

Clinical and sociodemographic predictors of intensive care unit admission following chemotherapy in acute myeloid leukemia

by Ivy E. Abraham, Garth H. Rauscher, Jerry Luo, Sarah Monick, Madelyn Burkart, Peter Doukas, Ahmed Aleem, Nepheli Raptis, Ami Dave, Andrew Wilmington, Mark Debettencourt, Michelle Nwachukwu, Juwairiyah Fatima, Amani Erra, Gauri Shankar, Stephanie B. Tsai, Melissa Larson, Maryam Zia, John Quigley, Jessica K. Altman, Wendy Stock, Anand Patel and Irum Khan

Received: August 31, 2025.

Accepted: December 31, 2025.

Citation: Ivy E. Abraham, Garth H. Rauscher, Jerry Luo, Sarah Monick, Madelyn Burkart, Peter Doukas, Ahmed Aleem, Nepheli Raptis, Ami Dave, Andrew Wilmington, Mark Debettencourt, Michelle Nwachukwu, Juwairiyah Fatima, Amani Erra, Gauri Shankar, Stephanie B. Tsai, Melissa Larson, Maryam Zia, John Quigley, Jessica K. Altman, Wendy Stock, Anand Patel and Irum Khan. Clinical and sociodemographic predictors of intensive care unit admission following chemotherapy in acute myeloid leukemia. *Haematologica*. 2026 Jan 15. doi: 10.3324/haematol.2025.288876 [Epub ahead of print]

Publisher's Disclaimer.

E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication.

E-publishing of this PDF file has been approved by the authors.

After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in a regular issue of the journal.

All legal disclaimers that apply to the journal also pertain to this production process.

Clinical and sociodemographic predictors of intensive care unit admission following chemotherapy in acute myeloid leukemia

Ivy E. Abraham^{1*}, Garth H. Rauscher^{2,3*}, Jerry Luo⁴, Sarah Monick⁵, Madelyn Burkart⁶, Peter Doukas⁶, Ahmed Aleem⁷, Nepheli Raptis⁷, Ami Dave⁸, Andrew Wilmington⁸, Mark Debettencourt⁷, Michelle Nwachukwu⁴, Juwairiyah Fatima⁴, Amani Erra⁹, Gauri Shankar⁷, Stephanie B. Tsai⁷, Melissa Larson⁸, Maryam Zia⁹, John Quigley^{3,4}, Jessica K. Altman⁶, Wendy Stock⁵, Anand Patel⁵, Irum Khan⁶

¹University of Chicago Medicine Ingalls Memorial Hospital, Harvey, IL; ²University of Illinois at Chicago Division of Epidemiology and Biostatistics, Chicago, IL; ³ University of Illinois Cancer Center, Chicago, IL, ⁴University of Illinois at Chicago Department of Medicine, Chicago, IL; ⁵University of Chicago, Department of Medicine, Section of Hematology and Oncology, Chicago, IL; ⁶Northwestern University Robert H. Lurie Comprehensive Cancer Center, Chicago, IL; ⁷Loyola University Medical Center Division of Hematology and Oncology, Maywood, IL ⁸Rush University Medical Center Division of Hematology and Oncology, Chicago, IL; ⁹John H. Stroger, Jr. Hospital of Cook County Division of Hematology and Oncology, Chicago, IL

* Equally Contributing authors

Running Title: Clinical and sociodemographic predictors of critical illness in AML

Corresponding Author:

Irum Khan, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, 303 East Superior Street, Lurie, 5-131, Chicago, Illinois 60611
irum.khan@northwestern.edu

Ph: 312-503-0455: Fax: 312-503-0189

Conflict of Interest Disclosures: The authors have no conflicts of interest to declare. All co-authors have seen and agree with the contents of the manuscript and there is no financial interest to report. We certify that the submission is original work and is not under review at any other publication.

Author Contribution Statement: I.A., G.H.R. and I.K designed the research, analyzed the data and wrote the paper. I.A., G.H.R., I.K., J.L., S.M., M.B., P.D., A.A., N.R., A.D., A.W., M.D., M.N., M.N., J.F., A.E., G.S., S.T., M.L, M.Z., J.Q., J.A., W.S. and A.P. collected the data and contributed edits to the paper.

