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Abstract  

The 5-point Deauville score (DS) assesses end-of-treatment (EOT) response on 

PET/CT in diffuse large B-cell lymphoma patients, categorizing scans as ‘positive’ or 

‘negative’ for complete metabolic response. However, the positive predictive value 

(PPV) is suboptimal at 60%. We evaluated whether quantitative PET parameters 

combined with clinical data could improve prediction of treatment failure in EOT PET-

positive patients. Baseline and EOT PET/CT scans of 138 DS4–5 patients were 

analyzed. Lesions were segmented using a semi-automated adaptive method 

(SUV4.0 or MV3). PET parameters, including total metabolic tumor volume (TMTV), 

number of lesions (NOL), tumorSUV/liverSUV-ratio (TLR), the maximum distance 

between the largest and any other lesion (DmaxBulk), and changes over time, were 

obtained. Two Cox regression models predicted 2-year progression-free survival. 

Clinical data were combined with EOT PET in model 1, and baseline, EOT and delta 

values in model 2. After internal bootstrapping, models were evaluated for 

classification using different risk-of-progression cutoffs. Sensitivity, specificity, PPV 

and negative predictive values (NPV) were determined. Using forward selection, 

model 1 comprised two variables: the NOL and the tumorSUVpeak/liverSUVmean 

(TLRpeakmean) at EOT (AIC=690.072, c-index=0.747). Model 2 incorporated NOL, 

TLRpeakmean (EOT) and baseline SUVmean (AIC=687.064, c-index=0.762). The 

PPV improved to over 85% without compromising the NPV. False positives dropped 

from 54 (39%, by DS) to 9 (7%) and 6 (4%) for models 1 and 2, respectively. Adding 

baseline features did not notably impact the models’ performance. Our models could 

support more accurate response-adapted treatment decisions, reducing 

unnecessary subsequent false positive-directed treatments to just 7%.  
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Introduction 

Diffuse large B-cell lymphoma (DLBCL) is the most prevalent aggressive non-

Hodgkin lymphoma.1 First-line immunochemotherapy has a curative efficacy of 60-

70%, but one-third of patients experience refractory disease or relapse.2 

Fluorine18
‐fluorodeoxyglucose (18F‐FDG) positron emission tomography‐computed 

tomography (PET/CT) is recommended for initial staging and end-of-treatment (EOT) 

response assessment.3, 4 

Currently, the post-therapy response is assessed by the 5-point visual Deauville 

score (DS),5 which classifies metabolic outcome as complete (DS1-3) or incomplete 

(DS4-5). The simplicity of the DS, which uses the ratio between the FDG uptake in 

the hottest residual lymphoma lesion and liver, is desirable for interpretation but may 

also limit its predictive power.5 While the negative predictive value (NPV) stands at 

85%, the positive predictive value (PPV) remains suboptimal at 60% due to a high 

number of false positives, suggesting that nearly half of the patients with a DS4-5 are 

cured despite their positive final scan.5, 6 An incorrect prognosis can be impactful as 

patients may be selected for subsequent therapies, such as consolidative 

radiotherapy. Patients may unnecessarily be subjected to potential risks and anxiety 

that come with receiving further treatment, biopsies or serial imaging.7-11 Better 

criteria at EOT are thus essential to improve patient selection for further treatment.   

Several research groups have proposed more precise response criteria at EOT by 

defining quantitative cutoff values based on changes in the maximum standardized 

uptake value (ΔSUVmax) or tumor-to-liver ratios higher than one.12-14 At staging, 

there is increasing evidence supporting the prognostic potential of other quantitative 

parameters such as the total metabolic tumor volume (TMTV) and total lesion 
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glycolysis (TLG).15-17 Recently, factors that reflect the dissemination of disease, such 

as the maximum distance between lesions, have also been reported as strong 

prognosticators,17 which combined with TMTV can identify high-risk groups before 

treatment.  

The PETRA consortium previously demonstrated that a combination of baseline 

tumor (TMTV, SUVpeak and DmaxBulk) and clinical (performance status and age) 

predictors can greatly enhance the PPV and accurately stratify high-risk patients at 

baseline.18 However, few studies have focused on utilizing these quantitative 

features at EOT to predict the risk of relapse and need for second-line treatment.  

Our aim was to improve the prediction of 2-year progression-free survival (2-yr-PFS) 

compared to the DS by focusing on increasing the PPV without compromising the 

NPV by (1) identifying quantitative EOT PET parameters that predict PFS, (2) 

developing a model combining EOT PET and clinical parameters and (3) exploring 

whether integrating baseline PET quantitative features could improve prediction. 

 

Methods 

Study population 

Patients with DLBCL from 5 prospective studies (HOVON-84,19 HOVON-130,20 

SAKK,21 PETAL,22 IAEA23), 2 retrospective studies (BOLOGNA,24 GSTT1525) and 

real-world data (Austin Health, Melbourne) in the PETRA database26, that had a 

baseline and positive EOT scan (DS4-5), were included. PMBL patients were 

excluded upfront. Patients with a complete metabolic response (CMR; DS1-3) were 

included in the sensitivity analysis. All trials had institutional review board approval. 
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Quantitative and clinical features 

Quality control and lesion delineation methods are detailed in Methods S1. PET 

features were extracted from total metabolic tumor volume (TMTV) segmentations 

including TMTV (mL), SUVpeak, SUVmean and SUVmax. Lesional SUV was 

compared with liver uptake in a 3cm diameter sphere, including 

tumorSUVpeak/liverSUVmean ratio (TLRpeakmean), tumorSUVpeak/liverSUVpeak 

ratio (TLRpeakpeak) and tumorSUVmax/liverSUVmax ratio (TLRmaxmax). TLG was 

calculated as TMTV*SUVmean. Dissemination was assessed using the number of 

lesions (NOL) and DmaxBulk, defined as the distance between the largest lesion and 

the most distant lesion. The NOL could include multiple lesions in the same nodal 

area. Absolute (Δ) and percent (Δ%) changes from baseline to EOT were calculated, 

with Δ% defined as 100*((Baseline-EOT)/Baseline). Clinical feature collection is 

described in Methods S2. 

Model development  

Two models were developed: an EOT model (model 1), using clinical data and 

quantitative features extracted from EOT PET scans, and an EOT + baseline model 

(model 2) that additionally incorporated baseline (BL) and change in PET values. 

The primary outcome was 2-yr-PFS, defined as the time from the baseline PET scan 

to progression, relapse or death. 

Univariate Cox regression explored the association between variables and PFS. 

