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Renewing interest in cancer immunotherapy
reflects the excellent results that have been
obtained in animal models and the promising results
in early clinical trails with dendritic cell (DC) based
approaches. The central role that DCs play in the
initiation of an immune response raises the possi-
bility of using them to trigger specific anti-tumor
immunity. In addition, deeper knowledge of DC biol-
ogy will allow better understanding of the mecha-
nism(s) underlying allergic and autoimmune dis-
eases as well as tolerance phenomena. These cru-
cial issues were critically reviewed during a work-
shop organized by the Italian Society for Experi-
mental Hematology in Florence, Italy, on March
18th, 1999. The chairmen have prepared this report
for the readers of Haematologica.
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tion capacity. As shown by Gabrilovich et al.,7 this
defect can be dependent on vascular endothelial
growth factor (VEGF) production by human tumor
cells which can inhibit the functional maturation of
DCs. This evidence provides one of the potential
explanations for the failure of the immune system to
control tumor growth once the neoplastic cells have
acquired the ability to block DC maturation. Never-
theless, DCs differentiated in vitro from patients with
a tumor have been shown to be functional APCs that
can be used not only for in vitro T-cell activation but
also for in vivo transfer into patients after antigen
loading in the attempt to boost the immune
response to tumor antigens. In the human, the DC
system represents a heterogeneous group of APCs
differing at the level of precursor cells, factors influ-
encing growth and maturation, phenotype, and APC
function. DCs are found in virtually all tissues of the
body and in the peripheral blood, where they repre-
sent 0.1% of leukocytes.8,9 They capture and process
antigens and migrate to lymphoid organs, the spleen
and the lymph nodes, where they interact with acti-
vated antigen-specific T-cells. Recently, it has also
been demonstrated that different subsets of DCs
provide different cytokine microenvironments that
determine the differentation of either type-1 T-helper
(TH1) or TH2 cells.10 At the same time, a negative
feedback loop from the mature T-helper by produc-
tion of different cytokine(s) may selectively enhance
or reduce DCs maturation.10 In addition, the recent
development of simple methods to isolate DC pre-
cursors from bone marrow,11 peripheral blood12 or
cord blood13 and the expansion of these cells ex vivo
to yield potent APCs has enabled their clinical use in
cancer immunotherapy.

Generation of dendritic cells
Two types of DC (monocyte-derived and CD34+-

derived) become the most frequently used APCs for
both in vitro and in vivo studies. Most investigators
have used either monocytes or CD34+ progenitors
cultured in the presence of growth factor cocktails.
Differentiation of DCs from these precursors can be
traced easily by monitoring changes in some key sur-
face molecules such as CD1a (acquired by DCs) and
CD14 (expressed by monocytes and lost by DCs).
Furthermore expression of other co-stimulatory mol-
ecules such as CD40, CD80 and CD86, as well as
HLA antigens, can be used to evaluate the stage of
differentiation and the degree of maturation of DCs
during in vitro culture. In this context, two new mark-
ers, CD83 and p55, have shown to be selectively

The induction of an efficient immune response
depends on appropriate T-antigen presenting
cells (APC) interaction(s), such as the ability to

efficiently prime naive T-cells in order to drive clon-
al proliferation and functional differentiation of
antigen-specific T-cells as well as to prevent antigen-
specific T-cell anergy.1 In this context, a growing
number of tumor antigens, including tissue-specific
genes, transformation related genes, and gene muta-
tions occurring in neoplastic cells, have recently been
identified as being recognized by T-lymphocytes and
are capable of provoking an antitumor immune
response.2,3 However, tumors frequently lack the
expression of co-stimulatory molecules that drive
clonal expansion of T-cells, production of cytokines,
and development into cytotoxic T-cells.4-6

Dendritic cells (DCs) are now recognized as being
specialized or professional APC which play a key role
in generating primary and secondary immune
responses against specific antigens,1 and thus pro-
vide a means of solving these challenges. DCs iso-
lated from tumor patients7 have shown functional
impairment as revealed by reduced T-cell stimula-
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expressed by a small subset of mature DCs differen-
tiated in vitro culture conditions.14,15 CD83 and p55
are uniformly expressed at high levels in mature cells
but are absent from fresh blood monocytes and
peripheral blood CD34+ cells. 