Funding: This work was funded by a grant to Garth Rauscher and Irum Khan through the ChicagoCHEC Partnership: U54CA202995, U54CA202997, and U54CA203000

Data Sharing Statement: The data that supports the findings of this study are available from the corresponding author upon reasonable request

Treatment-related mortality remains a major driver of early death in Acute Myeloid Leukemia (AML). Advances in supportive care have reduced early mortality but fail to benefit patients equitably¹⁻³. Our previous work confirmed Black-White survival disparities in newly diagnosed AML and indicated that Intensive care Unit (ICU) admission during induction chemotherapy was a significant mediator of these disparities⁴. Current prediction tools to identify the risk of Treatment Related Mortality (TRM) in AML rely on clinicopathologic variables such as marrow reserve, age, performance status, and organ function, but fail to consider the social determinants of health (SDOH) that are increasingly recognized to impact the success of AML therapy⁵. This represents the first study to integrate sociodemographic with clinicopathologic characteristics as predictors of ICU admission during induction chemotherapy.

The Chicago AML registry provides a unique resource for performing a detailed analysis of the early treatment course in a contemporary, diverse population. Data was collected in Research Electronic Data Capture (REDCap) hosted at the University of Illinois Chicago using an Institutional Review Board-approved protocol and data use agreement at each institution. We examined 950 adult patients consecutively diagnosed with non-promyelocytic AML between January 2012 and 2022 who received intensive induction chemotherapy at one of 6 academic institutions and excluded 32 patients missing data on ICU admission. The objective was to identify predictors of critical illness in the early period following chemotherapy incorporating self-reported race and census tract measures. To account for missing data, multiple imputation was conducted and the multiply imputed datasets analyzed. Using the method of chained equations, we multiply imputed missing values for each of the patient and clinical risk factors in Table 1. Binary variables were modeled in logistic regression, whereas multinomial logistic regression was used for variables with multiple categories. Allogeneic stem cell transplantation rates and survival were evaluated to determine the long-term clinical impact of critical illness during initial therapy.

A total of 918 newly diagnosed AML patients were included in this analysis (**Supplementary Table S1**). The population comprised 65% Non-Hispanic White (NHW), 12% Non-Hispanic Black (NHB), 13% Hispanic and 10% Other patients. The median age was 57 years (interquartile range 47, 65). NHB and Hispanic patients were significantly younger than NHW patients (19% NHB vs 26% Hispanic vs 13% NHW were under 40 years). Two thirds of NHW patients were married compared to 38% of NHB and 57% of Hispanic patients. The NHB and Hispanic patients were overrepresented in moderate and high disadvantage tracts and underrepresented in high affluence tracts. Compared to NHW patients, NHB patients were more likely to have public insurance (65% vs 44%) and Hispanic patients were likeliest to be uninsured (20% vs 2% in NHW and 3% NHB).

Comorbidities were highest in the NHB patients; 39% NHB vs 25% NHW vs 24% Hispanic patients had a Charlson Comorbidity Index ≥ 3 . ELN 2017 classification differed significantly based on race/ethnicity. Hispanic patients were most likely to

have a favorable ELN 2017 risk group (24% vs. 18% NHB and 21% NHW patients). Hyperleukocytosis was seen in 17% of patients, and 7% presented with extramedullary disease involvement. The majority of patients had fibrinogen level derangement; 25% had low fibrinogen (<100 mg/dl) while 38% had elevated fibrinogen (>380 mg/dl).

Hispanic patients were most likely to have elevated fibrinogen (46% vs 34% NHW and 44% NHB). Hypoalbuminemia, a known predictor of adverse AML outcomes⁶, was more prevalent in NHB patients (24% vs 15% NHW and 12% Hispanic patients). Rates of primary treatment failure were similar between groups (12-18%) although numerically lowest in Hispanic patients.

A total of 161 patients representing 17.5% of the study population required ICU admission following chemotherapy. Treatment details were available for 143 patients; the majority (n=105) received standard 7+3 based regimens while 37 patients received high-dose Cytarabine containing regimens (e.g. FLAG, Cytarabine-Mitoxantrone).

Twenty percent of ICU patients (n= 29) received novel therapies (CPX-351, midostaurin, and investigational agents). For 89 patients with available data on indication for ICU admission, 30 (34%) had infectious complications, 25 (28%) respiratory failure, 16 (18%) cardiovascular complications, 13 (15%) patients bleeding and 5 patients altered mental status. In the 72 patients with available data, the median number of days between start of induction and ICU admission was 22 (IQR:10-57).

