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Abstract

Background and Objective. Erythropoietin (Epo) is the
primary growth factor for the red cell lineage but treat-
ment with recombinant human Epo (rHuEpo) has been
shown to increase platelet counts. In several animal
species treatment with rHuEpo stimulated platelet pro-
duction, but platelet counts tended to normalize after
1-2 weeks and large, chronic doses even caused throm-
bocytopenia. This paper aims at reviewing the evidence
about the effects of Epo on megakaryopoiesis.

Information sources. We examined the literature pub-
lished in journals covered by Medline®, concerning the
effect of Epo, hypoxia and iron deficiency on mega-
karyopoiesis and platelets. The reference list of each
article was reviewed to try to identify further contribu-
tions.

State of the Art. In vivo data have shown that moder-
ate Epo stimulation, i.e. that produced by standard dos-
es of rHuEpo, short-term hypoxia or moderate iron defi-
ciency, causes a moderate elevation of platelet counts,
whereas intense Epo stimulation, as produced by high
doses of rHUEpo, prolonged hypoxia or severe iron defi-
ciency, causes some degree of thrombocytopenia. In
the latter case, there appears to be a diphasic
response to Epo, the initial positive response (a stim-
ulation of platelet production) being followed by throm-
bocytopenia. Contrarily to the thrombocytopenia due to
increased platelet destruction induced by other growth
factors, Epo-induced thrombocytopenia is the result of
an inhibition of platelet production.

Conclusions and Perspectives. Stem-cell competition
between erythroid and platelet precursors appears to
be the cause of these phenomena in situations of pro-
longed, intense stimulation by Epo. In vitro data sup-
port the existence of a common erythrocytic and
megakaryocytic precursor. It remains to be determined
whether these effects of rHuEpo are a result of the
dose itself or of the magnitude of the erythropoietic
effect of that dose. It is not known whether a lower
dose given in a patient with decreased marrow function
would bring about the same biological effects as those
induced by high doses of rHUEpo in the presence of a
normal marrow function. Caution should be exercised
before using high doses of hematopoietic growth fac-
tors.
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tor for the red cell lineage, controlling the sur-
vival, proliferation and differentiation of ery-
throid precursors.! Inadequate erythropoietin pro-
duction, as observed in patients with end-stage renal
disease, results in an anemia that can be best treat-
ed with recombinant human erythropoietin (rHuUE-
po).12 Treatment with rHUEpo has been shown to
improve platelet function in hemodialysis patients,
as assessed by platelet adhesion, platelet aggrega-
tion, and serum levels of various factors involved in
platelet function.®” However, large clinical trials have
shown that rHuEpo therapy also resulted in
increased platelet counts.®® In several animal species
treatment with rHUEpo has been shown to stimu-
late platelet production, but platelet counts tend to
normalize after 7 to 15 days.1013 In fact, large, chron-
ic doses of rHUEpo even caused thrombocytopenia
in rats, and stem-cell competition between erythroid
and platelet precursors has been suggested as the
cause of this phenomenon.4
We review here the published evidence about the
effects of erythropoietin on megakaryopoiesis. We
first present data obtained during in vivo models of
hypoxia, rHUEpo therapy as well as other experi-
mental or clinical conditions. The second part of the
article reviews the potential mechanisms involved in
these phenomena, including changes in plasma vol-
ume or platelet survival, the response of megakaryo-
cytes to erythropoietin, the global response of the
bone marrow as an organ, and functional iron defi-
ciency. We conclude that a large body of data sup-
ports the existence of a common erythrocytic and
megakaryocytic precursor, as hypothesized earlier.1s

Erythropoietin (Epo) is the primary growth fac-

In vivo observations of concomitant
changes in erythropoiesis and
megakaryopoiesis

