

Attenuated antibody responses to respiratory syncytial virus vaccination in hematologic malignancies: impact of anti-CD20 therapy

by Yair Herishanu, Yotam Bronstein, Ora Halutz, Dana Gamzu, Chava Perry, Yael Cohen and Irit Avivi

Received: September 24, 2025.

Accepted: December 24, 2025.

Citation: Yair Herishanu, Yotam Bronstein, Ora Halutz, Dana Gamzu, Chava Perry, Yael Cohen and Irit Avivi. Attenuated antibody responses to respiratory syncytial virus vaccination in hematologic malignancies: impact of anti-CD20 therapy.

Haematologica. 2026 Jan 8. doi: 10.3324/haematol.2025.289242 [Epub ahead of print]

Publisher's Disclaimer.

E-publishing ahead of print is increasingly important for the rapid dissemination of science.

Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication.

E-publishing of this PDF file has been approved by the authors.

After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in a regular issue of the journal.

All legal disclaimers that apply to the journal also pertain to this production process.

Attenuated antibody responses to respiratory syncytial virus vaccination in hematologic malignancies: impact of anti-CD20 therapy

Yair Herishanu^{1,2*}, Yotam Bronstein^{1,2*}, Ora Halutz^{1,2}, Dana Gamzu¹, Chava Perry^{1,2}, Yael Cohen^{1,2}, Irit Avivi^{1,2}

1. Department of Hematology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
2. Gray Faculty of Medical & Health Sciences Tel-Aviv University, Tel-Aviv, Israel

*YH and YB contributed equally to this work

Corresponding author:

Yair Herishanu, M.D.
Professor of Hematology
Hematology Department
Tel Aviv Sourasky Medical Center
Tel Aviv, Israel

Key words: CLL, multiple myeloma, lymphoma, RSV, vaccination, humoral response

Acknowledgement: We thank Yechiel Avivi for his assistance with the statistical analysis

Author contributions: YH and IA designed the study, collected data, and wrote the manuscript; YB contributed to data collection and writing; AA performed the serology testing; DG analyzed data, CP and YC contributed to data collection.

Disclosure of Conflicts of Interest: None relevant to this manuscript.

Data Availability Statement: The data that support the findings of this study are available on request from the corresponding author.

Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract infections, particularly in older adults and individuals with comorbidities. Recently approved vaccines; Arexvy (recombinant subunit with stabilized prefusion F protein), Abrysvo (bivalent recombinant protein), and mRESVIA (mRNA-based), represent a major advance in RSV prevention. Phase 3 trials showed robust efficacy, with 80–85% protection against severe RSV-associated lower respiratory tract disease in adults ≥ 60 years during the first year post-vaccination^{1–3}, leading to broad vaccination recommendations⁴.

Patients with hematologic malignancies such as chronic lymphocytic leukemia (CLL), B-cell Non Hodgkin Lymphoma (B-NHL), and multiple myeloma (MM) face disproportionately high risk of severe RSV outcomes due to both disease-related immune dysfunction and immunosuppressive treatments⁵. RSV infection in these patients is linked to slower viral clearance, prolonged hospitalization, and higher mortality compared with the general population^{6,7}.

Although RSV vaccines are highly effective in immunocompetent adults, their immunogenicity in hematologic malignancy patients is poorly defined. Experience with COVID-19 vaccines underscores this challenge: seroconversion rates are markedly reduced, particularly in patients with CLL and B-NHL, and in those previously exposed to B-cell-depleting therapies. Reported seroconversion rates range from 38–76%, with the lowest in CLL and higher in MM^{8,9}. These findings underscore the need to characterize RSV vaccine responses in this vulnerable population.

This study aimed to assess the antibody response and safety profile of the RSV vaccine in patients with lymphoproliferative diseases.

In this prospective observational study, adults aged ≥ 60 years with CLL, B-cell non-Hodgkin lymphoma (B-NHL), or multiple myeloma (MM) who were scheduled to receive the recombinant RSV prefusion F protein vaccine (Arexvy) as part of routine clinical care were enrolled. Individuals with prior RSV vaccination were excluded. Demographic and clinical data including hematological diagnosis, disease status, prior/current therapy, lymphocyte counts, and immunoglobulin levels were collected. The study was approved by the institutional review board, and all participants provided written informed consent.