Patient characteristics associated with ICU admission following chemotherapy were examined. In univariate analysis (**Table 1**), race/ethnicity was a baseline predictor of ICU admission, with the highest rates of ICU admission in Hispanic patients at 27% compared to 19% of NHB and 14% of NHW patients ($p = 0.004$). Charlson Comorbidity Index (CCI) was also associated with ICU admission; a CCI score of 0-1 was associated with an ICU admission rate of 14-16% compared to 20-21% for CCI of 2 or higher ($p = 0.03$). Patients with high census tract disadvantage were likeliest to be admitted to the ICU compared to those from intermediate or low disadvantage tracts (61% vs 41% and 48% respectively; $p=0.09$). Disease-specific characteristics also predicted ICU admission. Patients with a high ELN 2017 genomic risk score were more likely to be admitted to the ICU compared to those with a moderate or low ELN score (21% compared to 16% and 13% respectively, $p = 0.01$). Patients with high disease burden as measured by significant white blood cell count elevation (WBC > 50K) were more likely to be admitted to the ICU. Additionally, low albumin (< 3 g/dL) and elevated fibrinogen level (> 380 mg/dl) at diagnosis were also associated with ICU admission.

Interestingly, established factors for mortality in AML including older age, ECOG performance status and elevated creatinine (>1 g/dl) did not predict ICU admission.

As previously published⁷, elevated BMI was not predictive of adverse chemotherapy outcomes in AML. Marital status and insurance type were not associated with ICU admission.

Separate multivariable models (**Table 2**) were constructed for each risk factor, controlling for potential confounding variables. We did not control for variables potentially in the causal pathway from the risk factor of interest to ICU admission as conceptualized in **Supplementary Figure S1**. Compared to NHW patients, Hispanic ethnicity (RR =1.87, 95% CI 1.31, 2.67; p = 0.001) and Other race (RR=1.70, 95% CI 1.10, 2.62; p = 0.02) were predictors of ICU admission after adjusting for age and gender. Patients with adverse molecular/cytogenetic characteristics defined by ELN 2017 score were more likely to require intensive care (RR 1.85, 95% CI 1.16, 2.96; p = 0.01) adjusting for race, age, gender, insurance and social determinants. Examining lab measures at diagnosis, WBC count, serum albumin and fibrinogen were independent predictors of ICU admission adjusting for race/ethnicity, age, gender, social determinants, insurance, comorbidities and ELN risk score.

Critical illness during intensive chemotherapy negatively impacted the ability to receive further therapies and served as a surrogate for inferior survival (HR for OS=1.88, 95% CI: 1.44, 2.44; p<0.0001). Patients admitted to the ICU during induction therapy were less likely to undergo curative therapy with allogeneic stem cell transplant (60% vs. 40.5%, RR=0.67, 95% CI: 0.55, 0.82). ICU admission during induction therapy was also associated with a 3.9-fold greater risk of death at 90 days, RR = 3.95 (95% CI:2.39, 6.52) and a 54% greater risk of death at 1 year (RR = 1.54, 95% CI: 1.25, 1.90) (**Figure 1**).

In this well-annotated contemporary cohort of AML patients treated with intensive chemotherapy, 15% of patients developed critical complications requiring admission to the ICU, similar to previous studies reporting rates of 15-28%^{8,9}. In addition to short-term morbidity and 90-day mortality, these ICU patients demonstrated compromised long-term outcomes.

We integrate validated clinical and molecular predictors of outcome in newly diagnosed AML¹⁰ with SDOH and showed for the first time that self-reported race/ethnicity and neighborhood disadvantage are associated with increased incidence of critical illness following intensive chemotherapy. ECOG performance status was not a significant predictor although this variable was limited by significant (>25%) missing data which may have underestimated its influence. In multivariable analysis, adjusting for age and gender, Hispanic ethnicity was independently predictive of ICU admission despite younger patient age and more favorable-risk disease. Previous studies have reported inferior AML survival in Hispanic patients¹¹ and our results suggest this may be linked to differences in treatment tolerability.

Differences in cumulative frontline organ toxicity may lead to differential treatment at

relapse and drive subsequent survival racial disparities in AML.¹² Our data in adult AML confirm that ICU admission has downstream consequences including lower likelihood of curative allogeneic stem cell transplant and decreased 90 day and 2-year survival.

