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Abstract

The 5-point Deauville score (DS) assesses end-of-treatment (EOT) response on
PET/CT in diffuse large B-cell ymphoma patients, categorizing scans as ‘positive’ or
‘negative’ for complete metabolic response. However, the positive predictive value
(PPV) is suboptimal at 60%. We evaluated whether quantitative PET parameters
combined with clinical data could improve prediction of treatment failure in EOT PET-
positive patients. Baseline and EOT PET/CT scans of 138 DS4-5 patients were
analyzed. Lesions were segmented using a semi-automated adaptive method
(SUVA4.0 or MV3). PET parameters, including total metabolic tumor volume (TMTV),
number of lesions (NOL), tumorSUV/liverSUV-ratio (TLR), the maximum distance
between the largest and any other lesion (DmaxBulk), and changes over time, were
obtained. Two Cox regression models predicted 2-year progression-free survival.
Clinical data were combined with EOT PET in model 1, and baseline, EOT and delta
values in model 2. After internal bootstrapping, models were evaluated for
classification using different risk-of-progression cutoffs. Sensitivity, specificity, PPV
and negative predictive values (NPV) were determined. Using forward selection,
model 1 comprised two variables: the NOL and the tumorSUVpeak/liverSUVmean
(TLRpeakmean) at EOT (AIC=690.072, c-index=0.747). Model 2 incorporated NOL,
TLRpeakmean (EOT) and baseline SUVmean (AIC=687.064, c-index=0.762). The
PPV improved to over 85% without compromising the NPV. False positives dropped
from 54 (39%, by DS) to 9 (7%) and 6 (4%) for models 1 and 2, respectively. Adding
baseline features did not notably impact the models’ performance. Our models could
support more accurate response-adapted treatment decisions, reducing

unnecessary subsequent false positive-directed treatments to just 7%.



Introduction

Diffuse large B-cell ymphoma (DLBCL) is the most prevalent aggressive non-
Hodgkin lymphoma.* First-line immunochemotherapy has a curative efficacy of 60-
70%, but one-third of patients experience refractory disease or relapse.?
Fluorine®®-fluorodeoxyglucose (**F-FDG) positron emission tomography-computed
tomography (PET/CT) is recommended for initial staging and end-of-treatment (EOT)

response assessment.>*

Currently, the post-therapy response is assessed by the 5-point visual Deauville
score (DS),> which classifies metabolic outcome as complete (DS1-3) or incomplete
(DS4-5). The simplicity of the DS, which uses the ratio between the FDG uptake in
the hottest residual lymphoma lesion and liver, is desirable for interpretation but may
also limit its predictive power.®> While the negative predictive value (NPV) stands at
85%, the positive predictive value (PPV) remains suboptimal at 60% due to a high
number of false positives, suggesting that nearly half of the patients with a DS4-5 are
cured despite their positive final scan.>® An incorrect prognosis can be impactful as
patients may be selected for subsequent therapies, such as consolidative
radiotherapy. Patients may unnecessarily be subjected to potential risks and anxiety
that come with receiving further treatment, biopsies or serial imaging.”** Better

criteria at EOT are thus essential to improve patient selection for further treatment.

Several research groups have proposed more precise response criteria at EOT by
defining quantitative cutoff values based on changes in the maximum standardized
uptake value (ASUVmax) or tumor-to-liver ratios higher than one.**** At staging,
there is increasing evidence supporting the prognostic potential of other quantitative

parameters such as the total metabolic tumor volume (TMTV) and total lesion



glycolysis (TLG).>*" Recently, factors that reflect the dissemination of disease, such
as the maximum distance between lesions, have also been reported as strong
prognosticators,'” which combined with TMTV can identify high-risk groups before

treatment.

The PETRA consortium previously demonstrated that a combination of baseline
tumor (TMTV, SUVpeak and DmaxBulk) and clinical (performance status and age)
predictors can greatly enhance the PPV and accurately stratify high-risk patients at
baseline.*® However, few studies have focused on utilizing these quantitative

features at EOT to predict the risk of relapse and need for second-line treatment.

Our aim was to improve the prediction of 2-year progression-free survival (2-yr-PFS)
compared to the DS by focusing on increasing the PPV without compromising the
NPV by (1) identifying quantitative EOT PET parameters that predict PFS, (2)
developing a model combining EOT PET and clinical parameters and (3) exploring

whether integrating baseline PET quantitative features could improve prediction.

Methods
Study population

Patients with DLBCL from 5 prospective studies (HOVON-84,"° HOVON-130,%°
SAKK,* PETAL,? IAEA?), 2 retrospective studies (BOLOGNA,** GSTT15%) and
real-world data (Austin Health, Melbourne) in the PETRA database®®, that had a
baseline and positive EOT scan (DS4-5), were included. PMBL patients were
excluded upfront. Patients with a complete metabolic response (CMR; DS1-3) were

included in the sensitivity analysis. All trials had institutional review board approval.



Quantitative and clinical features

Quiality control and lesion delineation methods are detailed in Methods S1. PET
features were extracted from total metabolic tumor volume (TMTV) segmentations
including TMTV (mL), SUVpeak, SUVmean and SUVmax. Lesional SUV was
compared with liver uptake in a 3cm diameter sphere, including
tumorSUVpeak/liverSUVmean ratio (TLRpeakmean), tumorSUVpeak/liverSUVpeak
ratio (TLRpeakpeak) and tumorSUVmax/liverSUVmax ratio (TLRmaxmax). TLG was
calculated as TMTV*SUVmean. Dissemination was assessed using the number of
lesions (NOL) and DmaxBulk, defined as the distance between the largest lesion and
the most distant lesion. The NOL could include multiple lesions in the same nodal
area. Absolute (A) and percent (A%) changes from baseline to EOT were calculated,
with A% defined as 100*((Baseline-EOT)/Baseline). Clinical feature collection is

described in Methods S2.

Model development

Two models were developed: an EOT model (model 1), using clinical data and
guantitative features extracted from EOT PET scans, and an EOT + baseline model
(model 2) that additionally incorporated baseline (BL) and change in PET values.
The primary outcome was 2-yr-PFS, defined as the time from the baseline PET scan

to progression, relapse or death.

Univariate Cox regression explored the association between variables and PFS.
Cubic spline transformations were applied for non-linearity if necessary. Highly
correlating factors (Spearman r>0.9) were removed to avoid multicollinearity. Final
models were constructed using forward selection to evaluate independent prognostic

predictors.



Model fitting was assessed using the Akaike information criterion (AIC) and c-index.
Subsequently, models were internally validated through bootstrapping with 500
generated datasets, adjusting regression coefficients for optimism by multiplying

them by a shrinkage factor.?’
Patient classification

The risk-of-progression at 24 months was estimated for each patient using both
models. Risk-of-event cutoffs from 20 to 90% were explored to classify patients into
low and high-risk groups. For each cutoff, predicted classifications were compared
against observed outcomes to determine sensitivity, specificity, PPV, NPV and the
number of false positives and false negatives. To estimate NPV for the entire
population we included 2-yr-PFS retrospective outcome data from DS1-3 EOT
patients. Since tumor segmentations were not available for DS1-3 patients, we
assumed these patients would be classified as low-risk by the models. The cutoff
yielding the best balance between sensitivity and specificity was explored further

using Kaplan-Meier survival analysis.