Human monocytes have generally been cultured in
the presence of GM-CSF and IL-4, following the pro-
tocol originally reported by Sallusto and Lanzavec-
chia.16 The application of this method for the genera-
tion of large amounts of functional DCs is hampered
by two major obstacles. First, production of signifi-
cant number of DCs is dependent on the use of fetal
calf serum (FCS).17 Second, when the cytokines are
removed, the cells revert to an adherent and less stim-
ulatory state.17 For these reasons, several authors1,16,18

have proposed a protocol for the generation of DCs,
starting from peripheral blood monocytes, that
includes two consecutive steps: monocytes are cul-
tured with GM-CSF and IL-4 for 7 days and then the
final maturation of DCs is obtained by the addition of
TNF-� or CD40L that leads to increased HLA-class II
and accessory molecule expression that parallels
increased T-cell stimulation capacity. In addition,
CD83 and p55 are expressed only at low levels by
monocytes that are primed with GM-CSF and IL-4,
but are upregulated following culture with TNF-� or
CD40L. Other studies have indicated that maturation,
migration and immunostimulatory capacity of mono-
cyte-derived DCs can be promoted by cytokine cock-
tails containing not only TNF-� and IL-1�, but even a
conditionated medium (CM) produced by culturing T-
depleted blood mononuclear cells on immobilized
human gammaglobulin.17,19 Additional factors of the
TNF family are involved in DC survival. One of these
factors, TRANCE (tumor necrosis factor-related acti-
vation-induced cytokine), has been found to inhibit in
vitro apoptosis of monocyte-derived DCs.20 As
TRANCE is produced by T-cells, it has been proposed
that T-cell-derived factors can contribute to DC sur-
vival. It is also to be remembered that DC survival
depends on T-DC interaction(s) mediated by the
CD40 receptor ligand system.21 Thus, both soluble
factors as well as cell surface molecules on T cells con-
tribute to DC survival. Furthermore, the T-DC inter-
action(s) also has a cytokine component that pro-
foundly affects the outcome of immune responses by
shifting the TH1/TH2 balance towards one or other of
the two main CD4 T cell subsets. This cytokine-medi-
ated interaction is based on opposite signals depen-
dent on IL-12 and on IL-10.21

Data presented at the Workshop of the Italian Society for
Experimental Hematology (SIES; held in Florence, March
18th, 1999) by Ricciardi Castagnoli et al. showed that
DC activation induced by bacteria or by lipopolysac-
charide (LPS) can be separated into two distinct
processes: maturation leading to upregulation of
MHC and co-stimulatory molecules, and rescue from
immediate apoptosis following withdrawal of growth
factors (survival). The results of this study indicate that
ERK and NF-kB regulate different aspects of LPS-
induced DC activation: ERK regulates DC survival
while NF-kB is responsible for DC maturation.

In addition, Corinti et al. in the same SIES Work-
shop confirmed that bacteria were very effective
inducers of DC maturation by upregulating the

expression of membrane molecules and reducing
both phagocytic and endocytic activities. In particu-
lar, recombinant Streptococcus gordonii expressing the
C-fragment of tetanus toxin (TTFC) on the surface
was tested as an antigen delivery system for human
monocyte-derived DCs. DCs incubated with recom-
binant S. gordonii were much more efficient than DCs
pulsed soluble TTFC at stimulating specific CD4+ T-
cells. However, bacterial vectors enhanced the capac-
ity of DCs to activate specific CD4+ T-cells at con-
centrations that did not stimulate DC maturation.

In contrast to monocyte-derived DCs, CD34+ prog-
enitors can generate DCs when cultured with GM-
CSF and TNF-�,11,13,12,22 a mixture allowing fully
mature APCs characterized by efficient stimulatory
activity for allogeneic cells to be obtained. More
recently, it has clearly been shown that both stem cell
factor (SCF) and FLT3 ligand are able to augment
DC yield.23-26 SCF probably acts by expanding the pre-
cursor cells, while FLT3 ligand by inducing DC dif-
ferentation.27 Notably, these results can be achieved
utilizing autologous recovery-phase serum instead of
FCS. In view of the ex vivo manipulation of DCs for
clinical use, it is essential to avoid T-cell responses to
xenogenic antigens of FCS. The pool of DCs gener-
ated from CD34+ progenitor cells comprises about
10% of cells that are indistinguishible from cutaneous
Langherans cells.23,28

Growth factors utilized for ex vivo generation of DCs
have already been used in vivo as adjuvants for anti-
cancer vaccination. The induction of immune respons-
es to foreign proteins as well as peptides derived from
a self tumor antigen is due to the activation of func-
tional DCs. GM-CSF was proven to be effective in
enhancing peptide-specific immune reactions by
amplification of dermal peptide-presenting DCs.29,30