Targeted low intensity therapies in AML provide highly effective alternatives to intensive chemotherapy but the latter remains the preferred curative approach for patients under 60 years of age. Recent data demonstrate that within favorable molecular subsets of AML, the survival benefit of chemotherapy is modulated by race¹³. The current findings suggest the integration of race/ethnicity and allostatic load measures¹⁴ including albumin and fibrinogen as prognostic biomarkers into current AML treatment mortality calculators merits further study. Improved selection criteria for intensive therapy incorporating measures and biomarkers of SDOH may reduce early treatment complications and mitigate survival disparities in AML.

References

1. Larkin KT, Nicolet D, Kelly BJ, et al. High early death rates, treatment resistance, and short survival of Black adolescents and young adults with AML. *Blood Adv.* 2022;6(19):5570-5581.
2. Halpern AB, Culakova E, Walter RB, Lyman GH. Association of Risk Factors, Mortality, and Care Costs of Adults With Acute Myeloid Leukemia With Admission to the Intensive Care Unit. *JAMA Oncol.* 2017;3(3):374-381.
3. Alam ST, Dongarwar D, Lopez E, et al. Disparities in mortality among acute myeloid leukemia-related hospitalizations. *Cancer Med.* 2023;12(3):3387-3394.
4. Abraham IE, Rauscher GH, Patel AA, et al. Structural racism is a mediator of disparities in acute myeloid leukemia outcomes. *Blood.* 2022;139(14):2212-2226.
5. Wuliji N, Jones SMW, Gooley T, et al. Social determinants of health and access to allogeneic hematopoietic cell transplantation for acute myeloid leukemia. *Blood.* 2025;145(25):3041-3051.
6. Doucette K, Percival ME, Williams L, et al. Hypoalbuminemia as a prognostic biomarker for higher mortality and treatment complications in acute myeloid leukemia. *Hematol Oncol.* 2021;39(5):697-706.
7. Foran JM, Sun Z, Lai C, et al. Obesity in adult acute myeloid leukemia is not associated with inferior response or survival even when dose capping anthracyclines: An ECOG-ACRIN analysis. *Cancer.* 2023;129(16):2479-2490.
8. Schellongowski P, Staudinger T, Kundi M, et al. Prognostic factors for intensive care unit admission, intensive care outcome, and post-intensive care survival in patients with de novo acute myeloid leukemia: a single center experience. *Haematologica.* 2011;96(2):231-237.
9. Zeidan AM, Podoltsev NA, Wang X, et al. Patterns of care and clinical outcomes with cytarabine-anthracycline induction chemotherapy for AML patients in the United States. *Blood Adv.* 2020;4(8):1615-1623.
10. Sorror ML, Storer BE, Fathi AT, et al. Development and Validation of a Novel Acute Myeloid Leukemia-Composite Model to Estimate Risks of Mortality. *JAMA Oncology.* 2017;3(12):1675-1682.
11. Darbinyan K, Shastri A, Budhathoki A, et al. Hispanic ethnicity is associated with younger age at presentation but worse survival in acute myeloid leukemia. *Blood Adv.* 2017;1(24):2120-2123.
12. Zheng DJ, Li Y, Huang Y-SV, et al. Racial and Ethnic Differences in Acuity and Cumulative Frontline Organ Toxicity at the Time of Relapse in Pediatric Acute Myeloid Leukemia. *Blood.* 2023;142(Supplement 1):387-387.
13. Stiff A, Fornerod M, Kain BN, et al. Multiomic profiling identifies predictors of survival in African American patients with acute myeloid leukemia. *Nature Genetics.* 2024;56(11):2434-2446.
14. Xing CY, Doose M, Qin B, et al. Prediagnostic Allostatic Load as a Predictor of Poorly Differentiated and Larger Sized Breast Cancers among Black Women in the Women's Circle of Health Follow-Up Study. *Cancer Epidemiol Biomarkers Prev.* 2020;29(1):216-224.

Table 1. Sociodemographic and clinicopathologic factors associated with intensive care unit admission following high-intensity induction therapy for acute myeloid leukemia

	N	ICU	%	Missing	p-Value
Race/Ethnicity					0.004
NHW	597	86	14		
NHB	117	22	19		
Hispanic	123	33	27		
Other	81	20	25		
Age at Diagnosis					
18-39	151	27	18		
40-59	367	61	17		
60-74	376	68	18		
75+	24	5	21		
Gender					
Male	429	79	18		
Female	489	82	17		
Married				6	
Yes	576	95	16		
No	336	65	19		
Tract disadvantage				51	0.09
Low	288	48	17		
Moderate	288	41	14		
High	291	64	22		
Tract Affluence				51	
Low	294	55	19		
Moderate	288	53	18		
High	285	45	16		
Health Insurance					
Uninsured	46	10	22		
Public	426	75	18		
Private/commercial	446	76	17		
Body Mass Index				9	0.10
Underweight	39	2	5		
Normal weight	239	42	18		
Overweight	297	54	18		
Obese I	193	32	17		
Obese II	141	29	21		
Charlson Comorbidity Index				87	0.03
0	325	47	14		
1	154	25	16		
2	130	26	20		
3+	222	47	21		