The added relevance of our EOT model was assessed by comparing it to a
published baseline clinical PET model,*® which used MTV, SUVpeak, DmaxBulk, age

and ECOG to identify high-risk patients at baseline.
Assessment of confounding therapy

Information about second-line therapy was available for 122 patients, though the
indications were mostly undocumented. The impact of radiotherapy on model

performance was evaluated in this subset.

Statistical analyses were performed using R (version 4.2.3), with a p-value <0.05

considered statistically significant.



Results
Study population

Within the PETRA database, 847 DLBCL patients were identified who underwent an
EOT scan with an assigned DS, of whom 225 were classified as ‘PET-positive’ with

an incomplete response (DS4-5), and 622 as having CMR (DS1-3, Figure 1).

The predictive models were built solely on PET-positive patients (n=225). Patients
were deemed non-eligible due to missing or unusable scans (n=54), invalid clinical
data (n=14), non-compliance with quality control standards (n=10) or having tumor
uptake <DS3 at revision (n=9, Figure 1). A total of 138 EOT PET-positive patients
were included, with 62 patients classified as DS4 and 76 patients as DS5. Patient
characteristics are summarized in Table 1, and described in greater detail for each

study in Table S1.

The median age was 61 years, ranging from 18 to 88 years. Most patients (n=135,
97.8%) received R-CHOP or a combination thereof, while only 3 patients received R-
CEOP treatment. The median follow-up time was 53 months. Eighty-four patients
(60.9%) had an event, of which 80 either progressed or relapsed, and 4 died. Among
the DS4 patients, 63% remained event-free at 2 years, compared to 20% of patients

with DS5 (Figure 2).

The majority of patients with CMR were scored as DS1 (n=303, 48.7%), then DS2
(n=167, 26.9%) and DS3 (n=152, 24.4%, Table S2). Notably, 13.5% of these

patients developed progression.



Model development
The descriptive statistics for quantitative PET variables in PET-positive patients are
listed in Table S3. All variables showed a reduction from baseline to EOT, with the

largest changes in TMTV and TLG.

Highly correlated variables were eliminated, leaving TMTV-BL (at baseline), TMTV-
EOT (at end-of-treatment), A%TMTYV (relative difference), SUVmean-BL,
TLRpeakmean-BL, TLRpeakmean-EOT, A%TLRpeakmean, NOL-BL, NOL-EOT,
A%NOL, and DmaxBulk-BL, A%DmaxBulk and ADmaxBulk (absolute difference),
and the clinical features age, sex, stage, IPl-score, IPI-stage, IPI-EN, IPI-ECOG and
IPI-LDH, which were taken forward into multivariate models. Details on the univariate
analysis and spline transformations are given in Results S1. TMTV was selected
over TLG due to its wide usage and ease of interpretation. TLRpeakmean was
favored over SUVpeak because of its independence from the administered activity
and patient body weight. It is also less sensitive to noise and different PET systems

when compared to TLRmaxmax.

Finally, after applying forward selection, model 1 comprised two (splined) variables
expressing the tumor-to-liver ratio and the number of lesions: TLRpeakmean-EOT
and NOL-EOT (AIC=690.072, c-index=0.753, R?>=0.436; after bootstrapping: c-
index=0.747, R?>=0.410). Model 2 incorporated the same two features with the
addition of the mean SUV at baseline (SUVmean-BL; AIC=687.064, c-index=0.771,
R?=0.456; after bootstrapping: c-index=0.762, R?>=0.452). No clinical features were
retained by the models. Shrinkage factors of 0.935 (model 1) and 0.922 (model 2)
were obtained after internal bootstrapping validation to adjust the regression

coefficients (Table 2).



Patient classification

A risk-to-progression estimate was calculated for every patient. The individual risk
estimates were fairly similar for the two models (r=0.97, p=7.61e-87, Figure S2).

Examples of patients with different risk predictions are shown in Figure 3.

The performance of models 1 and 2 are summarized in Tables 3 and 4, using
various risk-to-progression cutoff values. Increasing the risk threshold led to higher
specificity but lowered sensitivity. No patient had a risk score <10%. A 50% threshold
for model 1 and 60% threshold for model 2 classified the highest number of patients
correctly and achieved a PPV above 85%. The corresponding NPVs were 67% and
68%, respectively. However, after including the PFS from 622 patients with CMR
(DS1-3), comprising 538 true negatives and 84 false negatives, the NPV increased
to 85% (last column of Tables 3 and 4). Model 2 fit the data better than the simpler
model 1 (x*(df=1) = 5.009, p=0.025), which resulted in 2 more correctly classified

patients.

The survival curves (Figure 4) showed a clear separation in 2-yr-PFS between DS1-
3 and DS4-5 groups (81.4% versus 37.0%). Upon applying model 1 with a 50% risk
threshold, the DS4-5 group further separated into two distinct subgroups: a low-risk
group (<50%) with a 2-yr-PFS of 64.2%, and a high-risk group (>50%) with a PFS of
11.2%. Stratification using model 1 also separated the curves better compared to
DS4 and DS5 separately (Figure S3). The low-risk (<50%) group had a 2-yr-PFS of
64.2%, compared to 58.1% in the DS4 group. Similarly, the high-risk (>50%) group

had a 2-yr-PFS of 11.2%, whereas the DS5 group was 19.7%.

Furthermore, model 1 (EOT) has improved prognostic power when compared to the

|.18

previously published clinical PET model.” Following the same methodology as for

10



model 1, a 20% risk-of-progression cutoff was chosen for the clinical PET model.
The sensitivity, specificity, PPV and NPV of the clinical PET model all decreased in
contrast to model 1 (Table S5). Notably, the number of false negatives was
substantially lower for model 1 (22 versus 53). The baseline model identified 43
patients at high risk of having an event within 2 years, compared to 74 patients using

model 1. The two models overlapped in selecting 27 patients.

Lastly, an overview of patients receiving second-line therapy can be viewed in Table
S6-8. The inclusion of radiotherapy status did not significantly enhance the
performance of either model, suggesting limited additional predictive value (Results

S2).

Discussion

The reliability of the DS at the end of first-line treatment for DLBCL has been
guestioned due to its low PPV caused by a high number of false positives. Our study
aimed to address this by identifying quantitative PET features that could improve the
PPV for 2-yr-PFS. Two relatively simple prediction models were developed: an EOT
model (1) including the NOL and TLRpeakmean at EOT, and an EOT + baseline
model (2) that incorporated SUVmean at baseline as an additional feature. Both
models outperformed DS for correctly classifying the risk-of-progression and

enhanced the PPV to over 85% without compromising the NPV.