The model of hypoxia

Experiments in guinea pigs® and rats!” have shown
that acute blood loss in normal animals is followed by
increased platelet production and platelet counts.
Short-term hypoxia in normal mice induced both ery-
throcytosis and thrombocythemia,'®2* without an
increase in 35S incorporation into platelets, suggesting
that platelet production may be increased without true
stimulation of megakaryopoiesis.2> However, chronic
hypoxia decreased platelet production!®2 and this
was shown to result from decreased differentiation of
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hematopoietic precursors into the megakaryocytic lin-
eage.192527 Despite a small increase in megakaryocyte
size,28 total circulating platelet counts® as well as total
megakaryocyte mass?® were reduced. There was no
change either in platelet survival'® or in megakaryocyte
DNA content, activity of differentiated megakaryo-
cytes?® or TPO production.?® Relative nhumbers of
spleen megakaryocytes are reduced by hypoxia to a
degree similar to that of marrow megakaryopoiesis.2°
However, cycling of splenic erythropoiesis may explain
why absolute numbers of megakaryocytes are normal
in the spleen.5:30 Splenectomy causes a further degree
of hypoxia-induced thrombocytopenia in hypertrans-
fused mice.2® On the other hand, marrow ablation
causes the spleen to compensate by increasing
platelet production.3* However, this inverse relation-
ship between erythropoiesis and megakaryopoiesis
during hypoxia in mice also depends upon the strain
studied. Responses in Balb/C mice are not so great as
in C3H mice.?22832 This is due to the former’s rela-
tively defective Epo response to hypoxia® linked to
lower hemoglobin O, affinity.3? Increased erythro-
poiesis, and not elevated RBC (as produced by trans-
fusion), is required for the thrombocytopenia to
occur.2t34 Accordingly, polycythemia induced by
transfusion or previous exposure to low barometric
pressure is accompanied by increased platelet counts
and %S incorporation into platelets.2* On the other
hand, the post-hypoxic recovery phase is not associ-
ated with the expected rebound thrombocytosis.3s
These data indicate that short-term hypoxia is asso-
ciated with thrombocytosis but more prolonged expo-
sure results in thrombocytopenia.

Treatment with rHUEpo

Invitro experiments have demonstrated that hypox-
ia also exerts direct effects, which are independent of
Epo, on erythroid progenitors.3¢37 For instance,
although the oxygen tension had no effect on BFU-E
formation when Epo was present, BFU-E production
under hypoxia without Epo was equivalent to that
under normoxia in the presence of Epo.37 Very severe
hypoxia was associated with enhanced formation
and maintenance of BFU-E, but also with inhibition
of their terminal expansion and maturation.3¢ Fur-
thermore, hypoxia reduced megakaryocyte number
and size while increasing the number of CFU-Mk.37
Therefore, the model of hypoxia may not be ideal for
studying the effect of Epo on hematopoiesis and
direct application of recombinant human erythro-
poietin (rHUEpo) may be more appropriate.

In large clinical trials of rHUEpo treatment in renal
failure patients, platelet counts increased significant-
ly, then gradually returned to pretreatment levels after
months of maintenance therapy.8 In another study,
platelet increments over baseline occurred in parallel
with expansion of erythropoietic activity.® In chronic
liver disease, rHUEpo therapy improved platelet
counts.®® Mean platelet volumes dropped but platelet
counts remained unchanged in patients receiving

rHUuEpo and oral iron before scheduled surgery.3 In
adult, but not in infant, monkeys, rHUEpo therapy
resulted in elevated platelet counts throughout the 6-
week treatment followed by rapid normalization
thereafter.4© Short-term treatment of normal dogs,
mice and rats with high doses of rHUEpo stimulated
platelet production, as evaluated by platelet counts,
platelet sizes, proportion of reticulated platelets,
seleno-methionine incorporation into platelets and
thymidine incorporation into megakaryocytes, but the
effect on megakaryocyte and CFU-Meg numbers has
been less reproducible.10-1341 The effect on platelet
counts may be partially masked by splenic pooling
and the effect on megakaryocyte and CFU-Meg num-
bers may be limited to the spleen in intact mice but
become significant in the bone marrow in splenec-
tomized animals.t24243 The initial elevation of platelet
counts was, however, followed by a return to control
levels after 7 or 15 days.1>*2 In fact, large, chronic dos-
es of rHUEpo caused thrombocytopenia, decreased
seleno-methionine incorporation into platelets, and
reduced number of megakaryocytes in normal rats.4
Transgenic mice expressing the human Epo gene
develop both polycythemia and a moderate degree of
thrombocytopenia.* Together, these findings demon-
strate that conventional doses of rHUEpo produce
some elevation of platelet counts, whereas higher dos-
es cause thrombocytopenia.