Peripheral blood samples were prospectively pre-planned for collection at baseline (T0, pre-vaccination) and 4-6 weeks post-vaccination (T1, peak response). RSV-specific IgG antibodies were measured using the SERION ELISA classic Respiratory Syncytial Virus IgG (Serion Diagnostics, Germany). The assay provides qualitative classification as negative, positive, or indeterminate. For the primary immunogenicity analysis, seroconversion was defined as a change from a negative pre-vaccination result to a positive post-vaccination result. Patients with indeterminate results at baseline or post-vaccination were excluded from the seroconversion analysis. Patients reported local and systemic symptoms within seven days post-vaccination. All adverse events (AEs) were graded using standard criteria and assessed for relationship to vaccination. During the follow-up period, patients were actively monitored for respiratory illness via systematic medical record review and structured self-reporting.

The primary endpoint was seroconversion defined by transition to RSV-specific IgG positivity. Analyses were prespecified by subgroup (CLL, MM, B-NHL); overall summaries are descriptive, and subgroup comparisons were exploratory without multiple-comparison adjustment. A two-sided $p<0.05$ was considered significant

A total of 102 patients were enrolled in the study between January and April 2025. Of these, 79 (77.5%) qualified for the prespecified efficacy cohort, while 23 (22.5%) were excluded from efficacy analyses due to baseline seropositivity (n=13), borderline post-vaccination serology (n=6), borderline baseline serology (n=3), or missing baseline serology with a positive post-vaccination result (n=1). All 102 patients (Table 1) were included in the safety cohort

The study population comprised 43 patients with CLL (42.2%), 37 with MM (36.3%), and 22 with B-NHL (21.6%). The median age at vaccination was 74 years (IQR, 68–78). Overall, 66% of participants were male, with higher proportions in CLL (72%) and MM (70%) compared with B-NHL (46%).

Within the efficacy cohort (n=79; Tables 2 and Supplementary Tables 1 and 2), 33 patients (41.8%) had CLL, 29 (36.7%) had MM, and 17 (21.5%) had B-NHL. The median time from diagnosis to vaccination was 84 months (IQR, 47.0–127.5), and was longest among patients with CLL (122 months, IQR, 74.0–181.0). At the time of evaluation, 11 patients (13.9%) were treatment-naïve, whereas 46 (58.2%) were receiving active therapy. The most common regimens included BTK inhibitors, administered either as monotherapy (n=14) or in combination with anti-CD20

antibodies (n=4) or with venetoclax (n=1), and anti-CD38-based combinations in MM (n=12). Further treatment details are provided in Supplementary Table 2.

Prior or current exposure to anti-CD20 antibodies was documented in 34 patients (43.0%), including, eight (23.5%) treated within the past 12 months. The median serum IgG level was 580 mg/dL (IQR, 374.0–878.0), and 18 (22.8%) were receiving intravenous immunoglobulin replacement. The median absolute lymphocyte count on the day of vaccination was $1.5 \times 10^3/\mu\text{L}$ (IQR, 1.0–2.6).

Overall, 22 of 79 patients (27.8%) achieved RSV-specific IgG seropositivity following vaccination. Seroconversion was numerically higher in MM (12 of 29, 41.4%) than in CLL (8 of 33, 24.2%) or B-NHL (2 of 17, 11.8%), though the difference did not reach statistical significance ($p=0.08$). The only variable significantly associated with antibody response was prior anti-CD20 exposure, with seroconversion observed in 3 of 34 exposed patients (8.8%) versus 19 of 45 unexposed patients (42.2%) ($p=0.004$), corresponding to an odds ratio of 0.13 (95% CI, 0.04–0.50). No significant associations were found for age, sex, current treatment status, anti-CD20 exposure (within 12m before vaccination), BTKi-monotherapy, anti-CD38 exposure, serum IgG level, serum IgM level or lymphocyte count. In a multivariable logistic regression model including disease type and prior anti-CD20 exposure (variables with $p<0.1$ in univariate analyses), prior anti-CD20 therapy remained the strongest predictor of reduced serologic response (adjusted OR 0.19, 95% CI 0.03–1.15; $p=0.07$), although the association did not reach conventional statistical significance. During follow-up (median 6 weeks post-vaccination), no patient developed a documented RSV infection.