The importance of TLRpeakmean in our model is not surprising, as it represents the
tumor-to-liver ratio similar to the DS, but in a semi-quantitative manner to minimize
the risk of visual misinterpretation. Although TLRmaxmax is more commonly used to

guantify the DS, we favored TLRpeakmean because it is more robust to noise and

11



image reconstruction differences. This definition of TLR was also recommended in
the recent EANM guidelines on FDG oncology imaging.?® SUVpeak is less sensitive
to noise and differences in image resolution between PET systems, making it more
generalizable across scanner generations, especially with the increasing use of high-

29-31

resolution scanners, whereas the SUVmean reflects the most reproducible

measure for uniform liver uptake.*

Others have also demonstrated that EOT TLR cutoffs can identify patients with
inferior PFS and 0S.** * 32 Nevertheless, the reported cutoff values varied widely
according to the patient cohort. In contrast, the TLR in our model is expressed as a
continuous variable, meaning it can be applied to different populations. When
combined with a simple measure, the number of lesions at EOT, which may partially
serve as a surrogate for disease dissemination, the improvement in prognostic value
is substantial. The number of lesions at EOT has not commonly been used in
predictive models for DLBCL, but the number of extra nodal lesions in DLBCL and

nodal lesions in follicular lymphoma at baseline are well-known risk parameters.®* %

Despite the significant association of TMTV at baseline and EOT to PFS (univariate),

25,3638 it \was not selected in our

and its recognition as an important prognostic factor,
final models. In our cohort of only PET-positive patients, the selected variables thus
appeared to be stronger prognosticators. Furthermore, none of the clinical features

contributed to the predictive power. This aligns with a recent study where radiomics-

only models outperformed those integrating clinical parameters.*

The use of baseline quantitative PET features in predictive models has been
reported for estimating individual patient outcomes,'® *° but models that incorporate

EOT data are scarce. Cui et al** developed a model combining clinical, baseline,

12



EOT and delta PET features, that outperformed three models: an IPI-model, a
clinical features only model (with and without DS), and a PET radiomics model (BL,
EOT and delta) for time to progression. Their best model (c-index of 0.853)
surpassed our model performances (c-index=0.747 and 0.762 respectively).
However, this comparison is challenging due to differences in feature selection.
Additionally, their dataset included both PET-negative and -positive patients with

relatively few cases of progression.

We examined the potential of our models to correctly classify PET-positive patients
using a series of risk-of-progression cutoffs. A clear trade-off was seen between
sensitivity and specificity. Cutoff risks of 50% and 60% for model 1 and 2,
respectively, yielded objectively the best balance between specificity with sensitivity.
An important advantage of our models is their ability to provide a continuous
probability, rather than a dichotomous assessment such as the DS. A more suitable
threshold can thus be chosen depending on the clinical context. For example,
instead of the proposed 50% threshold for model 1, a higher threshold could be

chosen for a less sensitive but highly specific patient selection.

In total, 107 (77.5%) patients were classified correctly by model 1 and 109 (79.0%)
by model 2 compared to 84 (61%) using the DS. The NPV first appeared low (~67%)
but this is to be expected in a PET-positive only group. We tried to simulate the NPV
for the entire DLBCL patient population by incorporating PFS data from 622 patients
with CMR to our model outcome. The NPV then reached an expected value of
around 85%.> ® This approach may be optimistic, as it does not account for
SUVmean at baseline, the number of lesions or TLRpeakmean for assessing risk in

these patients.

13



Model 2 performed slightly better than model 1, resulting in the correct classification
of two additional patients. Given the limited performance improvement and the
practical advantage of relying on quantitative data from a single timepoint, model 1
has our preference. We also demonstrated that model 1 (EOT) outperformed our
previously published clinical PET model, in terms of PPV and NPV,*® which shows
that a baseline features-only model does not select the same patients and is less

useful in this context.

Model 1 separated DS4-5 patients into two distinct risk groups, a low-risk group
(<50% risk, 2-yrs-PFS of 64.2%) and a high-risk group (>50% risk, 2-yr-PFS of
11.2%). Compared to the classification based solely on DS, which resulted in 54
false positive patients (39%), model 1 significantly reduced the number of false
positives to just 9 patients (7%). When the low-risk group, as defined by the model,
was compared directly to DS4, the survival increased from 58.1% to 64.2%. Even
though this is a significant improvement, 24 patients (35.8%) were still not classified
correctly and would be ‘undertreated’ if only high-risk patients would receive
secondary treatment. Future research targeting the DS4 subgroup is warranted,
although this may be challenging due to the need for a large dataset and integration

of advanced radiomics with clinical or diagnostic features.

This preliminary analysis suggests that the quantitative model improves risk
discrimination and may better inform post-first-line treatment decisions. A two-step
risk assessment approach might be worth further exploration: patients would first
undergo visual assessment to distinguish CMR from PET-positive cases, after which
DS4-5 patients could be further stratified using the EOT model to identify those at
higher risk. Such an approach might help refine selection for secondary treatment,

such as radiotherapy, while allowing lower-risk patients to be monitored
14



conservatively. However, the latter approach remains hypothetical as it was solely
based on internal data. We used bootstrapping for internal validation to mitigate
overfitting and assess coefficient shrinkage, but external validation remains

necessary to ensure prognostic reliability of the model.

Our study was limited by the sample size, which may have affected the robustness
of the model development. However, the number of enrolled PET-positive EOT
patients was substantial, considering over 70% of patients respond to first-line
treatment. The PETRA dataset combines several studies, which gives the advantage
of a larger dataset, but may contain larger variations in terms of therapy choices and
genetic variability. For example, the HO130 study enrolled patients with MYC
oncogene rearrangements who are known to have a poor prognosis.* Although the
protocol strongly recommended to confirm each relapse by biopsy, it cannot be
ensured this was the case for all events. Despite this limitation, the overall results are
expected to remain largely unaffected as false positives in non-biopsy proven cases
would also have influenced the classification based on visual assessment using the
DS. Nevertheless, the model demonstrates improved patient classification compared
to the DS. Furthermore, among a subset of 122 patients within the PETRA cohort, 27
patients (22%) received radiotherapy after first-line treatment, although the criteria
for their selection were not always specified. PET-positive DLBCL patients who have
received radiotherapy at EOT usually have a favorable outcome.** However,
radiotherapy had no impact on our model performance. The decision for
radiotherapy thus might have been made by the treating physician instead of the
EOT PET result, or the sample size may have been too small to detect an effect on
the model. Finally, patients with DS5 were slightly overrepresented in our dataset,
which could affect the generalizability of our results.

15



In conclusion, we developed a quantitative PET model comprising
tumorSUVpeak/TumorSUVmean and number of lesions at EOT, with the optional
inclusion of SUVmean at baseline that improves the PPV for 2-year progression-free
survival to over 85%, while maintaining a strong NPV. Our model could help guide
response-adapted therapy after initial treatment, reducing the number of patients

who might receive unnecessary secondary treatment to 7%.

16



References

1. Al-Hamadani M, Habermann TM, Cerhan JR, Macon WR, Maurer MJ, Go RS. Non-Hodgkin
lymphoma subtype distribution, geodemographic patterns, and survival in the US: A longitudinal
analysis of the National Cancer Data Base from 1998 to 2011. Am J Hematol. 2015;90(9):790-795.
2. Raut LS, Chakrabarti PP. Management of relapsed-refractory diffuse large B cell lymphoma.
South Asian J Cancer. 2014;3(1):66-70.