Other experimental or clinical conditions
Similarly to hypoxia or rHuUEpo, thyroxine*s and
actinomycin D7 were both shown to induce recipro-
cal changes in erythropoiesis and megakaryopoiesis.
In contrast, testosterone stimulated platelet produc-
tion in mice, perhaps acting on a more primitive
bipotential precursor.* Conversely, acute thrombo-
cytopenia caused decreased erythropoiesis in some!4
but not other#” studies. Short-term thrombopoietin
(TPO) treatment in normal mice*® as well as chronic
exposure to TPO after gene transfer*® induced ery-
throid hypoplasia in the bone marrow with declining
peripheral red cell numbers and hemoglobin. How-
ever, this was at least partially explained by the devel-
opment of myelofibrosis. Moreover, in myelosup-
pressed animals® or after stem cell transplantation,!
TPO generally also accelerated erythroid recovery,
with prominent erythropoietic stimulation even to
the point of inducing functional iron deficiency.%°
Although experimental conditions are often of larger
magnitude than physiologic conditions and of more
acute onset (thus not allowing for progressive adap-
tation), there are also a few clinical conditions in
which this reciprocal evolution was observed. Throm-
bocytopenia was frequently observed,52 and tended
to increase with phlebotomy, in cyanotic congenital
heart disease.5® Persistent thrombocytosis after
splenectomy was associated with continuing ane-
mia.5* Therefore conditions other than hypoxia or
rHUEpo therapy point to an inverse relationship
between erythropoiesis and megakaryopoiesis.
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Mechanisms accounting for these
observations

Several mechanisms could account for the platelet
response to erythropoietin, i.e. changes of plasma
volume, alterations of platelet survival, a direct effect
on megakaryocytes, a global response of bone mar-
row as an organ, and functional iron deficiency.
Reduction of plasma volume occurs only after pro-
longed treatment with rHuEpo has produced
changes in the red cell mass®> and thus cannot
explain the early increase in platelet counts. Further-
more, the effect should not be limited to platelets
alone but also cause a similar early elevation of hema-
tocrit and white blood cells, which was not, howev-
er, observed.® Although rHuEpo therapy may pro-
duce hyperreactive new platelets*t and correct part of
the hemostatic defect of uremia,*7 it has never been
proved that rHUEpo has an effect on platelet sur-
vival'® and there is no reason why this would be lim-
ited to patients in whom the red cell production is
adequately stimulated.®

Megakaryocyte response to erythropoietin

Rat and mouse megakaryocytes have been shown
to express high-affinity binding sites for erythropoi-
etin,s® resulting in enhanced growth in the presence
of Epo.5” Low-affinity binding sites for Epo have also
been demonstrated on undifferentiated cells from a
mouse megakaryoblastic cell line, and Epo-induced
differentiation was associated with the additional
expression of high-affinity binding sites.585 Intro-
duction of Epo receptor DNA into pluripotent prog-
enitors induced these cells to proliferate in response
to Epo without preferential erythroid differentia-
tion.s° Mice infected with a retrovirus expressing an
oncogenic Epo receptor showed stimulation of both
erythropoiesis and megakaryopoiesis, with a sub-
stantial early increase of platelet counts.5 In vitro
studies in man as well as in mice have demonstrated
that Epo promoted megakaryocytic colony forma-
tion and increased the size, ploidy and number of
megakaryocytes, as well as their cytoplasmic process
formation, even if the presence of serum or cell con-
ditioned-medium was often required.57:62:69 |n serum-
free conditions, only those megakaryocyte progeni-
tors previously stimulated by SCF and IL-3 respond-
ed to Epo.” Stimulated platelet production was not
reported in these experiments but Epo stimulated
DNA and protein synthesis in megakaryocytes.™ It is
therefore possible that rHUEpo exerts a direct positive
effect on megakaryopoiesis.

Global marrow response to erythropoietin
Treatment of patients with the anemia of end-stage
renal failure with rHUEpo produced, after 2 weeks, a 4-
fold increase of erythroid progenitors, as well as a 2-fold
increase of CFU-Meg and CFU-GM, suggesting that in
the short-term human marrow responded to rHUEpo as
an organ.” This hypothesis was also supported by the
fact that platelet increments over baseline correlated

with the degree of expansion of erythropoietic activity
as measured by soluble transferrin receptor (sTfR) and
hematocrit changes. It was shown that patients with
functional iron deficiency did not increase STfR levels in
response to rHUEpo.7 Also, platelet counts did not
change in non-responders until the Epo dose was
increased and erythropoiesis began to expand.® In
chronic liver disease, changes in platelet counts with
rHuEpo therapy occurred only in patients who also
showed a response of the erythroid lineage.3® In mice,
elevated platelet counts correlated with increased Hct
after 5 days of rHUEpo therapy.12 All these observations
appear to support the concept that rHUEpo exerts a
positive effect on platelet production, which is propor-
tional to its effect on the red cell lineage.

