Preleukapheresis peripheral blood CD34⁺ cells predict progenitor cell collection yield and the necessary number of procedures to undergo

Sir,

We evaluated the peripheral blood (PB) CD34⁺ cell content as a predictive parameter of the leukapheresis CD34⁺ cell yield. Regression analysis showed that a preleukapheresis CD34⁺ cell concentration of $\geq 40/\mu$ L predicted a yield of $\geq 2 \times 10^6$ CD34⁺ cells/kg by a single leukapheresis (r = 0.83, p = 0.0001). In addition, CD34⁺ cell concentrations in preleukaphereis PB $\leq 30/\mu$ L and $\leq 15/\mu$ L were associated with the need for at least two (p = 0.0028) or at least three (p = 0.02) procedures respectively in order to obtain $\geq 2 \times 10^6$ CD34⁺ cells/kg.

We studied CD34⁺ cell concentration in preleukaphereses PB samples and CD34⁺ cell yield in a number of aphereses to investigate whether these parameters are related. The aim of our work was: a) to establish a statistical relationship between both parameters which would allow us to calculate the threshold concentration of immediate preleukapheresis PB CD34⁺ cells necessary to obtain $\geq 2 \times 10^6$ /kg CD34⁺ cells in a single apheresis; b) to determine the number of procedures necessary to obtain $\geq 2 \times 10^6$ CD34⁺ cells/kg.

CD34⁺ cells were analyzed in PB samples in patients mobilized either with rhG-CSF or following chemotherapy plus rhG-CSF. Underlying diseases were: breast carcinoma (n= 56), Hodgkin's disease (n=5), non-Hodgkin's lymphoma (n= 12), multiple myeloma (n= 13), acute leukemia (n=4) and CML (n= 1).

Ten liter leukaphereses were performed until more than 2×10⁶CD34⁺ cells/kg had been collected. A total of 218 aphereses were evaluable for CD34⁺ counts. Evaluated paired data (PB-apheresis) corresponding to the first, second or subsequent apheresis procedures involved 87, 80 and 51 samples respectively.

Processing of samples was performed as reported elsewhere¹ with FITC-conjugated CD34 (anti-HPCA-2; Becton Dickinson, Mountain View, CA, USA). Fifty thousand mononuclear cells were analyzed in each sample.

The median concentration of CD34⁺ cells in preleukapheresis PB samples was 11.96/ μ L (range: 0.9-1035). The median CD34⁺ cell count per leukapheresis was 0.61×10⁶/kg (range 0.03-22.51). The results obtained for these parameters are summarized in Table 1.

Preleukapheresis PB CD34⁺ cell counts showed a strong correlation with harvested CD34⁺ cell counts per kilogram (r = 0.83, p=0.0001). Linear regression analysis based on 218 paired samples (Figure 1) showed that a preleukapheresis CD34⁺ cell concentration \geq 40/µL predicted that \geq 2×10⁶ CD34⁺ cells/kg could be collected by a single leukapheresis. The

Table 1. Correlation analysis between circulating CD34⁺ cells and PBPC collection yields. Preleukapheresis CD34⁺ cell counts correlated with CD34⁺ cells both when considering first or second procedures independently and when evaluating all procedures. Results are given as median and range values.

	PB CD34⁺ (Cell/mL)	Apheresis CD34⁺ (Cell x10⁰/kg)	Correlation
All aphereses	11.96	0.61	r=0.83
	(0.9-1035)	(0.03-22.51)	p=0.0001
Apheresis 1	9.35	0.71	r=0.91
	(1.42-1035)	(0.03-22.51)	p=0.0001
Apheresis 2	13.93	0.76	r=0.84
	(0.9-162.13)	(0.03-12.68)	p=0.0001

same analysis showed that target yields of ≥ 1.5 , ≥ 1 and $\geq 0.75 \times 10^6$ CD34⁺ cells/kg could be predicted with preleukaphereis PB CD34⁺ cells/µL of ≥ 30 , ≥ 16 and ≥ 11 , respectively.

We applied Student's t test to compare PB CD34⁺ cell counts in patients who had undergone one, two or more and three or more procedures. In this analysis, we found that mean PB CD34⁺ cell concentrations $\leq 30/\mu$ L and $\leq 15/\mu$ L were associated with the need to perform at least two (p= 0.0028) or at least three (p=0.02) apheresis procedures, respectively, to obtain $\geq 2 \times 10^6$ CD34⁺ cells/kg.

In PBSCA, the estimation of CD34⁺ cell yield prior to initiating apheresis procedures,²⁻⁸ has both clinical and economic implications. In the present study, patients with a variety of underlying diseases, premobilization treatments and mobilization schedules

Figure 1. Linear regression analysis of CD34⁺ cells/ μ L and yield of CD34⁺ cells/kg. A number of CD34⁺cells \geq 40/ μ L in the peripheral blood is highly predictive for the collection of \geq 2×10⁶ CD34⁺/kg in a standard apheresis procedure of 10 liters.

were evaluated. Regardless of the previous variables, a preleukapheresis PB CD34⁺ cell concentration $\geq 40/\mu$ L was significantly related to the collection of at least 2×10⁶ CD34⁺ cells/kg in a single apheresis, as previously reported.^{9,10} In addition to the above data, we found that to obtain a target number of 2×10⁶ CD34⁺ cells/kg, PB CD34⁺ cell concentrations $\leq 30/\mu$ L are associated with the need for at least two leukapheresis procedures and PB concentrations $\leq 15/\mu$ L are associated with the need for at least three procedures. In conclusion, our study shows that preleukapheresis PB CD34⁺ cell concentration can be used to guide PBPC harvest by predicting both the total CD34⁺ cell yield and the number of aphereses needed to be undergone.