3. Coughlan M, Elstrom R. The use of FDG-PET in diffuse large B cell ymphoma (DLBCL):
predicting outcome following first line therapy. Cancer Imaging. 2014;14(1):34.

4. Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging,
and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin
Oncol. 2014;32(27):3059-3068.

5. Barrington SF, Mikhaeel NG, Kostakoglu L, et al. Role of imaging in the staging and response
assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas
Imaging Working Group. J Clin Oncol. 2014;32(27):3048-3058.

6. Juweid ME, Mueller M, Alhouri A, MZ AR, Mottaghy FM. Positron emission
tomography/computed tomography in the management of Hodgkin and B-cell non-Hodgkin
lymphoma: An update. Cancer. 2021;127(20):3727-3741.

7. Pirani M, Marcheselli R, Marcheselli L, Bari A, Federico M, Sacchi S. Risk for second
malignancies in non-Hodgkin's lymphoma survivors: a meta-analysis. Ann Oncol. 2011;22(8):1845-
1858.

8. Smith-Bindman R, Lipson J, Marcus R, et al. Radiation dose associated with common
computed tomography examinations and the associated lifetime attributable risk of cancer. Arch
Intern Med. 2009;169(22):2078-2086.

9. Rock CB, Chipman JJ, Parsons MW, et al. Second Primary Malignancies in Diffuse Large B-cell
Lymphoma Survivors with 40 Years of Follow Up: Influence of Chemotherapy and Radiation Therapy.
Adv Radiat Oncol. 2022;7(6):101035.

10. Derry-Vick HM, Heathcote LC, Glesby N, et al. Scanxiety among Adults with Cancer: A
Scoping Review to Guide Research and Interventions. Cancers (Basel). 2023;15(5):1381.

11. Thompson CA, Charlson ME, Schenkein E, et al. Surveillance CT scans are a source of anxiety
and fear of recurrence in long-term lymphoma survivors. Ann Oncol. 2010;21(11):2262-2266.
12. Ferrari C, Pisani AR, Masi T, et al. Lesion-to-Liver SUVmax Ratio to Improve the Prognostic

Value of the End of Treatment PET/CT in Diffuse Large B-Cell Lymphoma. J Clin Med.
2022;11(19):5541.

13. Allioux F, Gandhi D, Vilque JP, et al. End-of-treatment (18)F-FDG PET/CT in diffuse large B cell
lymphoma patients: DeltaSUV outperforms Deauville score. Leuk Lymphoma. 2021;62(12):2890-
2898.

14. Li YH, Zhao YM, Jiang YL, et al. The prognostic value of end-of-treatment FDG-PET/CT in
diffuse large B cell ymphoma: comparison of visual Deauville criteria and a lesion-to-liver SUV(max)
ratio-based evaluation system. Eur J Nucl Med Mol Imaging. 2022;49(4):1311-1321.

15. Shagera QA, Cheon GJ, Koh Y, et al. Prognostic value of metabolic tumour volume on
baseline (18)F-FDG PET/CT in addition to NCCN-IPI in patients with diffuse large B-cell lymphoma:
further stratification of the group with a high-risk NCCN-IPI. Eur J Nucl Med Mol Imaging.
2019;46(7):1417-1427.

16. Zhang YY, Song L, Zhao MX, Hu K. A better prediction of progression-free survival in diffuse
large B-cell lymphoma by a prognostic model consisting of baseline TLG and %DeltaSUV(max).
Cancer Med. 2019;8(11):5137-5147.

17. Cottereau AS, Meignan M, Nioche C, et al. Risk stratification in diffuse large B-cell lymphoma
using lesion dissemination and metabolic tumor burden calculated from baseline PET/CT(dagger).
Ann Oncol. 2021;32(3):404-411.

17



18. Eertink JJ, van de Brug T, Wiegers SE, et al. (18)F-FDG PET baseline radiomics features
improve the prediction of treatment outcome in diffuse large B-cell lymphoma. Eur J Nucl Med Mol
Imaging. 2022;49(3):932-942.

19. Lugtenburg PJ, de Nully Brown P, van der Holt B, et al. Rituximab-CHOP With Early Rituximab
Intensification for Diffuse Large B-Cell Lymphoma: A Randomized Phase Il Trial of the HOVON and
the Nordic Lymphoma Group (HOVON-84). J Clin Oncol. 2020;38(29):3377-3387.

20. Chamuleau MED, Burggraaff CN, Nijland M, et al. Treatment of patients with MYC
rearrangement positive large B-cell ymphoma with R-CHOP plus lenalidomide: results of a
multicenter HOVON phase Il trial. Haematologica. 2020;105(12):2805-2812.

21. Mamot C, Klingbiel D, Hitz F, et al. Final Results of a Prospective Evaluation of the Predictive
Value of Interim Positron Emission Tomography in Patients With Diffuse Large B-Cell Lymphoma
Treated With R-CHOP-14 (SAKK 38/07). J Clin Oncol. 2015;33(23):2523-2529.

22. Duhrsen U, Muller S, Hertenstein B, et al. Positron Emission Tomography-Guided Therapy of
Aggressive Non-Hodgkin Lymphomas (PETAL): A Multicenter, Randomized Phase Ill Trial. J Clin Oncol.
2018;36(20):2024-2034.

23. Carr R, Fanti S, Paez D, et al. Prospective international cohort study demonstrates inability of
interim PET to predict treatment failure in diffuse large B-cell ymphoma. J Nucl Med.
2014;55(12):1936-1944.

24, Zinzani PL, Gandolfi L, Broccoli A, et al. Midtreatment 18F-fluorodeoxyglucose positron-
emission tomography in aggressive non-Hodgkin lymphoma. Cancer. 2011;117(5):1010-1018.
25. Mikhaeel NG, Smith D, Dunn JT, et al. Combination of baseline metabolic tumour volume

and early response on PET/CT improves progression-free survival prediction in DLBCL. Eur J Nucl
Med Mol Imaging. 2016;43(7):1209-1219.

26. Eertink JJ, Burggraaff CN, Heymans MW, et al. Optimal timing and criteria of interim PET in
DLBCL: a comparative study of 1692 patients. Blood Adv. 2021;5(9):2375-2384.

27. Frank E. Harrell J. Regression Modeling Strategies: With Applications to Linear Models,
Logistic and Ordinal Regression, and Survival Analysis. 2nd ed. Springer Cham; 2015.

28. Boellaard R, Herrmann K, Barrington SF, et al. [18FIFDG PET/CT: EANM procedure guidelines
for tumour imaging: version 3.0. EANM J. 2025;1:100006.

29. Sher A, Lacoeuille F, Fosse P, et al. For avid glucose tumors, the SUV peak is the most reliable
parameter for [(18)F]JFDG-PET/CT quantification, regardless of acquisition time. EJNMMI Res.
2016;6(1):21.

