

Menin and BCL2 inhibitors– shaken and stirred

by Alex Bataller and Ghayas C. Issa

Received: January 2, 2026.

Accepted: January 8, 2026.

Citation: Alex Bataller and Ghayas C. Issa. Menin and BCL2 inhibitors– shaken and stirred. *Haematologica*. 2026 Jan 22. doi: 10.3324/haematol.2025.300285 [Epub ahead of print]

Publisher's Disclaimer.

E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication.

E-publishing of this PDF file has been approved by the authors.

After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in a regular issue of the journal.

All legal disclaimers that apply to the journal also pertain to this production process.

Menin and BCL2 inhibitors– shaken and stirred

Alex Bataller¹, Ghayas C. Issa¹

¹Leukemia Department, The University of Texas MD Anderson Cancer Center, Houston TX

Running title: Menin and BCL2 inhibitor combination

Correspondence: Ghayas C. Issa, MD; Department of Leukemia; The University of Texas MD Anderson Cancer Center; 1515 Holcombe Blvd. Unit 0428. Houston, TX 77030; Phone: 713-745-6798; Email: gciissa@mdanderson.org.

Author contribution: A.B. designed the figure, A.B. and G.C.I. wrote this manuscript.

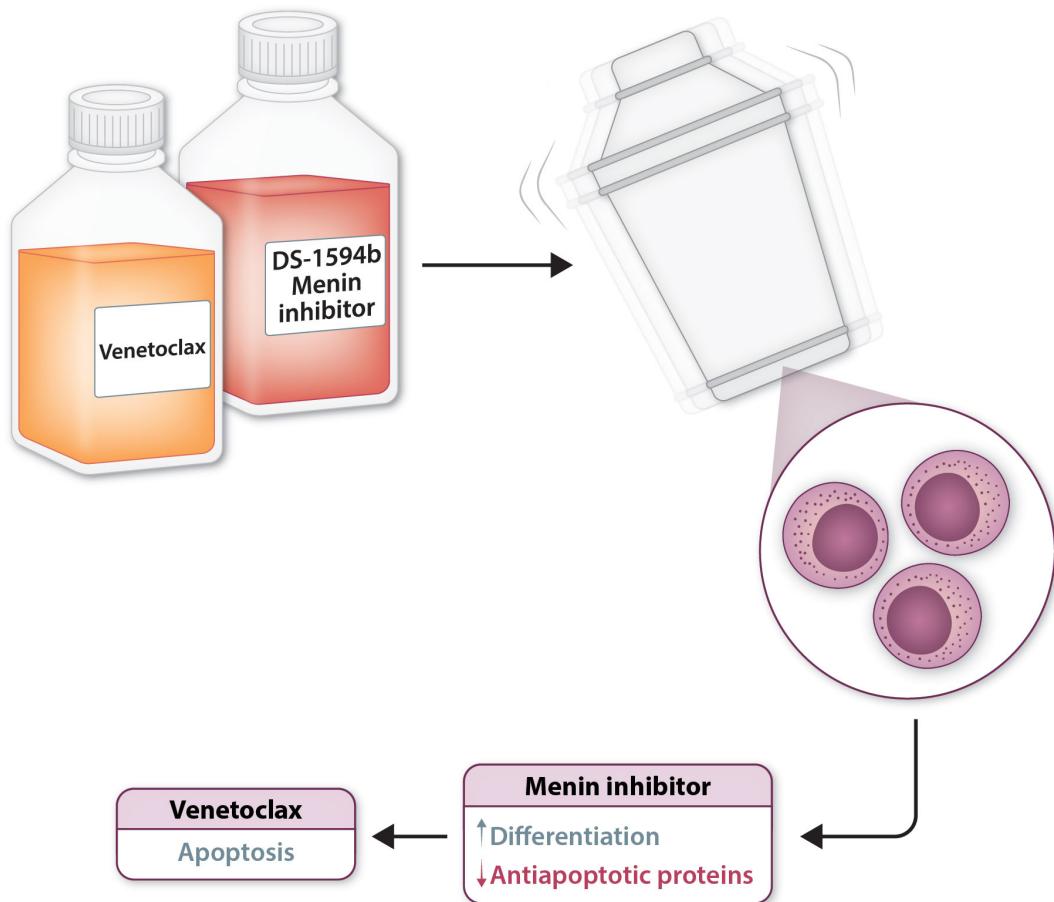
Disclosure of Conflicts of Interest: G.C.I. received research funding from Merck, Kura Oncology, Cullinan Oncology, Syndax, Astex, Novartis, Pupil Bio, Sumitomo, Daichi Sankyo, Crossbow and consultancy or advisory board fees from AbbVie, Novartis, Sanofi, AstraZeneca, Syndax, Kura Oncology, Biostate, Crossbow, and serves on the scientific advisory boards of Pupil Bio and Biostate.

