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Diamond-Blackfan anemia syndrome (DBAS) is a rare inherited disorder characterized by pure
red cell aplasia, usually presenting in infancy.' It can also be associated with a variety of
malformations and a high risk of developing malignancy. To date, causative mutations for
DBAS have been found in more than 20 ribosomal protein (RP) genes,'* TSR2,* HEATR3,
GATA1° and TP53,” but remain unclear in approximately 20% of DBAS cases.’ Here, we report
the identification of a deep intronic RPS79 variant causing aberrant splicing in a patient with

DBAS that was uncovered by whole genome sequencing (WGS) analysis.

A boy was born at full term with bilateral polydactyly of the thumbs. He had no family history
of anemia. At one month old, he presented with pallor and tachycardia, and peripheral blood
analysis showed RBC 0.64 x 10'%/L, Hb 2.4 g/dL, MCV 107.8 fL, reticulocytes 0.2%, WBC
4.10x 10°/L, PLT 258 x 10°/L, and HbF 16.4%. Bone marrow aspiration revealed
hypercellularity, with 0% erythroid cells. His eADA and GSH levels were 1.11 [U/g Hb (normal
range 0.46-1.50 IU/g Hb) and 122 mg/dL RBC (normal range 62.4-98.9 mg/dL RBC),
respectively, suggesting a DBA pattern using a previously reported formula.® After diagnosis,

he became transfusion-dependent. This study was conducted with the approval of the Ethics
Committees of Hirosaki University and the National Institute of Global Health and Medicine,
and peripheral blood samples were collected with informed consent. All experiments were

performed in accordance with the principles of the Declaration of Helsinki.

Whole genome sequencing was performed on the [llumina NovaSeq 6000 platform (Illumina)
with 150-base pair (bp) paired-end reads. The target sequencing depth was approximately 30x
for each individual. Quality-filtered reads were aligned to the human reference genome
(GRCh38/hg38) using BWA-MEM (version 0.7.17). Single-nucleotide variants (SN'Vs) and

small insertions/deletions (indels) were identified using GATK HaplotypeCaller (version



4.1.0.0), following the GATK Best Practices workflow. Structural variants, including deletions,
duplications, inversions, and translocations, were detected using Manta (version 1.6.0). Variant
annotation was performed using ANNOVAR and InterVar for SNVs and small indels, and the
Ensembl Variant Effect Predictor for structural variants. Functional impacts were assessed using
LOFTEE (version 1.0) for loss-of-function prediction, SpliceAl (version 1.3.1) for splicing
prediction, and CADD (version 1.6) for deleteriousness scoring. We did not detect any
mutations that could cause DBAS in coding regions, but SpliceAl predicted a splice
abnormality to a de novo variant in the third intron of RPS79 (hg38:chr19:41862119A>G,
NM_001022:c.172+907A>G) (Figure 1A, B). This variant was not present in the 1000
Genomes Project, gnomAD or the Japanese Multi Omics Reference Panel 61KJPN database.
Given the phenotype of the patient, it was considered potentially pathogenic. Barrio et al
previously reported the variant as novel-20 (rs61761229) in a paper on RPS19 targeted
resequencing using DBA and transient erythroblastopenia in child samples,’ but it has not yet
been identified as a disease-causing mutation or characterized functionally. Upon reviewing the
details in the web version of SpliceAl (https://spliceailookup.broadinstitute.org), we found that
the variant would create a novel donor splice site one base upstream of the variant (Donor Gain
A score 0.83; values above 0.8 are high precision), and that the AG sequence of the original
cryptic splicing site upstream of the variant (Acceptor Gain A score: 0.81) would result in an
acceptor splice site 152 bp upstream (Figure 1A).

Reverse transcription polymerase chain reaction (RT-PCR) detected a transcript approximately
150 bp longer than the normal product exclusively in the patient, and only in trace amounts; no
such transcript was observed in either parent (Figure 1C). Subsequent sequencing of the RT-
PCR product identified a 152-bp cryptic exon inserted between the third and fourth exons,

consistent with the prediction by SpliceAl (Figure 1D). The extremely low abundance of this



aberrant transcript is likely due to nonsense-mediated mRNA decay (NMD),'° triggered by a

premature termination codon (PTC) within the cryptic exon (Figure 1A, E).