30. Kaalep A, Sera T, Rijnsdorp S, et al. Feasibility of state of the art PET/CT systems performance
harmonisation. Eur J Nucl Med Mol Imaging. 2018;45(8):1344-1361.

31 van Sluis J, Boellaard R, Dierckx R, Stormezand GN, Glaudemans A, Noordzij W. Image Quality
and Activity Optimization in Oncologic (18)F-FDG PET Using the Digital Biograph Vision PET/CT
System. J Nucl Med. 2020;61(5):764-771.

32. Zwezerijnen GJC, Eertink JJ, Ferrandez MC, et al. Reproducibility of [18F]FDG PET/CT liver
SUV as reference or normalisation factor. Eur J Nucl Med Mol Imaging. 2023;50(2):486-493.

33. Toledano MN, Vera P, Tilly H, Jardin F, Becker S. Comparison of therapeutic evaluation
criteria in FDG-PET/CT in patients with diffuse large-cell B-cell ymphoma: Prognostic impact of
tumor/liver ratio. PLoS One. 2019;14(2):e0211649.

34. Solal-Celigny P, Roy P, Colombat P, et al. Follicular lymphoma international prognostic index.
Blood. 2004;104(5):1258-1265.

35. International Non-Hodgkin's Lymphoma Prognostic Factors Project. A predictive model for
aggressive non-Hodgkin's lymphoma. N Engl J Med. 1993;329(14):987-994.

36. Vercellino L, Cottereau AS, Casasnovas O, et al. High total metabolic tumor volume at
baseline predicts survival independent of response to therapy. Blood. 2020;135(16):1396-1405.

37. Ceriani L, Gritti G, Cascione L, et al. SAKK38/07 study: integration of baseline metabolic
heterogeneity and metabolic tumor volume in DLBCL prognostic model. Blood Adv. 2020;4(6):1082-
1092.

18



38. Tout M, Casasnovas O, Meignan M, et al. Rituximab exposure is influenced by baseline
metabolic tumor volume and predicts outcome of DLBCL patients: a Lymphoma Study Association
report. Blood. 2017;129(19):2616-2623.

39. Ferrandez MC, Golla SSV, Eertink JJ, et al. Validation of an Artificial Intelligence-Based
Prediction Model Using 5 External PET/CT Datasets of Diffuse Large B-Cell Lymphoma. J Nucl Med.
2024;65(11):1802-1807.

40. Mikhaeel NG, Heymans MW, Eertink JJ, et al. Proposed New Dynamic Prognostic Index for
Diffuse Large B-Cell Lymphoma: International Metabolic Prognostic Index. J Clin Oncol.
2022;40(21):2352-2360.

41, CuiY, Jiang Y, Deng X, et al. (18)F-FDG PET-Based Combined Baseline and End-Of-Treatment
Radiomics Model Improves the Prognosis Prediction in Diffuse Large B Cell Lymphoma After First-
Line Therapy. Acad Radiol. 2023;30(7):1408-1418.

42, Rosenwald A, Bens S, Advani R, et al. Prognostic Significance of MYC Rearrangement and
Translocation Partner in Diffuse Large B-Cell Lymphoma: A Study by the Lunenburg Lymphoma
Biomarker Consortium. J Clin Oncol. 2019;37(35):3359-3368.

43. Freeman CL, Savage KJ, Villa DR, et al. Long-term results of PET-guided radiation in patients
with advanced-stage diffuse large B-cell lymphoma treated with R-CHOP. Blood. 2021;137(7):929-
938.

19



Tables

Table 1. Patient characteristics of PET-positive patients (n=138)

Characteristic Value
Sex Male 80 (58.0%)
Female 58 (42.0%)
Age at diagnosis (years) Median (range) 61 (18-88)
Follow-up (months) Median 53
DS 4 62 (44.9%)
5 76 (55.1%)
PFS (years) 22 54 (39.1%)
<2 84 (60.9%)
R-CHORP (cycles) 5 2 (1.4%)
6 69 (50%)
7 3(2.2%)
8 61 (44.2%)
R-CEOP (cycles) 6 3(2.2%)

Ann Arbor Stage | 8 (5.8%)
Il 14 (10.1%)
n 32 (23.2%)

\%2 84 (60.9%)
IPI Low-risk (IP10-1) 22 (15.9%)
Low-intermediate (IPI 2) 29 (21.0%)
High-intermediate (IP1 3) 43 (31.2%)
High-risk (IP1 4-5) 44 (31.9%)
IPI-Age (years) <60 66 (47.8%)
> 60 72 (52.2%)
IPI-Stage 1/ 22 (15.9%)
Yt 116 (84.1%)
IPI-EN (sites involved) 0-1 67 (48.6%)
>1 71 (51.4%)
IPI-ECOG <2 112 (81.2%)
22 26 (18.8%)
IPI-LDH LDH < ULN 32 (23.2%)
LDH > ULN 106 (76.8%)

DS=Deauville Score; PFS=progression-free survival; IPI=International
Prognostic Index; EN=involvement of extra-nodal sites; ECOG=performance
status according to the Eastern Cooperative Oncology Group; LDH=lactase
dehydrogenase; R-CHOP=standard immunochemotherapy based on rituximab,
cyclophosphamide, doxorubicin, vincristine and prednisolone; R-
CEOP=rituximab, cyclophosphamide, etoposide, vincristine, and prednisolone;
ULN=upper limit of normal



Table 2. Hazards of final models

Model 1 Model 2
Coefficient Coefficient
Variable HR (95% CI) after p-value HR (95% CI) after p-value
bootstrap bootstrap
TLRpeakmean-EOT 2.0181 (1.491-2.732) 0.657 5.45e-06 1.942 (1.430-2.638) 0.612 2.17e-05*
TLRpeakmean-EOT" 0.2786 (0.135-0.577) -1.195 0.00058 0.327 (0.154-0.695) -1.030 0.004*
NOL-EOT 1.1763 (0.975-1.420) 0.152 0.09083 1.160 (0.962-1.399) 0.137 0.120
NOL-EOT" 0.7110 (0.340-1.488) -0.320 0.36548 0.733 (0.351-1.533) -0.286 0.409
SUVmean-BL - - - 0.912 (0.839-0.991) -0.085 0.030*

‘=splined variable; HR=hazard ratio; TLRpeakmean=tumorSUVpeak/liverSUVmean ratio; -EOT=feature at end-of-treatment;
NOL=number of lesions; -BL=feature at baseline
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Table 3. Sensitivity scores using model 1 (end-of-treatment), varying the risk-to-progression cutoff value

Risk to Correctl False False NPV on
progression classified )(ln) positives  negatives  Sensitivity Specificity Accuracy PPV NPV whole
(%) (n) (n) group*
20 85 52 1 0.988 0.037 0.616 0.615  0.667 0.864
30 102 28 8 0.905 0.482 0.739 0.731  0.765 0.860
40 107 14 17 0.798 0.741 0.775 0.827  0.702 0.851
50 107 9 22 0.738 0.833 0.775 0.873  0.672 0.846
60 105 7 26 0.691 0.870 0.761 0.892  0.644 0.842
70 102 5 31 0.631 0.907 0.739 0.914  0.613 0.836
80 94 3 41 0.512 0.944 0.681 0.935 0.554 0.825
90 81 0 57 0.321 1.000 0.587 1.000 0.487 0.808