However, the role played by GM-CSF as an adjuvant
in peptide-pulsed vaccination is still controversial.31,32

In contrast, the administration of FLT3 ligand both in
animals and in humans results in a reversible accu-
mulation of functionally active DCs in both lymphoid
and non-lymphoid tissues.26,33,34 In murine models it
was demonstrated that FLT3 caused the regression of
various tumors.35,36 These data support the suggestion
that DC may be directly involved in the antitumor
effect of FLT3 ligand. Recently, Peron et al.37 showed
that FLT3 ligand induces a strong augmentation of
natural killer (NK) cells in the spleen and blood. NK
depletion significantly abrogated the antitumor effect
of FLT3 ligand in the murine tumor model, suggesting
that NK cell activity was necessary for the inhibition of
tumor growth induced by FLT3 ligand in a model of
early therapy. A similar mechanism has been observed
by the same authors for the IL-12-based therapy. FLT3
ligand may act similarly to IL-12 or may stimulate IL-
12 production by immune cells, in particular by DCs.
The authors hypothesized that the interaction between
DC and NK cells within the tumor microenvironment
may also play an important role in the effector phase
of antitumor immune responses.

The identification and study of subsets of CD34+

cell precursors of DCs with different potential func-
tions was discussed by Rondelli at the SIES Work-
shop. The data that he presented showed that con-
stitutive expression of CD18 and rapid induction of
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co-stimulatory molecules identify a subset of CD34+

cells capable of presenting alloantigen, whereas
progenitor cells failing to express these molecules
might be exploited in allogeneic transplant settings
since they contain committed and early precursors
and are non-immunogenic.

Ex vivo manipulation of dendritic cells
The generation of large numbers of functional DCs

has allowed protocols  to be designed for their clini-
cal utilization depending on their stage of maturation.
In fact, more immature DCs derived from peripheral
blood monocytes might be used for the construction
of RNA/DNA based-vaccines when optimal antigen
processing function is needed. In contrast, mature
DCs derived from CD34+ progenitors or from GM-CSF
+ IL-4 primed-monocytes subsequently cultured with
TNF-� may be better suited for the peptide-pulsed
approach. The possibility of extending these princi-
ples to immune intervention in many human tumors
has been made stronger by the recent identification of
several peptides recognized in association with HLA
class I antigens by autologous CTLs.2 Furthermore,
both synthetic peptides corresponding to known
tumor antigens and tumor-eluted peptides could be
used for DC-mediated antigen presentation. While
synthetic peptides represent only the limited antigenic
repertoire of the presently known tumor antigens,
tumor-eluted peptides may contain still unknown
highly immunogenic epitopes. Even though DCs can
be loaded with cocktails of different peptides corre-
sponding to different tumor antigens expressed by the
same tumor, a procedure that has been shown to be
clinically effective,38 it is nevertheless possible that the
synthetic peptide-approach will limit patient selection,
on the basis of the HLA phenotype, and will prevent
the possibility of activating both CD4 and CD8 T-cells
directed to different epitopes of the same antigen. An
alternative to the use of synthetic or tumor-eluted pep-
tides would be the loading of DCs with tumor lysates.
This procedure has been shown to be effective in
mouse models as well as in one human trial of vacci-
nation.37 The principle is that proteins (or even RNA)
extracted from tumor cells may be used to load DCs
and lead to intra-cellular processing and presentation
of tumor-derived peptides. The advantage of this
approach is that it can lead to peptide presentation by
both HLA class I and II antigens expressed by DCs and
thus enable the activation of both CD4+ helper and
CD8+ cytotoxic T-cells. However, a possible limitation
of this approach is the complete lack of control on
the nature of the antigens that are being presented by
the DCs, since any cellular protein not necessarily
being a tumor antigen may be processed and pre-
sented by DCs without any advantage for the anti-
tumor response. In addition, the theoretical, although
not yet proven, possibility exists of inducing autoim-
munity against self proteins commonly expressed in
several tissues.39

A further possible strategy derives from the expres-
sion of whole genes in DCs by means of appropriate
expression vectors. DCs can be modified to express
the whole gene coding for a tumor associated anti-
gen (TAA), thus potentially leading to presentation of

a wider array of T-cell epitopes in comparison to the
currently known peptides from each TAA. The trans-
duction of TAA genes into DCs can be achieved by
different means including viral vectors. The advan-
tages of recombinant viral vaccines include their abil-
ity to infect a broad range of cell types, high efficien-
cy in delivery of antigens, and induction of both
humoral and cell-mediated responses. 