Cubic spline transformations were applied for non-linearity if necessary. Highly 

correlating factors (Spearman r>0.9) were removed to avoid multicollinearity. Final 

models were constructed using forward selection to evaluate independent prognostic 

predictors.  
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Model fitting was assessed using the Akaike information criterion (AIC) and c-index. 

Subsequently, models were internally validated through bootstrapping with 500 

generated datasets, adjusting regression coefficients for optimism by multiplying 

them by a shrinkage factor.27 

Patient classification  

The risk-of-progression at 24 months was estimated for each patient using both 

models. Risk-of-event cutoffs from 20 to 90% were explored to classify patients into  

low and high-risk groups. For each cutoff, predicted classifications were compared 

against observed outcomes to determine sensitivity, specificity, PPV, NPV and the 

number of false positives and false negatives. To estimate NPV for the entire 

population we included 2-yr-PFS retrospective outcome data from DS1-3 EOT 

patients. Since tumor segmentations were not available for DS1-3 patients, we 

assumed these patients would be classified as low-risk by the models. The cutoff 

yielding the best balance between sensitivity and specificity was explored further 

using Kaplan-Meier survival analysis.  

The added relevance of our EOT model was assessed by comparing it to a 

published baseline clinical PET model,18 which used MTV, SUVpeak, DmaxBulk, age 

and ECOG to identify high-risk patients at baseline. 

Assessment of confounding therapy 

Information about second-line therapy was available for 122 patients, though the 

indications were mostly undocumented. The impact of radiotherapy on model 

performance was evaluated in this subset.  

Statistical analyses were performed using R (version 4.2.3), with a p-value <0.05 

considered statistically significant. 
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Results 

Study population 

Within the PETRA database, 847 DLBCL patients were identified who underwent an 

EOT scan with an assigned DS, of whom 225 were classified as ‘PET-positive’ with 

an incomplete response (DS4-5), and 622 as having CMR (DS1-3, Figure 1). 

The predictive models were built solely on PET-positive patients (n=225). Patients 

were deemed non-eligible due to missing or unusable scans (n=54), invalid clinical 

data (n=14), non-compliance with quality control standards (n=10) or having tumor 

uptake ≤DS3 at revision (n=9, Figure 1). A total of 138 EOT PET-positive patients 

were included, with 62 patients classified as DS4 and 76 patients as DS5. Patient 

characteristics are summarized in Table 1, and described in greater detail for each 

study in Table S1. 

The median age was 61 years, ranging from 18 to 88 years. Most patients (n=135, 

97.8%) received R-CHOP or a combination thereof, while only 3 patients received R-

CEOP treatment. The median follow-up time was 53 months. Eighty-four patients 

(60.9%) had an event, of which 80 either progressed or relapsed, and 4 died. Among 

the DS4 patients, 63% remained event-free at 2 years, compared to 20% of patients 

with DS5 (Figure 2).  

The majority of patients with CMR were scored as DS1 (n=303, 48.7%), then DS2 

(n=167, 26.9%) and DS3 (n=152, 24.4%, Table S2). Notably, 13.5% of these 

patients developed progression. 
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Model development 

The descriptive statistics for quantitative PET variables in PET-positive patients are 

listed in Table S3. All variables showed a reduction from baseline to EOT, with the 

largest changes in TMTV and TLG.  

Highly correlated variables were eliminated, leaving TMTV-BL (at baseline), TMTV-

EOT (at end-of-treatment), Δ%TMTV (relative difference), SUVmean-BL, 

TLRpeakmean-BL, TLRpeakmean-EOT, Δ%TLRpeakmean, NOL-BL, NOL-EOT, 

Δ%NOL, and DmaxBulk-BL, Δ%DmaxBulk and ΔDmaxBulk (absolute difference), 

and the clinical features age, sex, stage, IPI-score, IPI-stage, IPI-EN, IPI-ECOG and 

IPI-LDH, which were taken forward into multivariate models. Details on the univariate 

analysis and spline transformations are given in Results S1. TMTV was selected 

over TLG due to its wide usage and ease of interpretation. TLRpeakmean was 

favored over SUVpeak because of its independence from the administered activity 

and patient body weight. It is also less sensitive to noise and different PET systems 

when compared to TLRmaxmax. 

Finally, after applying forward selection, model 1 comprised two (splined) variables 

expressing the tumor-to-liver ratio and the number of lesions: TLRpeakmean-EOT 

and NOL-EOT (AIC=690.072, c-index=0.753, R2=0.436; after bootstrapping: c-

index=0.747, R2=0.410). Model 2 incorporated the same two features with the 

addition of the mean SUV at baseline (SUVmean-BL; AIC=687.064, c-index=0.771, 

R2=0.456; after bootstrapping: c-index=0.762, R2=0.452). No clinical features were 

retained by the models. Shrinkage factors of 0.935 (model 1) and 0.922 (model 2) 

were obtained after internal bootstrapping validation to adjust the regression 

coefficients (Table 2).  
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Patient classification 

A risk-to-progression estimate was calculated for every patient. The individual risk 

estimates were fairly similar for the two models (r=0.97, p=7.61e-87, Figure S2). 

Examples of patients with different risk predictions are shown in Figure 3. 

The performance of models 1 and 2 are summarized in Tables 3 and 4, using 

various risk-to-progression cutoff values. Increasing the risk threshold led to higher 

specificity but lowered sensitivity. No patient had a risk score <10%. A 50% threshold 

for model 1 and 60% threshold for model 2 classified the highest number of patients 

correctly and achieved a PPV above 85%. The corresponding NPVs were 67% and 

68%, respectively. However, after including the PFS from 622 patients with CMR 

(DS1-3), comprising 538 true negatives and 84 false negatives, the NPV increased 

to 85% (last column of Tables 3 and 4). Model 2 fit the data better than the simpler 

model 1 (χ2(df=1) = 5.009, p=0.025), which resulted in 2 more correctly classified 

patients. 

The survival curves (Figure 4) showed a clear separation in 2-yr-PFS between DS1-

3 and DS4-5 groups (81.4% versus 37.0%). Upon applying model 1 with a 50% risk 

threshold, the DS4-5 group further separated into two distinct subgroups: a low-risk 

group (<50%) with a 2-yr-PFS of 64.2%, and a high-risk group (>50%) with a PFS of 

11.2%. Stratification using model 1 also separated the curves better compared to 

DS4 and DS5 separately (Figure S3). The low-risk (<50%) group had a 2-yr-PFS of 

64.2%, compared to 58.1% in the DS4 group. Similarly, the high-risk (>50%) group 

had a 2-yr-PFS of 11.2%, whereas the DS5 group was 19.7%. 