Targeted therapy is rapidly evolving in the treatment of acute myeloid leukemia (AML). The introduction of the BCL2 inhibitor venetoclax has transformed the therapeutic landscape of this disease, and additional novel agents are poised to further reshape the future. Among these, menin inhibitors have emerged as promising therapies for patients with *KMT2A* rearranged (*KMT2Ar*) or *NPM1* mutated (*NPM1^{mut}*) AML, and potentially other molecular subtypes. Nonetheless, we are still in the early stages of determining the optimal drug combinations with menin inhibitors for each different AML subtype, or with either targeted therapies versus conventional chemotherapies.

In this work by Ciaurro et al¹, the authors evaluated the *in vitro* and *in vivo* synergy between the menin inhibitor DS-1594b and venetoclax across multiple AML subtypes. Treatment with single-agent DS-1594b induced differentiation and some degree of apoptosis in *KMT2Ar* and *NPM1^{mut}* AML cell lines. Notably, combining DS-1594b with venetoclax produced a clear synergistic effect, enhancing the antileukemic activity in both cell lines and primary patient samples. In addition, using an *NPM1^{mut}* PDX model, they demonstrate that the combination of DS-1594b and venetoclax induced differentiation of the leukemic cells and improved efficacy. Interestingly, transcriptomic analysis revealed that DS-1549b was the primary driver of gene expression changes, leading to downregulation of key apoptosis regulators, such as BCL2 and MCL1, therefore providing a novel mechanistic rationale for the observed synergy between menin inhibiton and venetoclax (Figure 1).

Menin inhibitors have been recently approved as single agents for relapsed or refractory leukemias with either *NPM1*^{mut} or *KMT2Ar*²⁻⁴. However, the duration of response with monotherapy in the relapsed or refractory setting has been limited, highlighting the need for combination therapies. Several clinical trials are currently evaluating multiple combination strategies with menin inhibitors, either in the frontline or relapsed and refractory settings⁵. Importantly, unlike many targeted therapies, menin inhibitors directly inhibit the transcriptional program of leukemic cells, inducing not only cell differentiation, but also modulate additional critical leukemia pathways, potentially creating new therapeutic vulnerabilities. As previously reported—and further demonstrated by the authors in this manuscript—menin inhibition downregulates antiapoptotic proteins such as BCL2 and MCL1, thereby enhancing the activity of venetoclax⁶. This provides a strong rationale for evaluating menin inhibitor–venetoclax combinations clinically, with the potential to further augment the therapeutic benefits of menin inhibition. However, can menin inhibition restore BCL2 inhibitor sensitivity after progression on venetoclax regardless of the AML genotype? Early signals suggest it might, but definitive studies are lacking^{7,8}.