Iron deficiency and platelets

Iron deficiency was shown to be associated with
reactive thrombocytosis.”78 However, when iron defi-
ciency became very severe, platelet counts tended to
normalize,”®81 megakaryocyte numbers decreased”
and even thrombocytopenia occurred,82-8 possibly as
aresult of altered activity in iron-dependent enzymes.
This could, however, also be consistent with the pre-
viously described diphasic pattern of increased stim-
ulation by endogenous Epo. Iron supplementation
was rapidly followed by a return of platelet counts to
normal levels in rats with moderate iron deficiency
anemia, whereas it had little effect in rats with severe
iron deficiency anemia and normal platelet
counts.”80 [ron-deficient infants treated with oral
iron developed decreased platelet counts but this was
followed by reactive thrombocytosis when the retic-
ulocyte peak receded.8* Surprisingly, parenteral iron
produced thrombocytosis without the preceding
decrease in platelet counts.8 In patients with very
severe iron deficiency, iron therapy may even be asso-
ciated with thrombocytopenia.® In iron-deficiency
anemia, erythroblast and CFU-E - but not BFU-E or
CFU-GM - numbers were elevated and iron therapy
further increased erythroblast numbers while decreas-
ing CFU-E frequency in a manner reciprocal to
changes in hematocrit.8® Therefore iron therapy
rapidly enhanced erythropoiesis and caused a drop in
Epo levels even before any change in hematocrit was
observed.8” This normalization of endogenous Epo
levels with intense stimulation of erythropoiesis may
explain why thrombocytopenia can occur during
treatment of severe iron deficiency anemia. All these
data confirm that the effects of iron status and iron
therapy on platelet production depend on the sever-
ity of iron deficiency.

Increased erythropoiesis and functional iron
deficiency

The observed alterations of platelet counts in iron
deficiency anemia could however represent in part an
effect of increased endogenous Epo stimulation in
response to the anemia rather than an effect of iron
deficiency per se. Moderate iron deficiency would cause
a moderate elevation of serum Epo with subsequent
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increase in platelet production, whereas more severe
anemia would induce a major Epo response with ensu-
ing thrombocytopenia. However, data from models
characterized by intense erythropoietic activity and no
functional iron deficiency or iron deficiency without
elevated Epo levels are lacking. Transfusion of red cells
into iron deficient rats decreased platelet production,
whereas transfusion into normal animals had no
effect.8® This is consistent with the modifications of
Epo levels induced by these manipulations. The
absence of an elevation of platelet counts after acute
hemolysis could be explained by splenic pooling in an
enlarged spleen.128 Platelet counts are usually normal
in patients with pure red cell aplasia, but absolute
changes in platelet counts in response to increased Epo
stimulation are too small to be detected in these
patients unless platelet counts before the onset of red
cell aplasia are available for comparison.

However, enhanced erythropoiesis is also associ-
ated with functional iron deficiency, i.e. an imbal-
ance between iron needs in the bone marrow and
iron supply from stores, which may develop even in
the presence of adequate storage iron when these
stores cannot be mobilized rapidly enough. The dis-
tinction of functional iron deficiency from expanded
erythropoietic activity is thus very difficult in patients
treated with rHUEpo. In patients with renal failure
receiving rHUEpo, relative platelet increments over
baseline correlated inversely with relative changes of
serum iron or transferrin saturation (an indication of
erythroid marrow activity) rather than with absolute
serum iron and transferrin saturation values (an indi-
cation of functional iron deficiency) or with ferritin
levels (an indication of iron stores), emphasizing the
role of marrow response to rHUEpo rather than that
of iron deficiency alone.® However, in a recent study
it was shown that whereas iron overloaded rats devel-

Moderate
Epo stimulation

Bipotential
progenitor

++ + +++

Red cells Platelets

Bipotential
progenitor

Red cells

oped the classical diphasic platelet response to rHUE-
po, normal animals appeared to be protected from
secondary thrombocytopenia by the development of
(functional) iron deficiency.®® Therefore, the effect of
rHUEpo on platelet counts appears to be strongly
modulated by the iron status.