Furthermore, model 1 (EOT) has improved prognostic power when compared to the 

previously published clinical PET model.18 Following the same methodology as for 
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model 1, a 20% risk-of-progression cutoff was chosen for the clinical PET model. 

The sensitivity, specificity, PPV and NPV of the clinical PET model all decreased in 

contrast to model 1 (Table S5). Notably, the number of false negatives was 

substantially lower for model 1 (22 versus 53). The baseline model identified 43 

patients at high risk of having an event within 2 years, compared to 74 patients using 

model 1. The two models overlapped in selecting 27 patients.  

Lastly, an overview of patients receiving second-line therapy can be viewed in Table 

S6-8. The inclusion of radiotherapy status did not significantly enhance the 

performance of either model, suggesting limited additional predictive value (Results 

S2).  

 

Discussion 

The reliability of the DS at the end of first-line treatment for DLBCL has been 

questioned due to its low PPV caused by a high number of false positives. Our study 

aimed to address this by identifying quantitative PET features that could improve the 

PPV for 2-yr-PFS. Two relatively simple prediction models were developed: an EOT 

model (1) including the NOL and TLRpeakmean at EOT, and an EOT + baseline 

model (2) that incorporated SUVmean at baseline as an additional feature. Both 

models outperformed DS for correctly classifying the risk-of-progression and 

enhanced the PPV to over 85% without compromising the NPV.  

The importance of TLRpeakmean in our model is not surprising, as it represents the 

tumor-to-liver ratio similar to the DS, but in a semi-quantitative manner to minimize 

the risk of visual misinterpretation. Although TLRmaxmax is more commonly used to 

quantify the DS, we favored TLRpeakmean because it is more robust to noise and 
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image reconstruction differences. This definition of TLR was also recommended in 

the recent EANM guidelines on FDG oncology imaging.28 SUVpeak is less sensitive 

to noise and differences in image resolution between PET systems, making it more 

generalizable across scanner generations, especially with the increasing use of high-

resolution scanners,29-31 whereas the SUVmean reflects the most reproducible 

measure for uniform liver uptake.32  

Others have also demonstrated that EOT TLR cutoffs can identify patients with 

inferior PFS and OS.12, 14, 33 Nevertheless, the reported cutoff values varied widely 

according to the patient cohort. In contrast, the TLR in our model is expressed as a 

continuous variable, meaning it can be applied to different populations. When 

combined with a simple measure, the number of lesions at EOT, which may partially 

serve as a surrogate for disease dissemination, the improvement in prognostic value 

is substantial. The number of lesions at EOT has not commonly been used in 

predictive models for DLBCL, but the number of extra nodal lesions in DLBCL and 

nodal lesions in follicular lymphoma at baseline are well-known risk parameters.34, 35 

Despite the significant association of TMTV at baseline and EOT to PFS (univariate), 

and its recognition as an important prognostic factor,25, 36-38 it was not selected in our 

final models. In our cohort of only PET-positive patients, the selected variables thus 

appeared to be stronger prognosticators. Furthermore, none of the clinical features 

contributed to the predictive power. This aligns with a recent study where radiomics-

only models outperformed those integrating clinical parameters.39  

The use of baseline quantitative PET features in predictive models has been 

reported for estimating individual patient outcomes,18, 40 but models that incorporate 

EOT data are scarce. Cui et al41 developed a model combining clinical, baseline, 
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EOT and delta PET features, that outperformed three models: an IPI-model, a 

clinical features only model (with and without DS), and a PET radiomics model (BL, 

EOT and delta) for time to progression. Their best model (c-index of 0.853) 

surpassed our model performances (c-index=0.747 and 0.762 respectively). 

However, this comparison is challenging due to differences in feature selection. 

Additionally, their dataset included both PET-negative and -positive patients with 

relatively few cases of progression.  

We examined the potential of our models to correctly classify PET-positive patients 

using a series of risk-of-progression cutoffs. A clear trade-off was seen between 

sensitivity and specificity. Cutoff risks of 50% and 60% for model 1 and 2, 

respectively, yielded objectively the best balance between specificity with sensitivity. 

An important advantage of our models is their ability to provide a continuous 

probability, rather than a dichotomous assessment such as the DS. A more suitable 

threshold can thus be chosen depending on the clinical context. For example, 

instead of the proposed 50% threshold for model 1, a higher threshold could be 

chosen for a less sensitive but highly specific patient selection.  

In total, 107 (77.5%) patients were classified correctly by model 1 and 109 (79.0%) 

by model 2 compared to 84 (61%) using the DS. The NPV first appeared low (~67%) 

but this is to be expected in a PET-positive only group. We tried to simulate the NPV 

for the entire DLBCL patient population by incorporating PFS data from 622 patients 

with CMR to our model outcome. The NPV then reached an expected value of 

around 85%.5, 6 This approach may be optimistic, as it does not account for 

SUVmean at baseline, the number of lesions or TLRpeakmean for assessing risk in 

these patients.  
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Model 2 performed slightly better than model 1, resulting in the correct classification 

of two additional patients. Given the limited performance improvement and the 

practical advantage of relying on quantitative data from a single timepoint, model 1 

has our preference. We also demonstrated that model 1 (EOT) outperformed our 

previously published clinical PET model, in terms of PPV and NPV,18 which shows 

that a baseline features-only model does not select the same patients and is less 

useful in this context. 

Model 1 separated DS4-5 patients into two distinct risk groups, a low-risk group 

(<50% risk, 2-yrs-PFS of 64.2%) and a high-risk group (>50% risk, 2-yr-PFS of 

11.2%). Compared to the classification based solely on DS, which resulted in 54 

false positive patients (39%), model 1 significantly reduced the number of false 

positives to just 9 patients (7%). When the low-risk group, as defined by the model, 

was compared directly to DS4, the survival increased from 58.1% to 64.2%. Even 

though this is a significant improvement, 24 patients (35.8%) were still not classified 

correctly and would be ‘undertreated’ if only high-risk patients would receive 

secondary treatment. Future research targeting the DS4 subgroup is warranted, 

although this may be challenging due to the need for a large dataset and integration 

of advanced radiomics with clinical or diagnostic features.  

This preliminary analysis suggests that the quantitative model improves risk 

discrimination and may better inform post-first-line treatment decisions. A two-step 

risk assessment approach might be worth further exploration: patients would first 

undergo visual assessment to distinguish CMR from PET-positive cases, after which 

DS4-5 patients could be further stratified using the EOT model to identify those at 

higher risk. Such an approach might help refine selection for secondary treatment, 

such as radiotherapy, while allowing lower-risk patients to be monitored 
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conservatively. However, the latter approach remains hypothetical as it was solely 

based on internal data. We used bootstrapping for internal validation to mitigate 

overfitting and assess coefficient shrinkage, but external validation remains 

necessary to ensure prognostic reliability of the model. 

