemia
(AML).3,5

Particular interest has been aroused by the rela-
tively high frequency of FLT3 receptor mutations
found in AML. The FLT3 receptor has several struc-
tural domains, including 5 immunoglobulin-like
domains in the extracellular regions, a juxtamem-
brane (JM) domain, 2 kinase domains (TK1 and TK2)
separated by a kinase insert (KI) domain, and a C-ter-

minal domain in intracellular regions.4 Ligand bind-
ing to the RTK extracellular domain leads to recep-
tor dimerization, stabilizes an open conformation of
the catalytic domain (A-loop) for  adenosine triphos-
phate (ATP) and substrate binding, and enables
transphosphorylation of the A-loop. The subsequent
phosphorylation of tyrosine residues accompanies
RTK activation. Consequently, the FLT3 receptor leads
to induction of fundamental intracellular signaling
pathways, which in turn regulate both cell prolifer-
ation and apoptosis.3

The FLT3 receptor has been found to be frequent-
ly targeted in AML and somewhat less commonly in
myelodysplastic syndromes (MDS) by two different
types of genetic alteration. 

Firstly, an internal tandem duplication (ITD) of the
JM domain-coding sequence of the FLT3 gene
(FLT3/ITD) is found in 20% to 41% of adult and pedi-
atric patients with de novo or secondary AML, as well
as in about 3% of patients with MDS,6-10 as shown
also by Moreno et al.11 in this issue of Haematologi-
ca. These mutations constitutively activate the recep-
tor, and are strongly associated with hyperleukocy-
tosis, poor response to therapy and dismal progno-
sis. Among the distinctive forms of AML, higher fre-
quencies of FLT3 alterations have been detected in
acute promyelocytic leukemia (APL)12 and in AMLs
with apparently normal karyotype.6-11 The reasons
underlying these associations are currently unclear.
When transplanted in murine hematopoietic prog-
enitors, the mutant FLT3 receptor causes cellular
transformation and produces a myeloproliferative
syndrome, even though this does not by itself appear
sufficient to cause acute leukemia.13,14 An addition-
al length mutation affecting the tyrosine kinase
domain in exon 20 has been recently described.15

Secondly, point mutations in the FLT3 receptor
have been reported to occur in 3% to 8% of AML
patients, mostly at a specific site in  the gene (D835
and I836)16 (Figure 1). Although not apparently  asso-
ciated with either leukocytosis or worse prognosis,
these point mutations result in similar deregulatory
activity on the receptor and cause its constitutive
activation and tend to worsen disease-free survival.
Furthermore, the point mutations occur indepen-
dently of FLT3/ITD. Taken together, these observa-
tions indicate that FLT3 currently appears to be the
most frequently mutated gene and constitutively
activated receptor in AML.

The FLT3 receptor as a candidate target for tailored
therapy in acute myeloid leukemia

Following the remarkable success of STI571, several
researchers have pointed to the FLT3 receptor, or its
signal transduction pathway,17 as a possible specific
target for tailored therapy. Several tyrosine kinase
inhibitors, which were not originally developed with
FLT3 as the intended target, have been reported to
inhibit the FLT3 receptor on AML cell lines or prima-
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ry blast cells. These include the tyrphostin AG129518

or AG1296,19 and herbimycin A (HA).17,20,21

Following on from their preliminary observations
on the inhibitory activity of HA, Minani et al.20 sug-
gested that the mechanism behind the cytotoxicity
of this ansamycin derivative, which is now known to
target Hsp90, could be mediated by the inhibition of
phosphorylation of ITD-FLT3. Exposure to another
Hsp90 inhibiting HA, namely radicicol,22 was able to
dissociate ITD-FLT3 from the Hsp90 chaperone com-
plex, activating blast cell apoptosis. More recently,
inhibition of FLT3 has been reported in pre-clinical
studies of other RTK inhibitors, namely CEP-701 or
KT-5555,23-25 PKC412,26 and CT53518.27 Moreover, in
an interesting accompanying review that appeared in
the same issue of Cancer Cell,28 Sawyers reported a
fourth inhibitor, SU11248,29 that is now being eval-
uated in a clinical trial (in which we are directly
involved). All four molecules have been designed to
bind the receptor specifically and compete with ATP
in its ATP-binding pocket. CEP-701 exerts an
inhibitory action on the TrkA receptor tyrosine

kinase.23 The inhibitory activity of PKC412 extends
to RTK other than FLT3, such as protein kinase C,
VEGFR2, PDGFR, c-Kit, and FMS.26

Similarly, Millenium’s compound, CT53518 and
Sugen’s SU11248 (the latter derived from the chem-
ical research and development of SU5416)28,29 both
have further inhibitory effects on PDGFR and c-kit.27

With four FLT3 inhibitors heading into the clinic, is it
possible to predict which patients stand to gain most
benefit from these drugs?