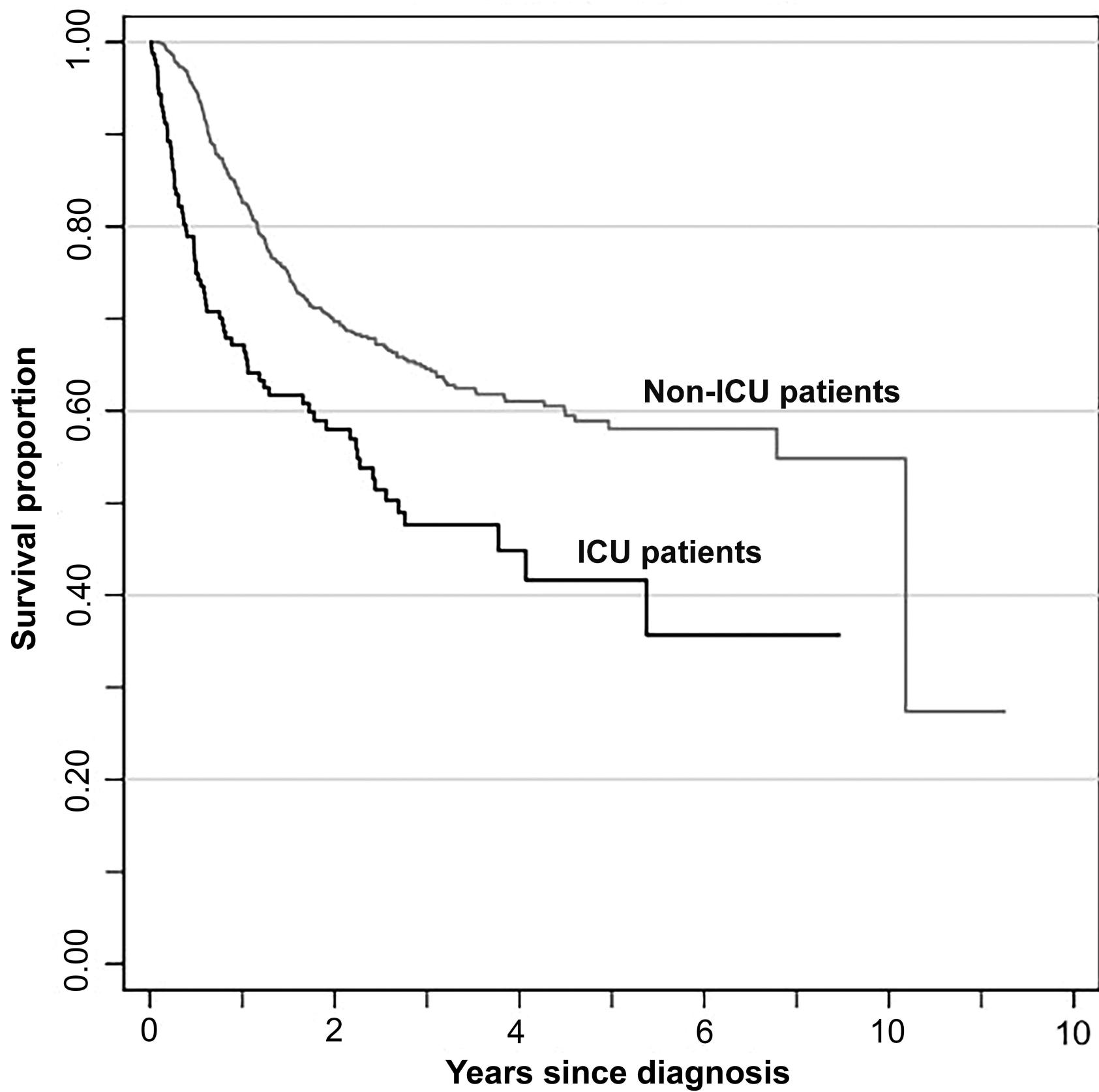
ELN 2017 Classification				17	0.01
Favorable	165	21	13		
Intermediate	402	66	16		
Adverse	334	71	21		
White blood cell count (thous/ μ l)				41	0.05
< 50	727	119	16		
\geq 50	150	35	23		
Hemoglobin (g/dL)				47	
Normal (\geq 10)	221	35	16		
Low (0 - 10)	650	119	18		
Platelets (thous/ μ L)				45	
Very Low (0 -19)	110	19	17		
Creatinine (mg/dL)				81	
Normal (<1)	582	94	16		
High (\geq 1)	255	51	20		
Bilirubin (mg/dL)				80	
Normal (0 - 1.4)	795	137	17		
High (\geq 1.5)	43	7	16		
Albumin (g/dL)				84	0.03
Low (0 - 2.99)	131	31	24		
Normal (\geq 3)	703	110	16		
Lactate dehydrogenase (U/L)				110	
Normal (0 - 199)	152	24	16		
High (\geq 200 - 1000)	574	95	17		
Very High (\geq 1000)	82	20	24		
Fibrinogen (g/dL)				247	0.0001
Low (< 100)	168	14	8		
Normal (\geq 100-380)	248	44	18		
High (> 380)	255	58	23		
Bone marrow blasts (%)				44	
Lower (0- 20)	68	15	22		
Middle (\geq 20 - 50)	324	54	17		
Higher (\geq 50 - 100)	482	82	17		
ECOG performance status				533	0.1
0	155	12	8		
1	197	25	13		
2+	33	5	15		
Extramedullary Disease				22	
Yes	67	13	19		
No	829	144	17		