Our study was limited by the sample size, which may have affected the robustness 

of the model development. However, the number of enrolled PET-positive EOT 

patients was substantial, considering over 70% of patients respond to first-line 

treatment. The PETRA dataset combines several studies, which gives the advantage 

of a larger dataset, but may contain larger variations in terms of therapy choices and 

genetic variability. For example, the HO130 study enrolled patients with MYC 

oncogene rearrangements who are known to have a poor prognosis.42 Although the 

protocol strongly recommended to confirm each relapse by biopsy, it cannot be 

ensured this was the case for all events. Despite this limitation, the overall results are 

expected to remain largely unaffected as false positives in non-biopsy proven cases 

would also have influenced the classification based on visual assessment using the 

DS. Nevertheless, the model demonstrates improved patient classification compared 

to the DS. Furthermore, among a subset of 122 patients within the PETRA cohort, 27 

patients (22%) received radiotherapy after first-line treatment, although the criteria 

for their selection were not always specified. PET-positive DLBCL patients who have 

received radiotherapy at EOT usually have a favorable outcome.43 However, 

radiotherapy had no impact on our model performance. The decision for 

radiotherapy thus might have been made by the treating physician instead of the 

EOT PET result, or the sample size may have been too small to detect an effect on 

the model. Finally, patients with DS5 were slightly overrepresented in our dataset, 

which could affect the generalizability of our results.  
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In conclusion, we developed a quantitative PET model comprising 

tumorSUVpeak/TumorSUVmean and number of lesions at EOT, with the optional 

inclusion of SUVmean at baseline that improves the PPV for 2-year progression-free 

survival to over 85%, while maintaining a strong NPV. Our model could help guide 

response-adapted therapy after initial treatment, reducing the number of patients 

who might receive unnecessary secondary treatment to 7%.  
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Tables 

Table 1. Patient characteristics of PET-positive patients (n=138) 
 

  

Characteristic Value 
Sex Male 80 (58.0%) 

Female 58 (42.0%) 
Age at diagnosis (years) Median (range) 61 (18-88) 
Follow-up (months) Median 53 
DS 4 62 (44.9%) 

5 76 (55.1%) 
PFS (years) ≥ 2  54 (39.1%) 

< 2  84 (60.9%) 
R-CHOP (cycles) 5  2 (1.4%) 

6  69 (50%) 
7  3 (2.2%) 
8  61 (44.2%) 

R-CEOP (cycles) 6 3 (2.2%) 
Ann Arbor Stage I 8 (5.8%) 

II 14 (10.1%) 
III 32 (23.2%) 
IV 84 (60.9%) 

IPI Low-risk (IPI 0-1) 22 (15.9%) 
Low-intermediate (IPI 2) 29 (21.0%) 
High-intermediate (IPI 3) 43 (31.2%) 
High-risk (IPI 4-5) 44 (31.9%) 

IPI-Age (years) ≤ 60  66 (47.8%) 
> 60  72 (52.2%) 

IPI-Stage I/II 22 (15.9%) 
III/VI 116 (84.1%) 

IPI-EN (sites involved) 0-1  67 (48.6%) 
> 1  71 (51.4%) 

IPI-ECOG < 2 112 (81.2%) 
≥ 2 26 (18.8%) 

IPI-LDH LDH ≤ ULN 32 (23.2%) 
LDH > ULN 106 (76.8%) 

DS=Deauville Score; PFS=progression-free survival; IPI=International 
Prognostic Index;  EN=involvement of extra-nodal sites; ECOG=performance 
status according to the Eastern Cooperative Oncology Group; LDH=lactase 
dehydrogenase; R-CHOP=standard immunochemotherapy based on rituximab, 
cyclophosphamide, doxorubicin, vincristine and prednisolone; R-
CEOP=rituximab, cyclophosphamide, etoposide, vincristine, and prednisolone;  
ULN=upper limit of normal  
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Table 2. Hazards of final models  
 Model 1 Model 2 

Variable HR (95% CI) 
Coefficient 

after 
bootstrap 

p-value HR (95% CI) 
Coefficient 

after 
bootstrap 

p-value 

TLRpeakmean-EOT 2.0181 (1.491-2.732) 0.657 5.45e-06 1.942 (1.430-2.638) 0.612 2.17e-05* 
TLRpeakmean-EOT'  0.2786 (0.135-0.577) -1.195 0.00058 0.327 (0.154-0.695) -1.030 0.004* 
NOL-EOT 1.1763 (0.975-1.420) 0.152 0.09083 1.160 (0.962-1.399) 0.137 0.120 
NOL-EOT'   0.7110 (0.340-1.488) -0.320 0.36548 0.733 (0.351-1.533) -0.286 0.409 
SUVmean-BL - - - 0.912 (0.839-0.991) -0.085 0.030* 
‘=splined variable; HR=hazard ratio; TLRpeakmean=tumorSUVpeak/liverSUVmean ratio; -EOT=feature at end-of-treatment; 
NOL=number of lesions; -BL=feature at baseline 
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Table 3. Sensitivity scores using model 1 (end-of-treatment), varying the risk-to-progression cutoff value 
Risk to 

progression 
(%) 

Correctly 
classified (n) 

False 
positives 

(n) 

False 
negatives 

(n) 
Sensitivity Specificity Accuracy PPV  NPV  

NPV on 
whole 
group* 

20 85 52 1 0.988 0.037 0.616 0.615 0.667 0.864 
30 102 28 8 0.905 0.482 0.739 0.731 0.765 0.860 
40 107 14 17 0.798 0.741 0.775 0.827 0.702 0.851 
50 107 9 22 0.738 0.833 0.775 0.873 0.672 0.846 
60 105 7 26 0.691 0.870 0.761 0.892 0.644 0.842 
70 102 5 31 0.631 0.907 0.739 0.914 0.613 0.836 
80 94 3 41 0.512 0.944 0.681 0.935 0.554 0.825 
90 81 0 57 0.321 1.000 0.587 1.000 0.487 0.808 

*The last column was calculated using data from n=138 patients with Deauville score 4-5 and n=622 with Deauville score 1-3; 
PPV=positive predictive value; NPV=negative predictive value 
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Table 4. Sensitivity scores using model 2 (end-of-treatment + baseline), varying the risk to progression cutoff value 
Risk to 

progression 
(%) 