A common erythrocytic and megakaryocytic
progenitor

Thus a large body of data support the concept that
megakaryocytic and erythrocytic cell lineages share a
common progenitor.’s Megakaryocytes have been
shown to express erythroid-specific transcription fac-
tors, such as GATA factors,* a specific DNA-binding
protein®t or a nuclear factor involved in the regulation
of globin transcription.®? On the other hand, cord
blood CD34* cells induced into the megakaryocytic lin-
eage by TPO also had erythroid potential,®® although
the erythroid-enhancing effect of TPO was mainly
directed toward pure erythroid rather than bipotent
progenitors.®* An erythroleukemic cell line has been
shown to express numerous megakaryocyte markers.9
Multipotential®>® or bipotential®¢-%¢ cell lines derived
from patients with megakaryoblastic leukemia have
been obtained, in which erythroid differentiation can
be induced through the action of Epo%® and mega-
karyocytic differentiation by TPO.%9% These cells were
shown to express Epo receptors.5®97 A population of
probable erythrocytic and megakaryocytic cell lineage
precursors co-expressed glycophorin A and glycopro-
tein Illa.®® Such a bipotent erythromegakaryocytic
progenitor has been characterized in human bone mar-
row.1% |t was found mostly in the CD34+*/CD38' cell
fraction and required the combination of stem cell fac-
tor (SCF), interleukin (IL)-3 and Epo for its growth in
serum-free conditions. The biological and clinical
importance of this common erythrocytic and mega-
karyocytic progenitor remains to be clarified.

Intense
Epo stimulation

\ Figure 1. A model for the effect
\ of Epo on platelet production.
4 Moderate Epo stimulation, i.e.

that obtained by standard doses
Platelets of rHUEpo, short-term hypoxia or
moderate iron deficiency, caus-

es a moderate elevation of

Examples
« Standard doses of rHUEpo
¢ Short-term hypoxia
* Moderate iron deficiency

Examples
« High doses of rHUEpo
* Long-term hypoxia
« Severe iron deficiency

platelet counts. Intense Epo
stimulation, as produced by
high doses of rHuEpo, prolonged
hypoxia or severe iron deficien-
cy, causes some degree of
thrombocytopenia.
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Conclusions

This review has indicated that Epo could induce
both thrombocytopenia and thrombocytosis. We
show that these apparently contradictory data are in
fact the result of a diphasic response to erythropoi-
etin. Both in models of hypoxia and of rHuUEpo ther-
apy the initial positive response (a stimulation of
platelet production) was followed by a negative
impact on megakaryopoiesis (an inhibition of platelet
production). Figure 1 provides a model for the effect
of Epo on platelet production. Moderate Epo stimu-
lation, i.e. that obtained by standard doses of rHUE-
po, short-term hypoxia or moderate iron deficiency,
causes a moderate elevation of platelet counts.
Intense Epo stimulation, as produced by high doses
of rHUEpo, prolonged hypoxia or severe iron defi-
ciency, causes some degree of thrombocytopenia.
Conversely intense stimulation of thrombopoiesis
could induce anemia. Stem-cell competition between ery-
throid and platelet precursors has been suggested as
the cause of these phenomena in these situations of
prolonged, intense stimulation.'* However, this con-
cept of stem-cell competition is still speculative because
it has not been proved in appropriate in vitro experi-
ments!©! and its physiologic basis, for instance mod-
ulation of TPO receptors, has not been established.

A question remaining to be examined is whether the
differing effects of rHUEpo on platelet production are
a result of the dose itself or of the magnitude of the
erythropoietic effect of that dose. For example, could
alower dose given in a patient with decreased marrow
function (because his number of hematopoietic prog-
enitors is decreased by post-chemotherapy stem cell
damage or in the context of transplantation) bring
about the same biological effects as those induced by
higher doses of rHUEpo in the presence of a normal
marrow function? This implies that careful consider-
ation should be given before using high doses of
hematopoietic growth factors in cancer patients.
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