In the safety cohort of 102 patients, adverse events were predominantly mild and localized. The most common adverse events included injection-site pain in 30 patients (29.4%), redness in 16 (15.7%), muscle pain in 13 (12.7%), rash in 12 (11.8%), and fatigue in 11 (10.8%). Grade 2 events were rare, each occurring in only one patient (1.0%) and included fever, injection-site pain, and muscle pain. No grade ≥ 3 adverse events and no serious adverse events attributable to vaccination were reported.

This prospective study evaluated the immunogenicity and safety of the RSV vaccine Arexvy in patients with hematologic malignancies, a population at high risk for severe RSV infection but for whom vaccine data are scarce. Our findings reveal markedly impaired antibody responses, with only 27.8% of patients achieving RSV-specific IgG seropositivity following vaccination. Response rates were highest among patients

with MM (41.4%), intermediate in those with CLL (24.2%), and lowest in B-NHL (11.8%), all markedly reduced compared with the near-universal seroconversion observed in the phase 3 Arexvy trial among immunocompetent older adults¹. In a study of immunocompromised adults, predominantly organ transplant recipients, administration of Arexvy resulted in seroconversion in 61% of participants¹⁰. These results parallel experience with COVID-19 vaccines, where reduced humoral responses have been consistently reported in hematologic malignancies, particularly in CLL and lymphoma, reflecting both disease-related immune dysfunction and therapy-induced immunosuppression^{8,11}.

The most striking result was the profound negative effect of anti-CD20 antibody exposure on vaccine response. Only 8.8% of patients with prior anti-CD20 therapy achieved seropositivity compared with 42.2% of unexposed patients. This observation aligns with extensive evidence that rituximab and obinutuzumab compromise humoral immunity to vaccines including influenza, pneumococcus, and SARS-CoV-2, often for extended periods due to delayed B-cell recovery^{8,11-13}. By contrast, no significant associations were observed with other therapies such as BTK inhibitors, or anti-CD38 agents, or with demographic and laboratory parameters including age, sex, IgG levels, or lymphocyte counts.

These findings carry important clinical implications. Given the combination of reduced vaccine responses and the high burden of RSV morbidity in hematologic malignancies, vaccination alone may be insufficient to protect many patients, particularly those recently treated with anti-CD20 antibodies. The timing of vaccination in relation to therapy warrants optimization, as administration prior to treatment initiation or, alternatively, deferring vaccination until after partial immune reconstitution may enhance responses¹⁴. Future vaccination strategies should also consider RSV seasonality, aligning vaccination timing to expected viral circulation periods to maximize protection. In addition, given diminished immunogenicity, booster or repeat vaccination strategies should be considered and formally studied, in line with COVID-19 and influenza evidence that sequential doses can augment serologic responses in immunocompromised populations¹⁵⁻¹⁶.

Reassuringly, the safety profile in our cohort was favorable. Adverse events were predominantly mild and localized, with no grade ≥ 3 events or vaccine-related serious adverse events reported. These results are consistent with pivotal phase 3 trials in older adults¹⁻³, confirming the tolerability of RSV vaccination even in

immunocompromised patients. Thus, despite reduced immunogenicity, the safety and feasibility of vaccination remain intact in this population.

Our study has limitations. The use of a qualitative IgG assay did not allow quantification of antibody titers or evaluation of neutralizing activity, which may provide a more precise assessment of protective immunity. By requiring a clear transition from negative to positive and excluding indeterminate results, our definition of seroconversion may underestimate partial or low-level antibody responses. Nonetheless, in the absence of an established correlate of protection and given the qualitative nature of the assay, the clinical significance of borderline titers in this population remains uncertain. Subgroup sample sizes were modest, limiting statistical power to detect additional associations beyond anti-CD20 therapy. For the same reason, the multivariable analysis model was underpowered, and the adjusted associations—while directionally consistent with the univariate findings—should be interpreted with caution. Furthermore, we did not assess T-cell mediated immunity, which may play an important role in protection when humoral responses are impaired. Cellular immunity is particularly relevant in hematologic malignancies, as T-cell preservation or recovery could compensate for limited antibody production. Future studies incorporating quantitative serology and cellular immunity, as well as evaluating vaccine effectiveness against clinical RSV outcomes, will be essential to inform preventive strategies.