Correctly 
classified (n) 

False 
positives 

(n) 

False 
negatives 

(n) 
Sensitivity Specificity Accuracy PPV  NPV  

NPV on 
whole 
group* 

20 88 50 0 1.000 0.074 0.638 0.627 1.000 0.866 
30 101 30 7 0.917 0.444 0.732 0.720 0.774 0.861 
40 107 16 15 0.821 0.704 0.775 0.812 0.717 0.853 
50 107 10 21 0.750 0.815 0.775 0.863 0.677 0.847 
60 109 6 23 0.726 0.889 0.790 0.910 0.676 0.846 
70 101 4 33 0.607 0.926 0.732 0.927 0.602 0.834 
80 90 4 44 0.476 0.926 0.652 0.909 0.532 0.821 
90 85 0 54 0.369 1.000 0.616 1.000 0.505 0.812 

*The last column was calculated using data from n=138 patients with Deauville score 4-5 and n=622 with Deauville score 1-3  
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Figure legends 

Figure 1. Consort diagram for study population 

Figure 2. Overview of events in PET-positive patients 

Figure 3. Examples of baseline and end-of-treatment scans with different risk 

predictions for models 1 and 2 

Figure 4. Kaplan-Meier survival curves comparing patients with Deauville 

score 1-3 and 4-5 to the model 1 <50% and >50% risk groups for 2-year 

progression-free survival. The survival curves show a clear separation in 2-yr-PFS 

between Deauville score (DS) 1-3 and 4-5 groups. After applying model 1 with a 

50% risk threshold, the DS4-5 group further separated into two distinct subgroups: a 

low-risk group (<50%) and a high-risk group (>50%).  
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Methods S1: Quality control and image analysis 

The quality control followed EANM guidelines,1 requiring a liver SUVmean between 

1.3 and 3.0 and a plasma glucose lower than 11 mmol/L. If the liver SUVmean was 

outside the acceptable range, but the total image activity was 50-80% of the total 

injected FDG activity (in MBq), scans were still included. Scans were required to be 

complete and contain all essential DICOM data. All scans were centrally reviewed 

using standard visual Deauville score criteria applied by each site.  

Baseline scans were segmented semi-automatically using the ACCURATE tool2  

following the current benchmark method for DLBCL: a fixed SUV4.0 threshold3  

(https://petralymphoma.org/accurate-tool/). However, lesions at end-of-treatment 

(EOT) often have a low SUV uptake, which cannot be delineated using SUV4.0. 

Therefore, we used the lesional based L2A method, which was previously tested in 

interim-PET to successfully delineate low-uptake tumors.4 This lesion-based 

approach segments each lesion depending on their uptake values, applying either 

the SUV4.0 (if SUVmax ≥ 10) or MV3 method (if SUVmax < 10). MV3 is a majority 

vote method that includes voxels detected by at least 3 of the following delineation 

thresholds: SUV4.0, SUV2.5, 41% of SUVmax or 50% of SUVpeak.5 This way it 

resembles the baseline method for DS5 lesions and, at the same time, is more 

optimal for lesions with lower uptakes (DS4). A fixed threshold SUV2.5 was used in 

the few cases the L2A method failed. If necessary, non-lymphoma FDG uptake was 

manually removed. Segmentations were performed by a trained researcher (ALB) 

and reviewed by a nuclear medicine physician (GJCZ), including confirmation of 

lesion uptake classification (DS4-5).  

  

https://petralymphoma.org/accurate-tool/)
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Methods S2: Clinical features 

Clinical predictors including age (continuous), sex, Ann Arbor stage (I-IV), IPI score 

(International Prognostic Index, 4 risk groups) and the five IPI components as binary 

variables: age (≤60 versus >60), stage (I-II versus III-IV), EN (involvement of extra-

nodal sites, 0-1 versus >1), ECOG (performance status according to the Eastern 

Cooperative Oncology Group <2 versus ≥2) and LDH (lactase dehydrogenase  ≤ 

upper limit of normal (ULN) versus LDH > ULN) were collected. Follow-up and 

outcome data were extracted from the clinical databases. 
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Table S1. Patients characteristics of PET-positive patient stratified by study (n=138) 

    Australian GSTT15 HOVON130 HOVON84 PETAL IAEA SAKK 

Inclusion n 15 11 21 43 27 3 18 
         

Sex 
Male 10 (66.7%) 5 (45.5%) 3 (14.3%) 17 (39.5%) 15 (55.6%) 0 (0.0%) 8 (44.4%) 

Female 5 (33.3%) 6 (54.5%) 18 (85.7%) 26 (60.5) 12 (44.4%) 3 (100.0%) 10 (55.6%) 
         

Age at 
diagnosis 
(years) 

Median (range) 70 (55-88) 53 (31-72) 58 (28-76) 64 (23-79) 53 (24-78) 21 (18-83) 57 (26-77) 

         
Follow-up 
(months) 

Median 53 75 32 58 43 - 65 

         

DS 
4 2 (13.3%) 8 (72.7%) 5 (23.8%) 26 (60.5%) 11 (40.7%) 0 (0.0%) 10 (55.6%) 
5 13 (86.7%) 3 (27.3%) 16 (76.2%) 17 (39.5%) 16 (59.3%) 3 (100.0%) 8 (44.4%) 

         

PFS (years) 
≥ 2 7 (46.7%) 4 (36.4%) 3 (14.3%) 21 (48.8%) 12 (44.4%) 0 (0.0%) 7 (38.9%) 
< 2 8 (53.3%) 7 (63.6%) 18 (85.7%) 22 (51.2%) 15 (55.6%) 3 (100.0%) 11 (61.1%) 

         

Chemo 
therapy 

 

R-CHOP 15 8 21 43 20 10 18 
5 cycles 0 (0.0%) 0 (0.0%) 1 (4.8) 1 (2.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 
6 cycles 6 (40.0%) 8 (100.0%) 1 (4.8) 19 (44.2%) 17 (85.0%) 0 (0.0%) 18 
7 cycles 0 (0.0%) 0 (0.0%) 3 (14.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

8 cycles 9 (60.0%) 0 (0.0%) 16 (76.2%) 23 (53.5%) 3 (15%) 
10 

(100.0%) 
0 (0.0%) 

R-CEOP (6 cycles) 0 3 0 0 0 0 0 

         