> M. Mar Osma, Francisco Ortuño, Felipe de Arriba, Inmaculada Heras, Jose María Moraleda, Vicente Vicente

Unit of Hematology and Hemotherapy, School of Medicine, Hospital General Universitario, Murcia, Spain

Key words

CD34, mobilization, autologous peripheral blood transplantation

Correspondence

Prof. V. Vicente Garcia, Centro Regional de Hemodonación, C/ Ronda de Garay sn, 30003 Murcia, Spain. Phone: international +34-68-341990 – Fax: international +34-68-261914.

References

- Ortuño F, Ferrer F, Lozano ML, Heras I, Moraleda JM, Vicente V. Differences in phycoerythrin or fluorescein isothiocyanate conjugated 8G12 on CD34+ cell evaluation. Haematologica 1997; 82:334-5.
- uation. Haematológica 1997; 82:334-5.
 Freuhauf S, Haas R, Conradt C, et al. Peripheral blood progenitor cell (PBPC) counts during steady-state hematopoiesis allow to estimate the yield of mobilized PBPC after filgrastim (R-metHuG-CSF)-supported cytotoxic chemotherapy. Blood 1995; 85:2619-26.
 Passos-Coelho JL, Braine HG, Davis JM, et al. Predic-
- Passos-Coelho JL, Braine HG, Davis JM, et al. Predictive factors for peripheral-blood progenitor-cell collections using a single large-volume leukapheresis after cyclophosphamide and granulocyte-macrophage colony-stimulating factor mobilization. J Clin Oncol 1995; 13:705-14.
- Osma MM, Ortuño F, Arriba F, et al. Bone marrow steady-state CD34+/CD71- cell content is a predictive value of rG-CSF mobilized CD34+ cells. Bone Marrow Transplant 1998; 21:983-5.
- Schot's R, Van Riet I, Damiaens S, et al. The absolute number of circulating CD34+ cells predicts the number of hematopoietic stem cells that can be collected by apheresis. Bone Marrow Transplant 1996; 17:509-15.
- Armitage S, Hargreaves R, Samson D, Brennan M, Kanfer E, Navarrete C. CD34 counts to predict the adequate collection of peripheral blood progenitor cells. Bone Marrow Transplant 1997; 20:587-91.
- cells. Bone Marrow Transplant 1997; 20:587-91.
 7. Kotasek D, Shepherd KM, Sage RE, et al. Factors affecting blood stem cell collections following high-dose cyclophosphamide mobilization in lymphoma,

myeloma and solid tumors. Bone Marrow Transplant 1992; 9:11-7.

- Dreger P, Klöss M, Petersen B, et al. Autologous progenitor cell transplantation: prior exposure to stem cell toxic drugs determines yield and engraftment of peripheral blood progenitor cell but not of bone marrow grafts. Blood 1995; 86:3970-8.
- Schwella N, Beyer J, Schwaner I, et al. Impact of preleukapheresis cell counts on collection. Results and correlation of progenitor-cell dose with engraftment after high-dose chemotherapy in patients with germ cell cancer. J Clin Oncol 1996;14:1114-21.
- Haas R, Möhle R, Freuhauf S, et al. Patient characteristics associated with successful mobilizing and autografting of peripheral blood progenitor cells in malignant lymphoma. Blood 1994; 83:3787-94.

Phenotypic changes in neutrophils after rhG-CSF administration in non-Hodgkin's lymphoma patients undergoing PBSC transplantation or conventional chemotherapy

Sir,

rhG-CSF induces several phenotypic changes in neutrophils. Increased HLA-DR expression and decreased CD10 expression have recently been described in neutrophils from some patients after rhG-CSF therapy. We evaluated these parameters in 12 non-Hodgkin's lymphoma patients undergoing either PBSC transplantation after high-dose chemotherapy or conventional chemotherapy. The appearance of an HLA-DRpositive neutrophil subpopulation, along with a marked decrease in CD10 expression, was confirmed. However, despite this immature phenotype, rhG-CSFinduced neutrophils displayed enhanced phagocytosis and chemiluminescence.

Recombinant human granulocyte colony-stimulating factor (rhG-CSF) induces several changes in neutrophils.^{1,2} Recently, Zarco *et al.*³ described new phenotypic findings in rhG-CSF-induced neutrophils in six ALL patients undergoing chemotherapy. The appearance of an HLA-DR-positive neutrophil subpopulation, along with a decrease in the percentage of CD10⁺ neutrophils, appeared of particular interest.

We reviewed the clinical files of patients recently treated with rhG-CSF (Filgrastim) for whom analysis of HLA-DR and CD10 expression on circulating neutrophils before and after rhG-CSF administration was available. Twelve patients (4 females, 8 males), with intermediate and high grade non-Hodgkin's lymphoma (NHL) were evaluated. Six patients had been treated with autologous peripheral blood stem cells (PBSC) transplantation after high-dose chemotherapy,⁴ and neutrophils had been studied before the conditioning regimen and after engraftment (i.e. neutrophils > 0.5×10^{9} /L, and platelets > 20×10^{9} /L), stimulated by rhG-CSF (5 mg/kg/day). The other 6 patients had been studied before the first course of chemotherapy (Promice-Cytabom)⁵ and after a five-day course of rhG-CSF (5 µg/kg/day), administered to