In summary, we demonstrate substantially reduced serologic responses to RSV vaccination in patients with hematologic malignancies, with the poorest responses in those with prior anti-CD20 therapy. These findings mirror vaccine response patterns observed with COVID-19 and other viral vaccines and highlight the urgent need for tailored RSV prevention strategies in this vulnerable population. Optimization of vaccination timing, integration of passive immunization, and further research on immune correlates of protection are needed to improve outcomes for patients with hematologic malignancies.

References

1. Papi A, Ison MG, Langley JM, et al. Respiratory Syncytial Virus Prefusion F Protein Vaccine in Older Adults. *N Engl J Med.* 2023;388(7):595-608.
2. Walsh EE, Pérez Marc G, Zareba AM, et al. Efficacy and Safety of a Bivalent RSV Prefusion F Vaccine in Older Adults. *N Engl J Med.* 2023;388(16):1465-1477.
3. Wilson E, Goswami J, Baqui AH, et al. Efficacy and Safety of an mRNA-Based RSV PreF Vaccine in Older Adults. *N Engl J Med.* 2023;389(24):2233-2244.
4. Britton A, Roper LE, Kotton CN, et al. Use of Respiratory Syncytial Virus Vaccines in Adults Aged \geq 60 Years: Updated Recommendations of the Advisory Committee on Immunization Practices - United States, 2024. *MMWR Morb Mortal Wkly Rep.* 2024;73(32):696-702.
5. Allegra A, Tonacci A, Musolino C, Pioggia G, Gangemi S. Secondary Immunodeficiency in Hematological Malignancies: Focus on Multiple Myeloma and Chronic Lymphocytic Leukemia. *Front Immunol.* 2021;12:738915.
6. Herrmann S, Graefe S, Christopeit M, et al. Respiratory syncytial virus infection in patients with haematological diseases: a retrospective multicentre study. *Infection.* 2025;53(4):1341-1350.
7. Khawaja F, Chemaly RF. Respiratory syncytial virus in hematopoietic cell transplant recipients and patients with hematologic malignancies. *Haematologica.* 2019;104(7):1322-1331.
8. Herishanu Y, Avivi I, Aharon A, et al. Efficacy of the BNT162b2 mRNA COVID-19 vaccine in patients with chronic lymphocytic leukemia. *Blood.* 2021;137(23):3165-3173.
9. Avivi I, Balaban R, Shragai T, et al. Humoral response rate and predictors of response to BNT162b2 mRNA COVID19 vaccine in patients with multiple myeloma. *Br J Haematol.* 2021;195(2):186-193.
10. Karaba AH, Hage C, Sengsouk I, et al. Antibody Response to Respiratory Syncytial Virus Vaccination in Immunocompromised Persons. *JAMA.* 2025;333(5):429-432.
11. Perry C, Luttwak E, Balaban R, et al. Efficacy of the BNT162b2 mRNA COVID-19 vaccine in patients with B-cell non-Hodgkin lymphoma. *Blood Adv.* 2021;5(16):3053-3061.
12. Yri OE, Torfoss D, Hungnes O, et al. Rituximab blocks protective serologic response to influenza A (H1N1) 2009 vaccination in lymphoma patients during or within 6 months after treatment. *Blood.* 2011;118(26):6769-6771.
13. Van Der Kolk LE, Baars JW, Prins MH, Van Oers MHJ. Rituximab treatment results in impaired secondary humoral immune responsiveness. *Blood.* 2002;100(6):2257-2259.
14. Nham E, Noh JY, Park O, et al. COVID-19 Vaccination Strategies in the Endemic Period: Lessons from Influenza. *Vaccines (Basel).* 2024;12(5):514.
15. Branagan AR, Duffy E, Gan G, et al. Tandem high-dose influenza vaccination is associated with more durable serologic immunity in patients with plasma cell dyscrasias. *Blood Adv.* 2021;5(5):1535-1539.
16. Haggenburg S, Hofsink Q, Lissenberg-Witte BI, et al. Antibody Response in Immunocompromised Patients With Hematologic Cancers Who Received a 3-Dose mRNA-1273 Vaccination Schedule for COVID-19. *JAMA Oncol.* 2022;8(10):1477-1483.