Ann Arbor 
Stage 

I 0 (0.0%) 1 (9.1%) 0 (0.0%) 0 (0.0%) 4 (14.8%) 0 (0.0%) 3 (16.7%) 
II 0 (0.0%) 0 (0.0%) 3 (14.3%) 2 (4.7%) 4 (14.8%) 1 (33.3%) 4 (22.2%) 
III 6 (40.0%) 1 (9.1%) 6 (28.6%) 8 (18.6%) 7 (25.9%) 0 (0.0%) 4 (22.2%) 
IV 9 (60.0%) 9 (81.8%) 12 (57.1%) 33 (76.7%) 12 (44.4%) 2 (66.7%) 7 (38.9%) 

         

IPI 

Low-risk (IPI 0-1) 0 (0.0%) 1 (9.1%) 3 (14.3%) 3 (7.0%) 8 (29.6%) 1 (33.3%) 6 (33.3%) 
Low-intermediate 

(IPI 2) 
2 (13.3%) 2 (18.2%) 4 (19.0%) 9 (20.9%) 7 (25.9%) 0 (0.0%) 5 (27.8%) 

High-intermediate 
(IPI 3) 

7 (46.7%) 4 (36.4%) 12 (57.1%) 12 (27.9%) 4 (14.8%) 0 (0.0%) 4 (22.2%) 

High-risk (IPI 4-5) 6 (40.0%) 4 (36.4%) 2 (9.5%) 19 (44.2%) 8 (29.6%) 2 (66.7%) 3 (16.7%) 
         

IPI-Age 
(years) 

≤ 60 1 (6.7%) 7 (63.6%) 13 (61.9%) 15 (34.9%) 17 (63.0%) 2 (66.7%) 11 (61.1%) 
> 60 14 (93.3%) 4 (36.4%) 8 (38.1%) 28 (65.1%) 10 (37.0%) 1 (33.3%) 7 (38.9%) 

         

IPI-Stage 
I/II 0 (0.0%) 1 (9.1%) 3 (14.3%) 2 (4.7%) 8 (29.6%) 1 (33.3%) 7 (38.9%) 

III/VI 15 (100.0%) 10 (91.0%) 18 (85.7%) 41 (95.3%) 19 (70.4%) 2 (66.7%) 11 (61.1%) 
         

IPI-EN 
(sites 

involved) 

0-1 8 (53.3%) 3 (27.3%) 11 (52.4%) 16 (37.2%) 16 (59.3%) 1 (33.3%) 12 (66.7%) 

> 1  7 (46.7%) 8 (72.7%) 10 (47.6%) 27 (62.8%) 11 (40.7%) 2 (66.7%) 6 (33.3%) 

         

IPI-ECOG 
< 2 12 (80.0%) 7 (63.6%) 19 (90.5%) 35 (81.4%) 21 (77.8%) 2 (66.7%) 16 (88.9%) 
≥ 2 3 (20.0%) 4 (36.4%) 2 (9.5%) 8 (18.6%) 6 (22.2%) 1 (33.3%) 2 (11.1%) 

         

IPI-LDH 
LDH ≤ ULN 5 (33.3%) 3 (27.3%) 3 (14.3%) 8 (18.6%) 7 (25.9%) 1 (33.3%) 5 (27.8%) 
LDH > ULN 10 (66.7%) 8 (72.7%) 18 (85.7%) 35 (81.4%) 20 (74.1%) 2 (66.7%) 13 (72.2%) 

         

DS=Deauville Score; PFS=Progression free survival; IPI=International Prognostic Index; EN=involvement of extra-nodal sites; 
ECOG=performance status according to the Eastern Cooperative Oncology Group; LDH=lactase dehydrogenase 

 
 
 
Table S2. Patient characteristics of patients with complete metabolic response 

  n=622 (100%) 

Deauville score 1 303 (48.7%) 
 2 167 (26.9%) 
 3 152 (24.4%) 
Chemotherapy R-CHOP 622 (100%) 
PFS ≥ 2 years 538 (86.5%) 

 < 2 years 84 (13.5%) 

R-CHOP=standard immunochemotherapy based 
on rituximab, cyclophosphamide, doxorubicin, 
vincristine and prednisolone 
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Table S3. Distribution of quantitative PET descriptives 

 

  

Variable Median Q1 Q3 

TMTV-BL (ml) 635.42 293.90 1351.92 
TMTV-EOT (ml) 11.73 3.61 43.16  
ΔTMTV (ml) 559.18 246.87 1317.19  
Δ%TMTV 97.58  90.93 99.30 
 
TLG-BL  6120.68 2472.96 12033.09 
TLG-EOT 59.36 13.80   378.83 
ΔTLG 5214 1820   11521 
Δ%TLG 93.32  98.44 99.67 
 
SUVpeak-BL 18.13 12.99   24.91 
SUVpeak-EOT 5.76 3.65  12.44  
ΔSUVpeak 9.94 3.69   15.75 
Δ%SUVpeak 62.85  27.47  79.36 
 
SUVmean-BL 8.90 6.93 10.64 
SUVmean-EOT 5.13 3.30  7.41  
ΔSUVmean 3.17 0.83 5.71 
Δ%SUVmean 39.84  12.03 61.52  
 
SUVmax-BL 21.57    15.92  30.51 
SUVmax-EOT 8.82 4.91 17.62 
ΔSUVmax 10.71 2.71 18.54 
Δ%SUVmax 55.11 13.65  74.20  
 
TLRpeakpeak-BL 8.26 5.83 12.02 
TLRpeakpeak-EOT 2.30  1.47 4.94 
ΔTLRpeakpeak 5.11 2.15 8.09 
Δ%TLRpeakpeak 64.44 38.93 82.65  
 
TLRpeakmean-BL 9.70 6.72 13.87 
TLRpeakmean-EOT 2.64 0.98 5.69 
ΔTLRpeakmean 6.38  2.70  9.99  
Δ%TLRpeakmean 67.20 37.69  82.49 
 
TLRmaxmax-BL 8.26 5.84 11.46 
TLRmaxmax-EOT 2.88  1.71 6.09 
ΔTLRmaxmax 4.53 1.91 7.49 
Δ%TLRmaxmax 58.71 24.29 77.66   
 
NOL-BL (n) 9.50 3.00 19.00 
NOL-EOT (n) 2.00  1.00  4.00 
ΔNOL (n) 4.50 1.00   13.75  
Δ%NOL  66.67  34.62  87.50 
 
DmaxBulk-BL (mm) 308.90  188.10  432.60 
DmaxBulk-EOT (mm) 19.60 0.00 156.00 
ΔDmaxBulk (mm) 233.20 66.30 352.60 
Δ%DmaxBulk 86.01 86.01 100.00 
 

Δ%=percent reduction; -BL=feature at baseline;                   
-EOT=feature at end-of-treatment; TMTV=total metabolic 
tumor volume; TLG=total lesion glycolysis; 
TLRpeakpeak=tumorSUVpeak/liverSUVpeak ratio 
TLRpeakmean=tumorSUVpeak/liverSUVmean ratio; 
TLRmaxmax=tumorSUVmax/liverSUVmax ratio, 
NOL=number of lesions; DmaxBulk= distance between the 
largest lesion and the most distant lesion 
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Results S1: Univariate Cox and spline transformations 

Spline transformations were relevant for TMTV-EOT, Δ%TMTV, TLG-EOT, Δ%TLG, 

SUV-EOT, Δ%SUV, TLR-EOT, Δ%TLR, NOL-BL and NOL-EOT, ΔNOL and 

ΔDmaxBulk. The transformed variables were further used in the model, see Table 

S4. 