Retrovirally transduced-DCs should be able to con-
stitutively express and process TAA to produce long-
term antigen presentation in vivo.40,41 Limitations to
the use of retroviruses include: a) difficulty of obtain-
ing viral supernatant with a sufficiently high titer as
that required for clinical applications; b) low effi-
ciency of transduction (15-20%); c) theoretical risk of
oncogenic transformation of infected DCs; d) abili-
ty to transduce only actively replicating cells.

Adenoviral vectors are another tool for efficient
delivery of foreign genes into mammalian cells. These
vectors are an attractive choice because they infect
both replicating and non-replicating cells, are easy
to handle, and allow the production of high titer
supernatant. Ex vivo transduction of murine or human
monocyte-derived DCs by the Melan-A/adenovirus
vector elicited a specific CTL response against the
transduced TAA42,43 and several murine studies have
shown that immunization with recombinant adeno-
virus containing a tumor antigen results in tumor
rejection.44,45 The use of adenoviral vectors has been
limited by the potential immunogenicity of con-
comitant adenoviral gene expression.

Vaccinia virus vectors can efficiently infect DCs and
lead to expression of reporter genes.46 Vaccinia virus is
a member of the poxvirus family and seems to be a
good tool for TAA-gene transduction into human DCs
because is not oncogenic, does not integrate into the
host genome, is easy to manipulate and capable of
accepting large fragments of heterologous DNA.47

Recombinant vaccinia virus (Rvac) has been used for
several years in experimental systems aimed at induc-
ing a T cell response after direct virus inoculation. In
phase I clinical trials, Rvac, modified to encode HPV
proteins48 and CEA genes,49 has been injected into
patients affected by cervical and colon cancer, respec-
tively. In neither study were significant side effects
observed. More interestingly, even though the patients
mounted an anti-vaccinia immune response, evidence
of enhanced immunity to the HPV gene products and
of generation of anti-CEA CTLs was observed in some
of the treated patients.47,50 In agreement with initial
data obtained in a phase I trial with a Rvac encoding
the HIV gp160 envelope gene,51 clinical trials in can-
cer patients have confirmed that even in the human
host Rvac can be effective for the priming of T-cells
directed to the inserted sequences.

A different method for in vivo targeting of DCs was
presented by Colombo et al. in the SIES Workshop. The
authors52 demonstrated that oral vaccination of mice
with an attenuated bacterial vector carrying �-galac-
tosidase gene resulted in the transduction of intestinal
APC. A model to deliver a gene into APC by oral admin-
istration of attenuated bacterial vectors could be devel-
oped to avoid any ex vivo manipulation of DC. 

As investigated by Gilboa et al.,53,54 it is possible to
transfect DCs with RNA encoding antigen(s) and
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subsequently induce CTL targeted against tumors.
RNA can enter directly into immature DCs, but a
transfecting agent, such as a cationic lipid, is neces-
sary to transfect more mature DCs, as measured by
their ability to induce CTLs in vitro.51 Using RNA
derived from tumor cells may overcome the lack of
known tumor antigens. However, there may be an
increased risk of autoimmune reactivity, particularly
if this approach is combined with other immune-
enhancing strategies such as simultaneous adminis-
tration of cytokines. In fact, DCs are transfected with
RNA encoding normal as well as tumor proteins. 

Acquired genetic abnormalities identified in hema-
tologic malignancies can be recognized by specific T-
cells. In fact, intracellular proteins can be processed
and presented on the cell surface by MHC molecules
indicating the possibility that leukemia-specific genet-
ic abnormalities may be targets for cytotoxic T-cells.
Normal peptide-pulsed DCs have been used for the
generation of cytotoxic, BCR-ABL-specific T cells. It
has been shown that T-cells generated from a normal
donor after stimulation with autologous DCs primed
with a 16mer peptide spanning the b3a2 breakpoint
of BCR-ABL, lysed cells from the peripheral blood of
chronic myelogenous leukemia patients.55 The gen-
eration of functional monocyte-derived DCs carrying
the specific genetic lesion has been reported for both
acute myelogenous leukemia as well as chronic myel-
ogenous leukemia.56,57 Current protocols for ex vivo
DC generation from CD34+ cells does not allow the
production of large numbers of leukemic DCs, prob-
ably due to a defective proliferative and/or matura-
tive capacity of transformed CD34+ cells. Recently, a
protocol which allows the optimal generation of
BCR/ABL-positive DCs from CML-derived CD34+