*The last column was calculated using data from n=138 patients with Deauville score 4-5 and n=622 with Deauville score 1-3;
PPV=positive predictive value; NPV=negative predictive value
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Table 4. Sensitivity scores using model 2 (end-of-treatment + baseline), varying the risk to progression cutoff value

Risk to Correctl False False NPV on
progression classified {n) positives negatives  Sensitivity  Specificity Accuracy PPV NPV whole
(%) (n) (n) group*
20 88 50 0 1.000 0.074 0.638 0.627 1.000 0.866
30 101 30 7 0.917 0.444 0.732 0.720 0.774 0.861
40 107 16 15 0.821 0.704 0.775 0.812 0.717 0.853
50 107 10 21 0.750 0.815 0.775 0.863 0.677 0.847
60 109 6 23 0.726 0.889 0.790 0.910 0.676 0.846
70 101 4 33 0.607 0.926 0.732 0.927 0.602 0.834
80 90 4 44 0.476 0.926 0.652 0.909 0.532 0.821
90 85 0 54 0.369 1.000 0.616 1.000  0.505 0.812

*The last column was calculated using data from n=138 patients with Deauville score 4-5 and n=622 with Deauville score 1-3
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Figure legends

Figure 1. Consort diagram for study population
Figure 2. Overview of events in PET-positive patients

Figure 3. Examples of baseline and end-of-treatment scans with different risk

predictions for models 1 and 2

Figure 4. Kaplan-Meier survival curves comparing patients with Deauville
score 1-3 and 4-5 to the model 1 <50% and >50% risk groups for 2-year
progression-free survival. The survival curves show a clear separation in 2-yr-PFS
between Deauville score (DS) 1-3 and 4-5 groups. After applying model 1 with a
50% risk threshold, the DS4-5 group further separated into two distinct subgroups: a

low-risk group (<50%) and a high-risk group (>50%).
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Methods S1: Quality control and image analysis

The quality control followed EANM guidelines, requiring a liver SUVmean between
1.3 and 3.0 and a plasma glucose lower than 11 mmol/L. If the liver SUVmean was
outside the acceptable range, but the total image activity was 50-80% of the total
injected FDG activity (in MBqQ), scans were still included. Scans were required to be
complete and contain all essential DICOM data. All scans were centrally reviewed

using standard visual Deauville score criteria applied by each site.

Baseline scans were segmented semi-automatically using the ACCURATE tool?
following the current benchmark method for DLBCL: a fixed SUV4.0 threshold?®

(https://petralymphoma.org/accurate-tool/). However, lesions at end-of-treatment

(EOT) often have a low SUV uptake, which cannot be delineated using SUV4.0.
Therefore, we used the lesional based L2A method, which was previously tested in
interim-PET to successfully delineate low-uptake tumors.* This lesion-based
approach segments each lesion depending on their uptake values, applying either
the SUV4.0 (if SUVmax = 10) or MV3 method (if SUVmax < 10). MV3 is a majority
vote method that includes voxels detected by at least 3 of the following delineation
thresholds: SUV4.0, SUV2.5, 41% of SUVmax or 50% of SUVpeak.®> This way it
resembles the baseline method for DS5 lesions and, at the same time, is more
optimal for lesions with lower uptakes (DS4). A fixed threshold SUV2.5 was used in
the few cases the L2A method failed. If necessary, non-lymphoma FDG uptake was
manually removed. Segmentations were performed by a trained researcher (ALB)
and reviewed by a nuclear medicine physician (GJCZ), including confirmation of

lesion uptake classification (DS4-5).


https://petralymphoma.org/accurate-tool/)

Methods S2: Clinical features

Clinical predictors including age (continuous), sex, Ann Arbor stage (I-1V), IPI score
(International Prognostic Index, 4 risk groups) and the five IPI components as binary
variables: age (<60 versus >60), stage (-1l versus IlI-1V), EN (involvement of extra-
nodal sites, 0-1 versus >1), ECOG (performance status according to the Eastern
Cooperative Oncology Group <2 versus =2) and LDH (lactase dehydrogenase <
upper limit of normal (ULN) versus LDH > ULN) were collected. Follow-up and

outcome data were extracted from the clinical databases.



Table S1. Patients characteristics of PET-positive patient stratified by study (n=138)

Australian GSTT15 HOVON130 HOVONB84 PETAL IAEA SAKK
Inclusion n 15 11 21 43 27 3 18
Sex Male 10 (66.7%) 5(45.5%) 3 (14.3%) 17 (39.5%) 15(55.6%) 0 (0.0%) 8 (44.4%)
Female 5 (33.3%) 6 (54.5%) 18 (85.7%) 26 (60.5) 12 (44.4%) 3 (100.0%) 10 (55.6%)
Age at
diagnosis Median (range) 70 (55-88) 53 (31-72) 58(28-76) 64 (23-79) 53 (24-78) 21 (18-83) 57 (26-77)
(years)
Follow-up Median 53 75 32 58 43 - 65
(months)
DS 4 2 (13.3%) 8 (72.7%) 5(23.8%) 26 (60.5%) 11 (40.7%) 0 (0.0%) 10 (55.6%)
5 13 (86.7%) 3(27.3%) 16(76.2%) 17 (39.5%) 16 (59.3%) 3(100.0%) 8 (44.4%)
PES (years) 22 7 (46.7%) 4(36.4%) 3 (14.3%) 21 (48.8%) 12 (44.4%) 0(0.0%) 7 (38.9%)
Y <2 8 (53.3%) 7(63.6%) 18(85.7%) 22 (51.2%) 15(55.6%) 3(100.0%) 11 (61.1%)
R-CHOP 15 8 21 43 20 10 18
5 cycles 0 (0.0%) 0 (0.0%) 1(4.8) 1(2.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Chemo 6 cycles 6 (40.0%) 8 (100.0%) 1(4.8) 19 (44.2%) 17 (85.0%) 0 (0.0%) 18
therapy 7 cycles 0 (0.0%) 0 (0.0%) 3 (14.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
8 cycles 9 (60.0%) 0(0.0%) 16 (76.2%) 23 (53.5%) 3 (15%) (103%% ) 0 (0.0%)
R-CEOP (6 cycles) 0 3 0 0 0 0 0
| 0 (0.0%) 1 (9.1%) 0 (0.0%) 0 (0.0%) 4(148%) 0(0.0%)  3(16.7%)
Ann Arbor Il 0 (0.0%) 0 (0.0%) 3 (14.3%) 2 (4.7%) 4(14.8%) 1(33.3%) 4(22.2%)
Stage 1T 6 (40.0%) 1(9.1%) 6 (28.6%) 8 (18.6%) 7(25.9%)  0(0.0%) 4 (22.2%)
v 9 (60.0%) 9(81.8%) 12 (57.1%) 33(76.7%) 12 (44.4%) 2(66.7%) 7 (38.9%)
Low-risk (IP1 0-1) 0 (0.0%) 1(9.1%) 3 (14.3%) 3 (7.0%) 8(29.6%) 1(33.3%) 6 (33.3%)