To evaluate the impact of this variant on splicing, we performed genome editing using the
erythroid cell line HUDEP-2."" In practice, we first created HUDEP-Cas9 cells, which
constitutively express Cas9 to enhance genome editing efficiency, and performed the
experiment. Methods were described previously.'> A>C corresponds to the control of this
experiment and A>G is a single-base substitution identical to the variant in the patient. Both
were efficiently incorporated into the cells (Figure 2A). Subsequent RT-PCR confirmed that the
RPS19 transcript pattern in the patient was recapitulated in HUDEP-2 Cas9 cells (Figure 2B). In
the quantitative RT-PCR (qRT-PCR), a decrease in RPS19 mRNA was observed in the A>G
genome-edited cells (fold change: 0.58 + 0.09), while the transcript levels of RPLS5 and RPLI1
were little changed (Figure 2C). This suggests that the reduction in RPS79 mRNA caused by

this A>G genome editing is specific to this gene.

We hypothesized that if the reduction in RPS79 mRNA levels observed in A>G genome-edited
cells was due to aberrant splicing induced by the A>G variant, blocking the splice site of the
cryptic exon could restore normal expression of RPS79 mRNA. Therefore, we transfected a S19
int3 morpholino antisense oligonucleotide (MO)"? targeting the splicing donor site of the cryptic
exon containing the A>G substitution into genome-edited cells. As a result, qRT-PCR showed
that RPS19 mRNA levels were restored in an S19 int3 MO concentration-dependent manner in
A>G genome-edited cells, while no change was observed in A>C genome-edited cells (Figure
2D left). Conversely, transcripts containing the cryptic exon in A>G genome-edited cells were
reduced in a manner dependent on the concentration of S19 int3 MO (Fig. 2D right). Thus, the

reduction in RPS79 mRNA levels in the RPS19 A>G genome-edited cells was confirmed to be



due to the A>G variant causing aberrant splicing. These results suggest that this deep intronic

variant causes RPS19 haploinsufficiency, which would lead to DBA.

Identification of responsible genes for inherited disease is crucial for appropriate diagnosis,
selection of treatment, and development of treatment. In recent years, WGS has come into use,
but there are still cases where the causative gene of DBAS cannot be identified. This indicates
that the genetic abnormality that affects DBAS may not be restricted to the coding regions but
may exist in deep intron regions or expression regulatory regions. A deeper insight is needed to
interpret the biological significance of mutations in these regions. In this study, we utilized in
silico analysis tools to pick up a variant in the deep intron region that causes splice
abnormalities. Recently, Wen et al. reported two cases of DBAS in which WGS was initially
negative, but reanalysis revealed a splice mutation at the end of the first non-coding exon of
RPS7 and a deep intronic de novo mutation in RPS19." In their paper, they also made use of
splice prediction tools. They showed that analysis of variants in non-coding regions is useful for
the diagnosis and treatment of DBAS and our current study supports their findings. Meanwhile,
they mentioned that their RPS79 mutation (NM_001022.4:¢.172+350C>T) is a splicing
mutation that creates a novel exon in intron 3, resulting in the appearance of PTC. This is
similar to our variant but differs in that their data show that the transcripts containing the novel
exon account for 50.9% of the total RPS19, which is considerably more than ours. To
investigate the reason for this difference, we analyzed their transcript sequences. Contrary to
their interpretation, the ¢.172+350C>T variant appeared to cause an 81-bp insertion without a
PTC, resulting in the in-frame addition of 27 amino acid. We therefore consider our transcript
with a PTC and their transcript without a PTC as different types. It is important to note that in
the case of a deep intronic variant resulting in PTC, such as in our case, transcripts could be

readily degraded by NMD, preventing mutation function analysis.



MO can induce exon skipping by inhibiting mRNA splicing and has already been applied in
studies of neuromuscular diseases such as Duchenne muscular dystrophy.'® In this study, MO
was also effective in suppressing abnormal splicing of RPS79 mRNA, so it may be possible to
use MOs in the future to treat DBAS with a splicing abnormality that cause extra exons to

appear in the transcripts.