The univariate analysis showed statistical significance for the following linear or 

transformed variables: TMTV-BL, TMTV-EOT and Δ%TMTV, TLG-EOT and Δ%TLG, 

TLR-EOT, SUV-EOT and Δ%SUV, TLR-EOT and Δ%TLR, NOL-BL, NOL-EOT and 

Δ%NOL, DmaxBulk-BL, DmaxBulk-EOT and Δ%DmaxBulk. None of the clinical 

features, except for the DS, were significant. 

 

 
Figure S1. Relative log hazard for the number of lesions at end-of-treatment before (A) and after (B) cubic spline 

transformation.  
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Table S4. Univariate cox regression results before and after spline transformation in DS4 and 5 patients (n=138) 

 

 

 

Variable 

Before spline transformation After spline transformation 

HR (95% CI) c-index AIC p-value HR (95% CI) 
c-
index 

AIC p-value 

DS-EOT 3.433 (2.113-5.576) 0.640 734.372 6.24e-07* - - - - 
Age 0.994 (0.979-1.010) 0.514 762.061 0.448 - - - - 
Stage 1.249 (0.957-1.630) 0.552 759.691 0.102 - - - - 
Sex 0.707 (0.452-1.106) 0.531 760.259 0.129 - - - - 
IPI 1.146 (0.934-1.406) 0.543 760.895 0.193 - - - - 
IPI-Age 0.979 (0.638-1.503) 0.506 762.617 0.922 - - - - 
IPI-Stage 1.405 (0.745-2.650) 0.520 761.425 0.293 - - - - 
IPI-EN 1.160 (0.755-1.781) 0.524 762.166 0.498 - - - - 
IPI-ECOG 0.964 (0.551-1.685) 0.495 762.609 0.896 - - - - 
IPI-LDH 1.700 (0.971-2.975) 0.546 758.784 0.063 - - - - 
         
TMTV-BL (ml) 1.000 (1.000-1.000) 0.565 757.361 0.014*  1.000 (0.998-1.001) 0.565 759.040 0.574 
TMTV-EOT (ml) 1.003 (1.002-1.004) 0.695 743.728 4.46e-08* 0.849 (0.796-0.906) 0.695 722.794 7.69e-07* 
ΔTMTV (ml) 1.000 (1.000-1.000) 0.535 759.597 0.065 1.000 (1.000-1.000) 0.535 761.504 0.760 
Δ%TMTV (%) 0.991 (0.984-0.997) 0.639 756.017 0.003* 0.956 (0.932-0.981) 0.638 746.840 0.001* 
         
TLG-BL  1.000 (1.000-1.000) 0.542 760.171 0.103 1.000 (1.000-1.000) 0.542 762.037 0.716 
TLG-EOT 1.000 (1.000-1.000) 0.705 748.546 2.01e-06* 0.966 (0.956-0.978) 0.705 719.025 3.72e-09* 
ΔTLG 1.000 (1.000-1.000) 0.513 761.644 0.309 1.000 (1.000-1.000) 0.533 763.545 0.752 
Δ%TLG 0.992 (0.986-0.998) 0.671 757.141 0.006* 0.941 (0.917-0.965) 0.670 738.481 2.94e-06* 
         
SUVpeak-BL 0.994 (0.970-1.020) 0.532 762.433 0.661 1.013 (0.932-1.100) 0.527 764.348 0.769 
SUVpeak-EOT 1.109 (1.077-1.142) 0.710 721.111 3.57e-12* 0.554 (0.384-0.800) 0.710 712.791 0.002* 
ΔSUVpeak 0.936 (0.911-0.962) 0.665 737.660 2.20e-06* 1.019 (0.936-1.109) 0.665 739.483 0.670 
Δ%SUVpeak 0.983 (0.978-0.988) 0.714 727.082 1.71e-10* 0.975 (0.961-0.990) 0.714 716.866 0.001* 
         
SUVmean-BL 0.948 (0.881-1.019) 0.554 760.445 0.148 1.008 (0.803-1.265) 0.554 762.440 0.945 
SUVmean-EOT 1.255 (1.168-1.349) 0.692 728.729 5.79e-10* 0.593 (0.393-0.896) 0.692 724.355 0.013* 
ΔSUVmean 0.827 (0.773-0.884) 0.681 729.729 3.27e-08* 0.913 (0.729-1.144) 0.681 731.066 0.428 
Δ%SUVmean 0.983 (0.978-0.988) 0.703 729.848 2.95e-10* 0.973 (0.957-0.990) 0.703 720.293 0.002* 
         
SUVmax-BL 0.992 (0.972-1.012) 0.537 762.017 0.439 1.001 (0.926-1.081) 0.537 764.017 0.985 
SUVmax-EOT 1.073 (1.050-1.095) 0.702 727.022 5.63e-11* 0.738 (0.612-0.889) 0.702 718.026 0.001* 
ΔSUVmax 0.949 (0.929-0.969) 0.670 735.753 9.39e-07* 0.996 (0.926-1.070) 0.670 737.739 0.906 
Δ%SUVmax 0.984 (0.979-0.989) 0.707 727.139 3.45e-10* 0.978 (0.964-0.992) 0.707 719.379 0.003* 
         
TLRpeakpeak-BL 0.998 (0.954-1.045) 0.506 762.621 0.940 0.895 (0.738-1.086) 0.545 763.315 0.262 
TLRpeakpeak-EOT 1.249 (1.177-1.326) 0.722 722.002 2.54e-13* 0.229 (0.107-0.490) 0.722 707.862 1.46e-04* 
ΔTLRpeakpeak 0.906 (0.860-0.955) 0.625 747.591 2.41e-04* 1.035 (0.872-1.228) 0.625 749.441 0.696 
Δ%TLRpeakpeak 0.987 (0.982-0.991) 0.702 736.406 4.24e-09* 0.971 (0.958-0.986) 0.702 720.026 7.65e-05* 
         