Low-intermediate 5 13300 2(18206) 4 (19.0%)  9(20.9%) 7 (259%) 0 (0.0%) 5 (27.8%)

(IP12)

IPI o .
H'gh"ztgl"g)ed'ate 7(46.7%)  4(36.4%) 12 (57.1%) 12 (27.9%) 4 (14.8%)  0(0.0%) 4 (22.2%)
High-risk (IP 4-5) 6 (40.0%)  4(36.4%) 2 (9.5%) 19 (44.2%)  8(29.6%) 2 (66.7%) 3 (16.7%)
IPl-Age <60 1(6.7%)  7(63.6%) 13 (61.9%) 15 (34.9%) 17 (63.0%) 2 (66.7%) 11 (61.1%)
(years) > 60 14 (93.3%) 4 (36.4%) 8(38.1%) 28 (65.1%) 10 (37.0%) 1(33.3%) 7 (38.9%)
Pl.Stage Il 0 (0.0%) 1(9.1%) 3(14.3%)  2(47%)  8(29.6%) 1(33.3%) 7 (38.9%)
g Y 15(100.0%) 10 (91.0%) 18 (85.7%) 41(95.3%) 19 (70.4%) 2 (66.7%) 11 (61.1%)
IPI-EN 0-1 8(53.3%)  3(27.3%) 11 (52.4%) 16 (37.2%) 16 (59.3%) 1(33.3%) 12 (66.7%)
Im(/fj'lt\fg " >1 7(46.7%)  8(72.7%) 10 (47.6%) 27 (62.8%) 11 (40.7%) 2 (66.7%) 6 (33.3%)
PLECOG <2 12 (80.0%)  7(63.6%) 19 (90.5%) 35 (81.4%) 21 (77.8%) 2 (66.7%) 16 (88.9%)
>2 3(20.0%)  4(36.4%) 2(95%)  8(18.6%)  6(22.2%) 1(33.3%) 2 (11.1%)
PLLDH LDH < ULN 5(33.3%)  3(27.3%) 3 (14.3%)  8(18.6%)  7(25.9%) 1(33.3%) 5 (27.8%)
LDH > ULN 10 (66.7%) 8 (72.7%) 18 (85.7%) 35 (81.4%) 20 (74.1%) 2 (66.7%) 13 (72.2%)

DS=Deauville Score; PFS=Progression free survival; IPI=International Prognostic Index; EN=involvement of extra-nodal sites;
ECOG=performance status according to the Eastern Cooperative Oncology Group; LDH=lactase dehydrogenase

Table S2. Patient characteristics of patients with complete metabolic response
n=622 (100%)

Deauville score 1 303 (48.7%)
2 167 (26.9%)

3 152 (24.4%)

Chemotherapy R-CHOP 622 (100%)
PFS = 2 years 538 (86.5%)
< 2 years 84 (13.5%)

R-CHOP=standard immunochemotherapy based
on rituximab, cyclophosphamide, doxorubicin,
vincristine and prednisolone



Table S3. Distribution of quantitative PET descriptives

Variable Median Q1 Q3
TMTV-BL (ml) 635.42 293.90 1351.92
TMTV-EOT (ml) 11.73 3.61 43.16
ATMTV (ml) 559.18 246.87 1317.19
A%TMTV 97.58 90.93 99.30
TLG-BL 6120.68 2472.96 12033.09
TLG-EOT 59.36 13.80 378.83
ATLG 5214 1820 11521
A%TLG 93.32 98.44 99.67
SUVpeak-BL 18.13 12.99 24.91
SUVpeak-EOT 5.76 3.65 12.44
ASUVpeak 9.94 3.69 15.75
A%SUVpeak 62.85 27.47 79.36
SUVmean-BL 8.90 6.93 10.64
SUVmean-EOT 5.13 3.30 7.41
ASUVmean 3.17 0.83 5.71
A%SUVmean 39.84 12.03 61.52
SUVmax-BL 21.57 15.92 30.51
SUVmax-EOT 8.82 491 17.62
ASUVmax 10.71 2.71 18.54
A%SUVmax 55.11 13.65 74.20
TLRpeakpeak-BL 8.26 5.83 12.02
TLRpeakpeak-EOT 2.30 1.47 4.94
ATLRpeakpeak 511 2.15 8.09
A%TLRpeakpeak 64.44 38.93 82.65
TLRpeakmean-BL 9.70 6.72 13.87
TLRpeakmean-EOT 2.64 0.98 5.69
ATLRpeakmean 6.38 2.70 9.99
A%TLRpeakmean 67.20 37.69 82.49
TLRmaxmax-BL 8.26 5.84 11.46
TLRmaxmax-EOT 2.88 1.71 6.09
ATLRmaxmax 4.53 1.91 7.49
A%TLRmaxmax 58.71 24.29 77.66
NOL-BL (n) 9.50 3.00 19.00
NOL-EOQOT (n) 2.00 1.00 4.00
ANOL (n) 4.50 1.00 13.75
A%NOL 66.67 34.62 87.50
DmaxBulk-BL (mm) 308.90 188.10 432.60
DmaxBulk-EOT (mm) 19.60 0.00 156.00
ADmaxBulk (mm) 233.20 66.30 352.60
A%DmaxBulk 86.01 86.01 100.00

A%=percent reduction; -BL=feature at baseline;
-EOT=feature at end-of-treatment; TMTV=total metabolic
tumor volume; TLG=total lesion glycolysis;
TLRpeakpeak=tumorSUVpeak/liverSUVpeak ratio
TLRpeakmean=tumorSUVpeak/liverSUVmean ratio;
TLRmaxmax=tumorSUVmax/liverSUVmax ratio,
NOL=number of lesions; DmaxBulk= distance between the
largest lesion and the most distant lesion



Results S1: Univariate Cox and spline transformations

Spline transformations were relevant for TMTV-EOT, A%TMTV, TLG-EOT, A%TLG,
SUV-EOT, A%SUV, TLR-EOT, A%TLR, NOL-BL and NOL-EOT, ANOL and
ADmaxBulk. The transformed variables were further used in the model, see Table

S4.

The univariate analysis showed statistical significance for the following linear or
transformed variables: TMTV-BL, TMTV-EOT and A%TMTV, TLG-EOT and A%TLG,
TLR-EOT, SUV-EOT and A%SUV, TLR-EOT and A%TLR, NOL-BL, NOL-EOT and
A%NOL, DmaxBulk-BL, DmaxBulk-EOT and A%DmaxBulk. None of the clinical

features, except for the DS, were significant.
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Figure S1. Relative log hazard for the number of lesions at end-of-treatment before (A) and after (B) cubic spline

transformation.