NHW: Non-Hispanic White, NHB: Non-Hispanic Black, ELN: European Leukemia Net,ECOG: Eastern Cooperative Oncology Group.
p-values > 0.10 are suppressed

Table 2. Multivariable adjusted predictors of Intensive Care Unit admission following high-intensity induction therapy

	RR	95% CI	p
Race/Ethnicity ¹			
NHW	Ref.		
NHB	1.29	(0.84, 1.98)	
Hispanic	1.87	(1.31, 2.67)	0.001
Other	1.70	(1.10, 2.62)	0.02
Age at Diagnosis ¹			
18-39	Ref.		
40-59	1.01	(0.67, 1.52)	
60-74	1.15	(0.77, 1.74)	
75+	1.33	(0.55, 3.22)	
Gender (male vs. female) ¹	0.89	(0.67, 1.18)	
Married (Yes vs. No) ²	0.88	(0.64, 1.20)	
Tract disadvantage ²			
Low	Ref.		
Moderate	0.82	(0.55, 1.23)	
High	1.15	(0.71, 1.86)	
Tract Affluence ²			
Low	Ref.		
Moderate	1.14	(0.78, 1.65)	
High	1.04	(0.66, 1.65)	
Health Insurance ³			
Uninsured	Ref.		
Public	1.01	(0.54, 1.87)	
Private/commercial	1.14	(0.63, 2.09)	
ELN 2017 Classification ⁴			
Favorable	Ref.		
Intermediate	1.44	(0.90, 2.30)	0.13
Adverse	1.85	(1.16, 2.96)	0.01
Body Mass Index ⁵			
Underweight	0.30	(0.08, 1.18)	0.09
Normal weight	Ref.		
Overweight	1.12	(0.78, 1.61)	
Obese I	0.95	(0.63, 1.45)	
Obese II	1.15	(0.75, 1.76)	
Charlson Comorbidity Index ⁵			
0	Ref.		