cells has been reported.58

DCs are also deeply implicated in the initiation or
exacerbation of dangerous immune reactions, includ-
ing autoimmune disorders, transplant rejection and
allergic diseases. This issue was illustrated at the SIES
Workshop by Girolomoni et al. This author has
demonstrated that cutaneous DCs are intimately
involved in the initiation of allergic contact dermatitis
to haptens as well as in the propagation of IgE-depen-
dent immune responses associated with atopic der-
matitis. Thus, ex vivo generation of DCs inducing aner-
gy instead of activation of specific lymphocytes could
be helpful for the therapy of autoimmune diseases.

Clinical studies
Initial studies have been performed in melanoma

patients because melanoma is one of the few human
cancers in which host immune responses can be
reproducibly demonstrated. As reported by Nestle et
al.,37 vaccination with peptide- or tumor lysate-loaded
DCs led not only to positive delayed type hypersensi-
tivity to peptide-loaded DCs in 11/15 patients but
also to objective responses in 5/16 evaluable patients.
Responses included regression of metastases in skin,
soft tissue, lung and pancreas, suggesting that DC-
mediated vaccination can lead to a systemic  response
effective in inducing tumor regressions at lesions in
several organs. By contrast administration of mela-
noma peptides, without DCs, failed to elicit clinical-

ly significant responses. These were observed only
when high doses of IL-12 were added to the peptide
vaccination.59

The vaccination approach by peptide-pulsed DCs
has also been attempted in other neoplastic diseases,
such as non-Hodgkin’s B cell lymphoma (NHL), pro-
static cancer and multiple myeloma.60-62 Hsu et al.
demonstrated that vaccination of NHL patients with
DCs loaded with the tumor-specific idiotype protein
led to objective tumor regressions including one com-
plete response.58 A phase I clinical study was per-
formed in 51 patients with hormone-refractory pro-
static cancer to evaluate the efficacy of vaccination
with autologous DCs pulsed with prostate specific
membrane antigen (PSA) peptides.59 Seven partial
responses were observed. By contrast, in the control
group treated by injection of peptides alone, no
tumor regressions were observed. Recently, a feasibil-
ity study of DC-based anti-idiotype vaccination after
autologous peripheral blood stem cell transplanta-
tion in multiple myeloma patients was performed by
Reichardt et al.60 This study showed that, despite high-
dose chemotherapy, patients mounted a strong anti-
keyhole limpet hemocyanin (KLH) immune response,
and more important few patients also showed an
anti-idiotype CTL-response.

The clinical efficacy of cancer therapy by vaccina-
tion with tumor antigen-loaded APC may be improved
by understanding whether tumor growth is associat-
ed with development of immunity to tumor peptides
and whether this leads to evidence of T-cell-mediated
tumor regression in metastatic lesions. This important
issue was discussed by Anichini et al. during the Flo-
rence SIES Workshop. Anichini et al. evaluated the fre-
quency of cytotoxic T-cell precursors (CTLp) against a
Melan-A/Mart-1 peptide in the blood of patients with
metastatic melanoma. They found that some patients
possessed a high frequency of CTLp within the mem-
ory (CD45RO+) subset, while others only possessed a
low frequency repertoire in the naive (CD45RA+) T-
cell subset. In the latter group of patients, profession-
al APC (DCs) were necessary for T-cell activation, since
no Melan-A/Mart-1-specific CTL could be generated
when using non-professional APCs, such as mono-
cytes. The observation of  Anichini et al. is relevant
because knowledge about the immune status of a
patient may facilitate the choice of tumor antigens to
be used in vaccination attempts employing DCs, as
patients with a higher percentage of CTLp will gener-
ate higher numbers of specific CTL.

In conclusion, despite a large body of evidence
strongly supporting the existence of DC-mediated
antitumor effects, many issues related to DCs need to
be understood in more detail to allow successful
manipulation of the immune system.63-65 In particu-
lar, the role of different DC subsets, including their
effects on B-cells and tolerance should be elucidated.
In fact, besides the role of DCs in anti-cancer immu-
nity, emerging evidence points towards a role for DCs
in central and peripheral tolerance phenomena. It is,
therefore, essential to pursue basic research on DCs
more vigorously in the fields of allergy, transplanta-
tion and autoimmunity.
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