Table 1. Baseline demographic and clinical characteristics of the entire study cohort

Characteristic	CLL (N=43)	MM** (N=37)	B-NHL* (N=22)	Total (N=102)
Age at vaccination - years, Median (IQR)	73 (68-77)	74 (71-79)	74 (68-80)	74 (68-78)
Gender – N, (%)				
Males	31 (72.1)	26 (70.3)	10 (45.5)	67 (65.7)
Females	12 (27.9)	11 (29.7)	12 (54.5)	35 (34.3)
Time from diagnosis to vaccination – months, Median (IQR)	120.0 (72.5-175.0)	66.0 (38.0-98.0)	81.5 (5-350)	82.0 (45.3-122.8)
Time from T0 to T1 – days, Median (IQR)	41 (35-46)	45 (38-54)	42 (35-55)	43 (35-50)
Treatment status at the time of vaccination – N, (%)				
Treatment Naïve	8 (18.6)	1 (2.7)	3 (13.6)	12 (11.8)
On treatment	28 (65.1)	27 (73.0)	9 (40.9)	64 (62.7)
Post treatment	7 (16.3)	9 (24.3)	10 (45.5)	26 (25.5)
Any exposure to anti-CD20 treatment – N, (%)				
Yes	25 (58.1)	0 (0)	21 (95.5)	46 (45.1)
No	18 (41.9)	37 (100.0)	1 (4.5)	56 (54.9)
Within 12m before vaccination	5/25 (20.0)	0 (0)	9/21 (42.9)	14/46 (30.4)
Exposure to anti-CD38 treatment within 24 months before vaccination – N, (%)	0 (0)	14 (37.8)	0 (0)	14 (13.7)
Active BTKi monotherapy - N, (%)	14 (32.6)	0 (0)	4 (18.2)	18 (17.7)
Receiving IVIG treatment – N, (%)	9 (20.9)	12 (32.4)	2 (9.1)	23 (22.6)
IgG level at time of vaccination – mg/dL, Median (IQR)	627.0 (454.0-1026.3)	504.0 (363.0-770.8)	605.0 (509.3-740.8)	586.0 (375.0-890.0)
IgM level at time of vaccination – mg/dL, Median (IQR)	25.0 (18.0-66.0)	19.0 (<16-26.5)	48.0 (24.0-178.5)	21.5 (<16 – 51.8)
Lymphocyte count at time of vaccination - 10 ³ /uL, Median (IQR)	2.4 (1.4-5.3)	1.2 (0.8-1.5)	1.1 (0.8-1.8)	1.5 (0.9-2.6)

CLL – Chronic Lymphocytic Leukemia; MM – Multiple Myeloma; T0 – pre- vaccination; T1 – peak response; BTKi – Bruton Tyrosine Kinase Inhibitor; IgG – Immunoglobulin G; IgM – Immunoglobulin M; IQR – Interquartile range; IVIG - Intravenous Immunoglobulin

*B-cell non-Hodgkin's Lymphoma (B-NHL) subtypes include: Diffuse large B-cell lymphoma (N=7), Marginal zone lymphoma (N=7), Mantle cell lymphoma (N=4), Follicular lymphoma (N=3), Indolent B-cell lymphoma (N=1)

**MM heavy chain characteristics: IgG=23/37 (62.2%); IgA=7/37 (18.9%); IgM=1/37 (2.7%); None=6/37 (16.2%)

Table 2. Baseline demographic and clinical characteristics of patients included in the efficacy cohort (qualified for RSV serology analysis, N=79)