1	1.17	(0.74, 1.86)	
2	1.39	(0.89, 2.17)	0.15
3+	1.47	(1.00, 2.16)	0.05
ECOG Performance Status ⁵			
0	Ref.		
1	1.30	(0.66, 2.55)	
2+	1.53	(0.61, 3.83)	
White blood cell count (thous/ μ l) \geq 50 ⁶	1.65	(1.06, 2.58)	0.03
Hemoglobin ⁶ (g/dL) < 10	0.96	(0.65, 1.43)	
Platelets ⁶ (thous/ μ l) < 20	0.99	(0.62, 1.56)	
Creatinine ⁶ (mg/dL) > 1	1.13	(0.78, 1.62)	
Bilirubin ⁶ (mg/dL) > 1.5	0.79	(0.39, 1.61)	
Albumin ⁶ (g/dL) < 3	1.50	(1.00, 2.25)	0.05
Lactate dehydrogenase ⁶ (U/L)			
< 200	Ref.		
200-1000	1.01	(0.64, 1.60)	
\geq 1000	1.29	(0.72, 2.32)	
Fibrinogen ⁶ (g/dL)			
< 100	0.50	(0.28, 0.90)	0.021
100-380	Ref.		
\geq 380	2.45	(0.83, 1.84)	0.292
D-Dimer ⁶ (g/dL) > 0.5	1.00	(0.49, 2.03)	
Bone marrow blasts ⁶ (%)			
0-20	Ref.		
> 20 to 50	0.74	(0.42, 1.31)	
\geq 50	0.69	(0.37, 1.30)	
Peripheral blasts ⁶ (%)			
0-5	Ref.		
\geq 5 to 25	1.04	(0.49, 2.21)	
$>$ 25	0.73	(0.31, 1.74)	
Extramedullary disease ⁶	0.93	(0.53, 1.66)	


¹ Adjusting for race/ethnicity, age and gender. ² Adjusted for variables from (1) plus tract disadvantage, tract affluence and marital status. ³ Adjusted for variables from (1,2) plus health insurance. ⁴ Adjusted for variables from (1,2,3) plus ELN 2017. ⁵ Adjusted for variables from (1,2,3,4) plus Body Mass Index, ECOG performance status and Charlson Comorbidity Index. ⁶ Adjusted for all variables shown in the table.

NHW: Non-Hispanic White
 NHB: Non-Hispanic Black
 ELN: European Leukemia Net
 ECOG: Eastern Cooperative Oncology Group

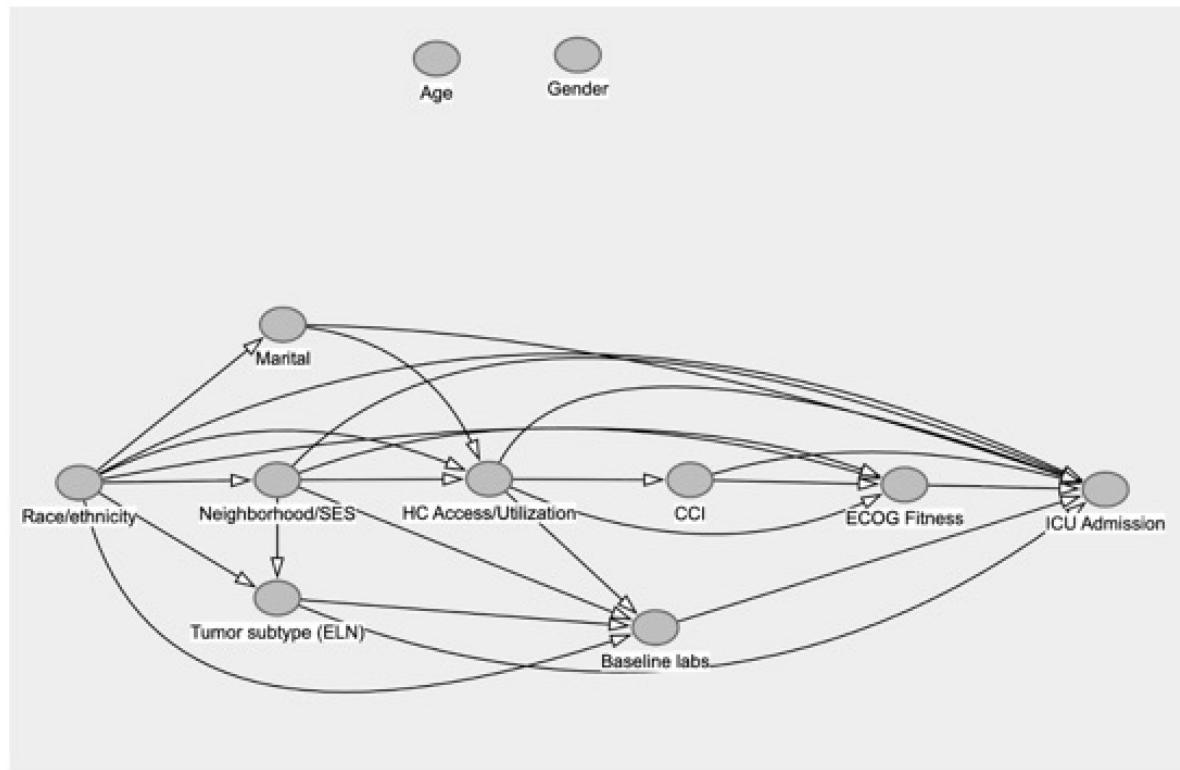

Figure Legend

Figure 1. Kaplan-Meier estimates of survival in non-intensive care unit patients and intensive care unit patients with Acute Myeloid Leukemia. HR 1.88 (95% CI 1.44-2.44, $p<0.0001$)

Figure 1

Figure S1.