Assuming that FLT3 is a suitable target for molec-
ular therapy in AML, we can postulate that enrol-
lment in clinical trials should be proposed for those
patients with FLT3 receptor alterations in their
leukemic cells. Furthermore, treatment could be
extended to those AML patients refractory or resis-
tant to conventional chemotherapy and/or with
associated or concomitant mutated c-Kit and PDGFR
translocation.30-33 Based on pre-clinical studies, we
can expect that AML patients with FLT3 alterations
may show some clinical response.
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Figure 1. Schematic representation of the FLT3 receptor kinase domains with point mutations and some types of ITD. Schemat-
ic representation of the FLT3 receptor kinase domains: Genomic, mRNA and protein structure of the FLT3 receptor. Right side
of the figure: DNA: schematic illustration of exons 10, 11, 12 and 17 of the FLT3 receptor gene. RNA, messenger RNA repre-
sentation: extra cellular domain (ECD); transmembrane domain (TC); juxtamembrane domain (JM); tyrosine kinase domain
(TK1); kinase insert (KI); tyrosine kinase domain2 (TK2); C terminal region (COOH). Protein: representation of protein domains
of functional FLT3 receptor. The kinase domain is not drawn to scale. Middle of the figure: two types of activating mutations
in FLT3 are associated with AML; the first type consists of ITDs of amino acids in the JM domain resulting in constitutive tyro-
sine kinase activation. WT, wild-type amino acid sequence of the region usually involved in ITDs;1-6 some derivative ITDs
sequences with the point of insertion (arrows). The second type of mutation consists of point mutations in the so-called acti-
vation loop of the second tyrosine kinase domain. Mutations at two specific residues, aspartic acid (D835) and/or isoleucine
(I836), also result in constitutive FLT3 activation. Amino acid substitutions are depicted; arrows indicate the points of inser-
tion of representative ITD sequences. Modified from: Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia.
Blood 2002;100:1532-42.



Are all AML patients likely to respond to FLT3
inhibitors?

In CML Ph+ patients in chronic phase, the molec-
ular target of imatinib is ABL, present either in its
P210 form (as in the BCR-ABL fusion protein) or in
its wild-type form. Furthermore, the BCR-ABL onco-
gene is absent from normal stem cells but present in
its double isoform (b2-a2 and b3-a2, with very rare
exceptions)34,35 on the leukemic cells, offering a
unique molecular target for imatinib’s selectivity. On
the other hand, FLT3 receptors carrying ITD exhibit
more heterogeneous forms of mutation, giving rise to
several individual structural forms of the receptor. It
is likely that it will be difficult for the inhibitor drugs
to recognize, bind and inhibit all these forms. Based
on the different chemical formulations of the four
inhibitors, and again learning from the ABL/imatinib
interaction experience,36 we can hypothesize that the
different inhibitors are likely to show different com-
bining activities with each form of the mutated FLT3
receptor. We may expect various degrees of clinical
responsiveness among patients, simply based on the
specific interactions of each inhibitor with variable
forms of FLT3 ITD. We could also envisage peculiar,
individual degrees of sensitivity to the same inhibitor
among patients sharing the same molecular defect.
In this respect, it is important to consider that, dis-
tinct from CML, AMLs comprise a spectrum of genet-
ically heterogeneous diseases which may account for
different sensitivities to the inhibitor.

Is it possible to predict resistance to these inhibitors?
And could there be “intrinsic” resistance pre-dating
the start of therapy?

It is now clear that resistance to imatinib is most-
ly due to point mutations in or around the ABL ATP
binding pocket. Despite recent observations sug-
gesting that polyclonal resistance to imatinib could
be present prior to the initiation of therapy in a few
CML patients,37 in the majority of cases cellular resis-
tance to imatinib is acquired during treatment. Mul-
tiple independent mutant clones seem to emerge
during treatment with imatinib, along with the ABL
point mutations that have been detected in relapsed
cases,37 and a clonal selection of these cells would
confer refractoriness that could be defined as
acquired resistance. On the other hand, the mutated
FLT3 receptor form is present from the onset of dis-
ease in the majority of AML patients and ITD or point
mutations are associated exclusively with the
leukemic clone: either the ITD or the point mutation,
or a combination of the two, may confer a prolifer-
ative advantage to the blast cell. If this is the case,
resistance to FLT3 inhibitors could be present from
the onset of disease (i.e. intrinsic resistance). Drug
inhibitory pressure could then foster a clonal selec-
tion of cells with a second or further mutation, con-
ferring further resistance (acquired resistance).

From the co-crystal structure of the ABL kinase

bound to imatinib36,38,39 it has been postulated that
acquired drug resistance35 depends on a reduced
interaction between imatinib and the mutated ABL
form, the latter being due to a single amino acid sub-
stitution. To overcome this obstacle, a mutated form
of imatinib36 and alternative inhibitors, such as
PD173955,36,40 have been designed. PD173955 is able
to bind the ABL ATP pocket in the so-called on con-
formation, which is supposed to be more accessible
to the drug. At present, however, there are no data
on the co-crystal structure of the FLT3 receptor either
in its wild-type conformation or in its mutated form.
Furthermore, no information is available about the
co-crystal structure of the FLT3 receptor associated
with any of the inhibitors. In the absence of infor-
mation regarding the structure whereby the recep-
tor binds to the inhibitors, one can hardly speculate
on intrinsic resistance.

In conclusion, unlike CML, AML with FLT3 ITD or
point mutations are characterized by multiple genet-
ic forms. This variety of forms hampers prediction of
success rates for the majority of patients treated with
any of the four new FLT receptor inhibitors. Only clin-
ical trials will reveal whether this treatment can pro-
vide a viable option for such patients. On the other
hand, extensive molecular characterization of FLT3
gene status will be required to determine whether a
given alteration type is more susceptible to targeted
inhibition. Our personal preference would be to
include relapsed AML patients carrying FLT3 recep-
tor ITD and/or point mutations in initial trials. Com-
bined with extensive and multiparametric genetic
characterization of enrolled cases, this would favor
rapid identification of responders. Mechanism(s) of
resistance could then be investigated and hopefully
identified in subsequent studies.
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