Characteristic	Serologic response N (%)		P value
	Positive (N=22)	Negative (N=57)	
Condition – N, (%)			
CLL (N=33)	8 (24.2)	25 (75.8)	0.08
MM* (N=29)	12 (41.4)	17 (58.6)	
B-NHL (N=17)	2 (11.8)	15 (88.2)	
Age at vaccination - years, Median (IQR)	73 (67-77)	73 (69-78)	0.460
Gender - N (%)			
Male (N=50)	15 (30.0)	35 (70.0)	0.764
Female (N=29)	7 (24.1)	22 (75.9)	
Time from diagnosis to vaccination - months, Median (IQR)	87.5 (58.5-121.5)	83.0 (46.0-130.0)	0.875
Time from T0 to T1 - days, Median (IQR)	45 (38-55)	41 (35-47)	0.112
Treatment status - N, (%)			
Treatment naïve (N=11)	3 (27.3)	8 (72.7)	0.590
Active treatment (N=46)	15 (32.6)	31 (67.4)	
Post treatment (N=22)	4 (18.2)	18 (81.8)	
Anti-CD20 exposure - N, (%)			
Yes (N=34)	3 (8.8)	31 (91.2)	0.004
No (N=45)	19 (42.2)	26 (57.8)	
Last anti-CD20 within 12 months before vaccination - N, (%)			
Yes (N=8)	0 (0)	8 (100.0)	0.769
No (N=26)	3 (11.5)	23 (88.5)	
Time from last anti-CD20 to vaccination – months, Median (IQR)	86.0 (69.0-90.0)	34.0 (14.0-64.0)	0.078
Active BTKi monotherapy - N, (%)			
Yes (N=14)	6 (42.9)	8 (57.1)	0.167
No (N=65)	16 (24.6)	49 (75.4)	
Anti-CD38 exposure within 24 months - N, (%)			
Yes (N=12)	4 (33.3)	8 (66.7)	0.912
IgG level at time of vaccination – mg/dL, Median (IQR)	657.0 (488.0-1145.0)	569.0 (369.3-671.8)	0.105
IgM level at time of vaccination – mg/dL, Median (IQR)	21.0 (17.0-49.0)	22.0 (<16-53.0)	0.762
Lymphocyte count at time of vaccination - 10 ³ /uL, Median (IQR)	1.8 (1.2-2.6)	1.3 (0.9-2.7)	0.168

CLL – Chronic Lymphocytic Leukemia; MM – Multiple Myeloma; B-NHL- B-cell non-Hodgkin's Lymphoma; T0 – pre- vaccination; T1 – peak response;

BTKi – Bruton Tyrosine Kinase Inhibitor; IgG – Immunoglobulin G; IgM – Immunoglobulin M; IQR – Interquartile range; IVIG - Intravenous

Immunoglobulin

* In a sensitivity analysis excluding patients with IgG-type MM, serum IgG levels remained not significantly associated with seroconversion and effect estimates were similar to those of the primary analysis ($p=0.18$).

**Table 3. Summary of vaccination-related adverse events in the entire study cohort
(N=102)**

Adverse event	All grades, N (%)	Grade 1, N (%)	Grade 2, N (%)	Grade ≥3, N (%)
Injection-site pain	30 (29.4)	29 (28.4)	1 (1.0)	0 (0)
Redness	16 (15.7)	16 (15.7)	0 (0)	0 (0)
Muscle pain	13 (12.7)	12 (11.8)	1 (1.0)	0 (0)
Rash	12 (11.8)	12 (11.8)	0 (0)	0 (0)
Fatigue	11 (10.8)	11 (10.8)	0 (0)	0 (0)
Dizziness	6 (5.9)	6 (5.9)	0 (0)	0 (0)
Nausea/Vomiting	5 (4.9)	5 (4.9)	0 (0)	0 (0)
Fever	4 (3.9)	3 (2.9)	1 (1.0)	0 (0)
Swelling	4 (3.9)	4 (3.9)	0 (0)	0 (0)
Headache	3 (2.9)	3 (2.9)	0 (0)	0 (0)
Itching	2 (2.0)	2 (2.0)	0 (0)	0 (0)
Lymph node swelling	0 (0)	0 (0)	0 (0)	0 (0)

Supplementary Table 1. Baseline demographic and clinical characteristics of the efficacy cohort