In conclusion, by extending the scope of analysis to deep introns of WGS data, we identified a
variant that causes splicing abnormalities in RPS7/9 in a DBAS case. This study demonstrates
the importance of analyzing deep intronic regions in the search for DBAS-causing mutations

when no mutations are detected in coding regions.
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Figure legend

Figure 1. Sequence of the RPS19 intronic variant and splice aberrations in the patient.

(A) Schematic diagram of the RPS79 gene structure and location of the variant. Black and white
boxes indicate coding and non-coding exons, respectively. An arrow indicates the location of a
single nucleotide substitution A>G in this patient. A cryptic exon (CE) predicted to be formed
by the presence of this variant is indicated by a red box and a premature termination codon
(PTC) is indicated by an arrowhead. (B) Pedigree of the patient and Sanger sequencing results
of the variant region using genomic DNA. Red arrows indicate the position of nucleotide
substitution ¢.172+907A>G. (C) RT-PCR analysis using the primer set located on the second
and fourth exons of the RPS79 gene. The arrow indicates fragments corresponding to normal
transcripts, and the arrowhead indicates fragments corresponding to transcripts containing the
cryptic exon. (D) Sanger sequencing of RPS19 RT-PCR products. Electropherograms of the
boundary between the third exon and the adjacent exon are shown. Top: transcript containing
the cryptic exon. Bottom: normal transcript. (E) RPS19 cDNA coding sequence with the cryptic
exon. The first line shows the RPS79 cDNA sequence, and the second line shows the
corresponding amino acid. The cDNA sequence of the cryptic exon region is in red. The protein

from this transcript is p.Ala58Glyfs*25.
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Figure 2. Functional analysis of the variant by genome editing.

(A) Confirmation of genome editing of RPS19 intronic variant in HUDEP-2 Cas9 cells.
Genomic DNA extracted from samples 4 days after genome editing was subjected to Sanger
sequencing. (B) RT-PCR analysis using RNA extracted from samples 4 days after genome
editing. Top: The same primer pair used in Figure 1C was used. The arrow indicates fragments
corresponding to normal transcripts, and the arrowhead indicates fragments corresponding to
transcripts containing the cryptic exon. Bottom: To specifically amplify transcripts containing
the cryptic exon, nested PCR was performed using samples from the above panel as templates.
The primer pairs used were in the third exon and the cryptic exon. (C) Quantitative RT-PCR
(qRT-PCR) analysis of RPS19 genome-edited cells at day 14. The total RPS79 transcript was
quantified using the same primer pair located on the fifth and sixth exons of the RPS19 gene.
The vertical axis represents a relative value with each value of A>C cells set at 1. Results are
averages of three independent experiments. Error bars represent standard deviation. The P value
is based on two-sided t-test. (D) Splicing inhibition of the cryptic exon by Morpholino antisense
oligo (MO). RPS19 genome-edited Day 14 cells that had been frozen were thawed and
transfected with MO two days later. Samples were collected 48 h after transfection and qRT-
PCR was performed. The + and - at the bottom of the graphs indicate whether control MO or
S19 int3 MO was used. The target sequence of S19 int3 MO is 5'-
GCTTCCCACCTACTTCTTACCTGGA-3', the underlined nucleotide indicates the antisense
base of the patient’s variant. + indicates addition of MO at 10 uM. In lanes 6 to 9 of the left
graph and lanes 3 to 6 of the right graph, MO was increased to 0.05, 0.5, 5 and 10 uM. In the
left graph, the total RPS19 transcript was quantified using the same primer pair as in Figure 2C.
The vertical axis represents a relative value of A>C cells with control MO 10 uM (lane 2) set at

1. In the right graph, transcripts containing the cryptic exon were specifically quantified and the

12



primer pair used was the same as in Figure 2B Bottom. The vertical axis represents a relative
value of A>G cells with control MO 10 pM (lane 2) set at 1. Results are averages of three

independent experiments. Error bars represent standard deviation. Two-sided t-tests compared

to lane 2 values for both
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