Figure S1. Causal diagram of variables that can influence intensive care unit admission following intensive chemotherapy in acute myeloid leukemia.

SES: Socioeconomic Status

HC: Healthcare

CCI: Charlson Comorbidity Index

ELN: European Leukemia Net

ECOG: European Cooperative Oncology Group

ICU: Intensive Care Unit

Table S1. Baseline sociodemographic characteristics by race/ethnicity for patients receiving intensive induction therapy

	NHW		p	NHB		Hispanic		Other			
	No.	%		No.	%	p	No.	%	p	No.	%
ICU Admission			Ref.						0.001		0.02
No	511	86		95	81		90	73		61	75
Yes	86	14		22	19		33	27		20	25
Age at Diagnosis			Ref.			0.03			<0.0001		
18-39	83	13		23	19		34	26		14	17
40-59	244	39		50	42		59	46		31	37
60-74	274	44		45	38		33	26		36	43
75+	18	3		1	1		3	2		2	2
Gender			Ref.			0.09					0.008
Male	290	47		66	55		62	48		26	31
Female	329	53		53	45		67	52		57	69
Married			Ref.			<0.0001			0.04		0.04
No	205	33		73	62		54	43		18	22
Yes	411	67		45	38		72	57		65	78
Tract disadvantage			Ref.			<0.0001			<0.0001		
Low	250	43		10	9		11	9		28	37
Moderate	227	39		13	12		31	24		28	37
High	104	18		89	79		85	67		20	26
Tract Affluence			Ref.			<0.0001			<0.0001		
Low	150	26		55	49		79	62		15	20
Moderate	199	34		37	33		35	28		28	37
High	232	40		20	18		13	10		33	43
Health Insurance			Ref.			<0.0001			<0.0001		
Uninsured	14	2		3	3		25	20		9	11
Public	272	44		77	65		54	42		31	37
Private/commercial	333	54		39	33		49	38		43	52
Body Mass Index			Ref.								
Underweight	28	5		7	6		0	0		6	8
Normal weight	162	26		28	24		42	33		22	28

Overweight	204	33		38	32		30	23		29	36	
Obese I	137	22		15	13		32	25		13	16	
Obese II	81	13		31	26		25	19		10	12	
Charlson Comorbidity Index			Ref.			0.001						
0	235	41		27	25		46	43		28	41	
1	108	19		23	21		18	17		10	14	
2	89	16		16	15		17	16		13	19	
3+	142	25		42	39		26	24		18	26	
ELN 2017 Classification			Ref.						0.003			
Favorable	104	17		25	21		30	24		11	13	
Intermediate	279	46		43	37		69	54		37	45	
Adverse	222	37		49	42		28	22		35	42	
White blood cell count (thous/µL)			Ref.									
< 50	489	82		100	88		100	83		60	78	
≥ 50	105	18		13	12		21	17		17	22	
Hemoglobin (g/dL)			Ref.			0.03						
Normal (≥10)	161	27		20	18		29	24		19	25	
Low (0-10)	427	73		94	82		91	76		58	75	
Platelets (thous/µL)			Ref.									
Normal-Low (≥ 20)	516	88		101	89		101	83		69	90	
Very Low (0 -19)	73	12		13	11		20	17		8	10	
Baseline creatinine (mg/dL)			Ref.						0.07			
Normal (0 - 1)	384	68		75	68		90	77		50	68	
High (≥ 1)	178	32		36	32		27	23		23	32	
Bilirubin (mg/dL)			Ref.									
Normal (0 - 1.5)	537	95		106	95		113	96		65	92	
High (≥1.5)	28	5		5	5		5	4		6	8	
Albumin (g/dL)			Ref.			0.02						
Normal (≥ 3)	481	85		84	76		103	88		61	86	
Low (0 - 2.99)	82	15		26	24		14	12		10	14	
Lactate dehydrogenase (U/L)			Ref.									
Normal (0 - 199)	103	19		21	20		18	16		11	16	