Characteristic	CLL (N=33)	MM** (N=29)	B-NHL* (N=17)	Total (N=79)
Age at vaccination – years				
Median (IQR)	72 (68-77)	74 (68-78)	74 (68-80)	73 (68-78)
Gender – N, (%)				
Males	23 (69.7)	20 (69.0)	7 (41.2)	50 (63.3)
Females	10 (30.3)	9 (31.0)	10 (58.8)	29 (36.7)
Time from diagnosis to vaccination – months				
Median (IQR)	122.0 (74.0-181.0)	63.0 (35.0-98.0)	56.0 (41.0-92.0)	84.0 (47.0-127.5)
Time from T0 to T1 – days				
Median (IQR)	42 (35-46)	44 (37-51)	40 (35-52)	42 (35-50)
Treatment status at the time of vaccination – N, (%)				
Treatment Naïve	8 (24.2)	1 (3.5)	2 (11.8)	11 (13.9)
On treatment	19 (57.6)	21 (72.4)	6 (35.3)	46 (58.2)
Post treatment	6 (18.2)	7 (24.1)	9 (52.9)	22 (27.9)
Prior lines of therapy – N, (%)				
1	14/33 (42.4)	19/29 (65.5)	11/17 (64.7)	44/79 (55.7)
≥2	11/33 (33.3)	9/29 (31.0)	4/17 (23.5)	24/79 (30.4)
Any exposure to anti-CD20 treatment – N, (%)				
Yes	18 (54.5)	0 (0)	16 (94.1)	34 (43.0)
No	15 (45.5)	29 (100)	1 (5.9)	45 (57.0)
Within 12m before vaccination	2/18 (11.1)	0 (0)	6/16 (37.5)	8/34 (23.5)
Exposure to anti-CD38 treatment within 24 months before vaccination – N, (%)				
Yes	0 (0)	12/13 (92.3)	0 (0)	12/13 (92.3)
Active BTKi monotherapy – N, (%)				
Yes	12/33 (36.4)	0 (0)	2/17 (11.8)	14/79 (17.7)
Receiving IVIG treatment – N, (%)				
Yes	6/33 (18.2)	10/29 (34.5)	2/17 (11.8)	18/79 (22.8)
IgG level at time of vaccination – mg/dL				
Median (IQR)	599.5 (472.0-992.3)	488.0 (342.0-742.0)	605.0 (569.8-675.3)	580.0 (374.0-878.0)
IgM level at time of vaccination – mg/dL				
Median (IQR)	25.0 (18.0-66.0)	19.0 (<16-26.5)	48.0 (24.0-178.5)	21.5 (<16 – 51.8)
Lymphocyte count at time of vaccination - 10 ³ /uL				
Median (IQR)	2.6 (1.7-5.4)	1.2 (0.8-1.5)	1.2 (0.8-2.8)	1.5 (1.0-2.6)

CLL – Chronic Lymphocytic Leukemia; MM – Multiple Myeloma; T0 – pre- vaccination; T1 – peak response; BTKi – Bruton Tyrosine Kinase Inhibitor; IgG – Immunoglobulin G; IgM – Immunoglobulin M; IQR – Interquartile range; IVIG - Intravenous Immunoglobulin

*B-cell non-Hodgkin's Lymphoma (B-NHL) subtypes include: Diffuse large B-cell lymphoma (N=5), Marginal zone lymphoma (N=6), Mantle cell lymphoma (N=2), Follicular lymphoma (N=3), Indolent B-cell lymphoma (N=1)

**MM heavy chain characteristics: IgG=18/29 (62.1%); IgA=6/29 (20.7%); IgM=1/29 (3.4%); None=4/29 (13.8%%)

Supplementary Table 2. Distribution of hematological active treatments in the efficacy cohort

Active Treatment type – N, (%)	CLL (N=19)	MM (N=21)	B-NHL (N=6)	Total (N=46)
Anti-CD38-based therapy	0 (0)	12 (57.1)	0 (0)	12 (26.1)
Anti-CD20 with chemotherapy^	0 (0)	0 (0)	1 (16.7)	1 (2.2)
Anti-CD20 monotherapy	0 (0)	0 (0)	1 (16.7)	1 (2.2)
Anti-CD20 + venetoclax	2 (10.5)	0 (0)	0 (0)	2 (4.4)
Anti-CD20 + BTKi	3 (15.8)	0 (0)	1 (16.7)	4 (8.7)
BiTE for B-NHL	0 (0)	0 (0)	1 (16.7)	1 (2.2)
BTKi monotherapy	12 (63.2)	0 (0)	2 (33.3)	14 (30.4)
BTKi + Venetoclax	1 (5.3)	0 (0)	0 (0)	1 (2.2)
Venetoclax monotherapy	1 (5.3)	0 (0)	0 (0)	1 (2.2)
BiTE for MM	0 (0)	3 (14.3)	0 (0)	3 (6.5)
Other anti-MM treatments ^^	0 (0)	6 (28.6)	0 (0)	6 (13.0)

CLL – Chronic Lymphocytic Leukemia; MM – Multiple Myeloma; B-NHL- B-cell non-Hodgkin's Lymphoma; BTKi – Bruton Tyrosine Kinase Inhibitor; BiTE – Bispecific T-cell Engager

^ Rituximab + CHOP (cyclophosphamide, doxorubicin, vincristine and prednisone)

^^Immunomodulators ± Proteosome inhibitors