Nonetheless, there is still progress to be made in this field. As the authors observed, not all cell lines responded similarly to DS-1594b or venetoclax, either as monotherapies or in combination, highlighting the inherent heterogeneity that exists even among leukemias with similar genotypes. Furthermore, because menin inhibitors differ in their molecular structure, and likely their pharmacokinetic profile, selectivity, or drug binding affinity, this synergistic interaction may vary across agents in the clinic. An important consideration is that while many of these antileukemic combinations show promise and feasibility in vitro and in vivo, translating them from bench to bedside remains challenging. Menin inhibitors could affect proliferation of hematopoietic progenitors under stress hematopoiesis, leading to cytopenias as an on-target, off-tumor effect⁹. Venetoclax, likewise, is associated with delayed count recovery when used in


combination with chemotherapy. In this context, combining menin inhibitors with venetoclax is under clinical investigation, but dose optimization is complex, as clinicians must balance efficacy with the risk of excessive myelosuppression or other toxicities. In addition, differentiation syndrome is a well-recognized and potentially life-threatening adverse effect of menin inhibitors, reflecting their ability to restore leukemic cell differentiation. Despite encouraging preclinical activity, many investigational compounds or combinations do not progress past early clinical testing due to limited therapeutic windows or unforeseen toxicities. Therefore, early identification of pharmacodynamic biomarkers of efficacy, or even adverse events such as differentiation syndrome, may enable more efficient development of related agents and enhance their likelihood of successful clinical translation.

In summary, menin inhibitors represent a transformative advancement in AML therapy. By directly targeting the leukemic transcriptional program, they may create new vulnerabilities that can enhance the antileukemic efficacy of other agents. The authors in this manuscript clearly demonstrate such synergy using *in vitro* and *in vivo* models combining the menin inhibitor DS-1594b with venetoclax. These findings may stimulate future investigations of next-generation menin inhibitors or similar therapies and rational combination approaches, thereby informing the development of effective therapeutic strategies that can be translated into robust and impactful clinical trials for patients with AML.

References

1. Ciaurro V, Sharlandjieva V, Skwarska A, et al. Menin inhibitor DS-1594b drives differentiation and induces synergistic lethality in combination with venetoclax in acute myeloid leukemia cells with rearranged mixed-lineage leukemia and mutated nucleophosmin-1. *Haematologica*. **xxx**
2. Issa GC, Aldoss I, Thirman MJ, et al. Menin Inhibition With Revumenib for KMT2A-Rearranged Relapsed or Refractory Acute Leukemia (AUGMENT-101). *J Clin Oncol*. 2024;43(1):75-84.
3. Wang ES, Montesinos P, Foran J, et al. Ziftomenib in Relapsed or Refractory *<>>NPM1</i>*-Mutated AML. *J Clin Oncol*. 2025;43(31):3381-3390.
4. Arellano ML, Thirman MJ, DiPersio JF, et al. Menin inhibition with revumenib for NPM1-mutated relapsed or refractory acute myeloid leukemia: the AUGMENT-101 study. *Blood*. 2025;146(9):1065-1077.
5. Issa GC, Cai SF, Bataller A, Kantarjian HM, Stein EM. Combination Strategies with Menin Inhibitors for Acute Leukemia. *Blood Cancer Discov*. 2025;6(6):547-560.
6. Carter BZ, Tao W, Mak PY, et al. Menin inhibition decreases Bcl-2 and synergizes with venetoclax in NPM1/FLT3-mutated AML. *Blood*. 2021;138(17):1637-1641.
7. Pei S, Polley DA, Gustafson A, et al. Monocytic Subclones Confer Resistance to Venetoclax-Based Therapy in Patients with Acute Myeloid Leukemia. *Cancer Discov*. 2020;10(4):536-551.
8. Turkalj S, Radtke FA, Stoilova B, et al. Rapid clonal selection within early hematopoietic cell compartments presages outcome to ivosidenib combination therapy. *Blood*. 2025 Nov 5. doi: 10.1182/blood.2024027948. [Epub ahead of print]
9. Maillard I, Chen Y-X, Friedman A, et al. Menin regulates the function of hematopoietic stem cells and lymphoid progenitors. *Blood*. 2009;113(8):1661-1669.

Figure 1. Combining DS-1594 and Venetoclax in AML.