TLRpeakmean-BL 1.000 (0.963-1.037) 0.504 762.626 0.984 0.933 (0.803-1.084) 0.536 763.767 0.362 
TLRpeakmean-EOT 1.215 (1.153-1.280) 0.722 722.094 3.12e-13* 0.271 (0.139-0.528) 0.722 707.624 1.26e-04* 
ΔTLRpeakmean 0.926 (0.886-0.968) 0.614 749.464 6.11e-04* 1.041 (0.908-1.195) 0.614 751.136 0.562 
Δ%TLRpeakmean 0.986 (0.981-0.990) 0.701 736.209 1.04e-08* 0.971 (0.957-0.985) 0.701 720.071 6.29e-05* 
         
TLRmaxmax-BL 0.991 (0.945-1.040) 0.514 762.488 0.711 0.902 (0.733-1.111) 0.534 763.517 0.333 
TLRmaxmax-EOT 1.214 (1.153-1.280) 0.721 723.322 3.29e-13* 0.409 (0.249-0.673) 0.721 711.100 4.30e-04* 
ΔTLRmaxmax 0.885 (0.838-0.935) 0.650 740.985 1.32e-05* 1.059 (0.879-1.275) 0.650 742.636 0.548 
Δ%TLRmaxmax 0.986 (0.982-0.991) 0.704 730.927 1.21e-10* 0.977 (0.964-0.990) 0.704 718.900 0.001* 
         
NOL-BL (n) 1.008 (0.998-1.019) 0.586 760.514 0.124 0.920 (0.847-1.000) 0.587 758.568 0.049* 
NOL-EOT (n) 1.092 (1.064-1.119) 0.658 731.876 8.56e-12* 0.339 (0.162-0.710) 0.658 725.923 0.004* 
ΔNOL  0.998 (0.985-1.011) 0.502 762.549 0.783 1.112 (1.017-1.217) 0.503 759.781 0.020* 
Δ%NOL (%) 0.996 (0.993-0.999) 0.571 755.871 0.004* 1.000 (0.992-1.009) 0.571 757.871 0.995 
         
DmaxBulk-BL 1.001 (1.000-1.002) 0.565 757.197 0.018* 0.999 (0.997-1.002) 0.565 759.062 0.715 
DmaxBulk-EOT 1.004 (1.002-1.005) 0.651 734.642 1.46e-09* 0.994 (0.988-1.001) 0.651 733.912 0.100 
ΔDmaxBulk 0.999 (0.998-1.000) 0.545 760.226 0.126 1.003 (1.000-1.005) 0.531 758.962 0.058* 
Δ%DmaxBulk 0.992 (0.988-0.996) 0.611 748.764 5.82e-05* 0.999 (0.990-1.008) 0.611 750.690 0.787 
         

AIC=Akaike information criterion 
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Table S5. Sensitivity scores using the clinical PET model 

Risk to 
progression 

(%) 

Correctly 
classified (n) 

False 
positives 

(n) 

False 
negatives 

(n) 
Sensitivity Specificity Accuracy PPV  NPV  

5 84 37 17 0.798 0.315 0.609 0.644 0.500 
10 79 22 37 0.560 0.593 0.573 0.681 0.464 
20 73 12 53 0.369 0.778 0.529 0.721 0.442 
30 62 6 70 0.167 0.889 0.449 0.700 0.407 
40 59 6 78 0.071 0.982 0.428 0.857 0.405 

 

Figure S2. Correlation plot comparing risk-of-progression between 

model 1 and 2 

Figure S3. Kaplan-Meier survival curves comparing Deauville score (A) to the model 1 <50% and >50% risk groups for 2 year 

progression-free survival (B) 
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Table S6. Overview of second-line therapy  

Type n = 138 
Time in months between EOT PET 

and start therapy (median, IQR) 

No second-line therapy 50 - 
Radiotherapy (RT) 18 1.15 (0.46-1.25) 
Chemo(immuno)therapy 29 1.08 (0.44-4.90) 
Chemo(immuno)therapy + ASCT (+ RT*) 17 1.12 (0.62-6.47) 
Chemo(immuno)therapy + RT 4 1.95 (1.28-3.24) 
Unknown 20  - 

*5 patients in this group had also received radiotherapy (RT); ASCT=Autologous stem cell 
transplantation 

 

Table S7. Distribution of PFS for patients receiving radiotherapy 

  Event No Event Total 

Radiotherapy 12 15 27 (19.6%) 
No Radiotherapy 63 32 95 (68.8%) 
Unknown 9 7 16 (11.6%) 
Total 84 54 138 (100.0%) 

 

Table S8. Distribution of PFS for patients receiving second-line therapy (general) 

 Event No Event Total 

Second-line therapy 53 18 71 (51.4%) 
No Second-line therapy 21 29 50 (36.2%) 
Unknown 10 7 17 (12.3%) 
Total 84 54 138 (100.0%) 

 

 

Results S2: Consolidating radiotherapy 

A subgroup of 122 patients in our database had data available on receiving 

consolidating radiotherapy. In this group 27 (22%) patients received radiotherapy 

after first-line treatment, of which 14 patients had a single lesion at EOT and 12 

patients showed progression within 2 years. The radiotherapy status (binary) did not 

improve the performance of model 1 (p=0.340) and 2 (p=0.603), suggesting limited 

additional predictive value (Table S9). 

Table S9. Hazards of models after addition of radiotherapy in a subset of n=122 patients 

 Model 1 (AIC=600.163, c-index=0.752) Model 2 (AIC=597.707, c-index=0.773) 

Variable HR (95% CI) p-value HR (95% CI) p-value 

TLRpeakmean-EOT 2.007 (1.454-2.773) 2.33e-05* 1.906 (1.368-2.656) 1.37e-04* 
TLRpeakmean-EOT'  0.254 (0.111-0.582) 0.001* 0.316 (0.132- 0.753) 0.009* 
NOL-EOT 1.185 (0.962-1.458) 0.110 1.164 (0.946-1.432) 0.152 
NOL-EOT'   0.703 (0.317-1.556) 0.384 0.735 (0.332-1.627) 0.447 
SUVmean-BL - - 0.912 (0.835-0.996) 0.041 
Radiotherapy 0.733 (0.387-1.388) 0.340 0.840 (0.435-1.621) 0.603 

‘= splined variable; HR=hazard ratio 
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