Table S4. Univariate cox regression results before and after spline transformation in DS4 and 5 patients (n=138)

Before spline transformation

After spline transformation

Variable HR (95% ClI) ciindex  AIC p-value HR (95% Cl) |Cn dox  AIC p-value
DS-EOT 3433 (2.113-5576) 0.640 734372  6.24e.07 - - - -
Age 0.994 (0.979-1.010) 0.514  762.061  0.448 - - - -
Stage 1.249 (0.957-1.630) 0.552  759.691  0.102 - - - -
Sex 0.707 (0.452-1.106) 0531  760.259  0.129 - - - -

IPI 1.146 (0.934-1.406) 0.543  760.895  0.193 - - - -
IPl-Age 0.979 (0.638-1.503) 0.506  762.617  0.922 - - - -
IPI-Stage 1.405 (0.745-2.650) 0.520  761.425  0.293 - - - -
IPI-EN 1.160 (0.755-1.781) 0.524  762.166  0.498 - - - -
IPI-ECOG 0.964 (0.551-1.685) 0.495  762.609  0.896 - - - -
IPI-LDH 1.700 (0.971-2.975) 0.546  758.784  0.063 - - - -
TMTV-BL (ml) 1.000 (1.000-1.000)  0.565  757.361  0.014* 1.000 (0.998-1.001) 0.565  759.040  0.574
TMTV-EOT (ml) 1.003 (1.002-1.004)  0.695  743.728  4.46e-08* | 0.849 (0.796-0.906) 0.695  722.794  7.69e-07*
ATMTV (ml) 1.000 (1.000-1.000) 0535  759.597  0.065 1.000 (1.000-1.000)  0.535 761504  0.760
A%TMTV (%) 0.991 (0.984-0.997)  0.639  756.017  0.003* 0.956 (0.932-0.981)  0.638  746.840  0.001*
TLG-BL 1.000 (1.000-1.000) 0542  760.171  0.103 1.000 (1.000-1.000)  0.542  762.037 0.716
TLG-EOT 1.000 (1.000-1.000)  0.705 748546  2.01e-06* | 0.966 (0.956-0.978) 0.705  719.025  3.72e-09*
ATLG 1.000 (1.000-1.000) ~ 0.513  761.644  0.309 1.000 (1.000-1.000) 0.533  763.545 0.752
A%TLG 0.992 (0.986-0.998) 0.671  757.141  0.006* 0.941 (0.917-0.965) 0.670  738.481  2.94e-06*
SUVpeak-BL 0.994 (0.970-1.020)  0.532  762.433  0.661 1.013(0.932-1.100) 0.527  764.348  0.769
SUVpeak-EOT 1.109 (1.077-1.142) 0710  721.111  3.57e-12* | 0.554 (0.384-0.800) 0.710  712.791  0.002*
ASUVpeak 0.936 (0.911-0.962)  0.665  737.660  2.20e-06* | 1.019(0.936-1.109) 0.665  739.483  0.670
A%SUVpeak 0.983 (0.978-0.988)  0.714  727.082  1.71e-10* | 0.975(0.961-0.990) 0.714  716.866  0.001*
SUVmean-BL 0.948 (0.881-1.019)  0.554  760.445  0.148 1.008 (0.803-1.265)  0.554  762.440  0.945
SUVmean-EOT 1.255(1.168-1.349)  0.692  728.729  579e-10* | 0.593 (0.393-0.896) 0.692  724.355  0.013*
ASUVmean 0.827 (0.773-0.884)  0.681  729.729  3.27e-08* | 0.913 (0.729-1.144) 0.681  731.066  0.428
A%SUVmean 0.983 (0.978-0.988) 0703  729.848  2.95e-10* | 0.973(0.957-0.990) 0.703  720.293  0.002*
SUVmax-BL 0.992 (0.972-1.012)  0.537  762.017  0.439 1.001 (0.926-1.081) 0.537  764.017  0.985
SUVMax-EOT 1.073 (1.050-1.095) 0.702  727.022  5.63e-11* | 0.738(0.612-0.889) 0.702  718.026  0.001*
ASUVmax 0.949 (0.929-0.969) 0.670 735753  9.39e-07* | 0.996 (0.926-1.070) 0.670  737.739  0.906
A%SUVmax 0.984 (0.979-0.989)  0.707  727.139  3.45e-10* | 0.978(0.964-0.992) 0.707  719.379  0.003*
TLRpeakpeak-BL  0.998 (0.954-1.045)  0.506  762.621  0.940 0.895 (0.738-1.086)  0.545  763.315  0.262
TLRpeakpeak-EOT ~ 1.249 (1.177-1.326)  0.722  722.002  2.54e-13* | 0.229 (0.107-0.490) 0.722  707.862  1.46e-04*
ATLRpeakpeak 0.906 (0.860-0.955)  0.625  747.591  2.41e-04* | 1.035(0.872-1.228) 0.625  749.441  0.696
A%TLRpeakpeak ~ 0.987 (0.982-0.991) 0702  736.406  4.24e-09* | 0.971(0.958-0.986) 0.702  720.026  7.65e-05*
TLRpeakmean-BL  1.000 (0.963-1.037)  0.504  762.626  0.984 0.933 (0.803-1.084) 0536  763.767  0.362
TLRpeakmean-EOT  1.215(1.153-1.280)  0.722  722.094  3.12e-13* | 0.271(0.139-0.528) 0.722  707.624  1.26e-04*
ATLRpeakmean 0.926 (0.886-0.968)  0.614  749.464  6.11e-04* | 1.041(0.908-1.195) 0.614  751.136  0.562
A%TLRpeakmean  0.986 (0.981-0.990) 0.701  736.209  1.04e-08* | 0.971(0.957-0.985) 0.701  720.071  6.29e-05*
TLRmaxmax-BL 0.991 (0.945-1.040) 0514  762.488  0.711 0.902 (0.733-1.111) 0534 763517  0.333
TLRmaxmax-EOT 1214 (1.153-1.280) 0.721  723.322  3.29e-13* | 0.409 (0.249-0.673) 0721  711.100  4.30e-04*
ATLRmaxmax 0.885 (0.838-0.935)  0.650  740.985  1.32e-05* | 1.059(0.879-1.275) 0.650  742.636  0.548
A%TLRmaxmax 0.986 (0.982-0.991)  0.704  730.927  121e-10* | 0.977 (0.964-0.990) 0.704  718.900  0.001*
NOL-BL (n) 1.008 (0.998-1.019) 0586  760.514  0.124 0.920 (0.847-1.000) 0.587  758.568  0.049*
NOL-EOT (n) 1.092 (1.064-1.119) 0.658  731.876  8.56e-12* | 0.339(0.162-0.710) 0.658  725.923  0.004*
ANOL 0.998 (0.985-1.011)  0.502  762.549  0.783 1112 (1.017-1.217) 0503  759.781  0.020*
A%NOL (%) 0.996 (0.993-0.999) 0.571  755.871  0.004* 1.000 (0.992-1.009) 0.571  757.871  0.995
DmaxBulk-BL 1.001 (1.000-1.002)  0.565  757.197  0.018* 0.999 (0.997-1.002) 0.565  759.062 0.715
DmaxBulk-EOT 1.004 (1.002-1.005)  0.651  734.642  1.46e-09* | 0.994 (0.988-1.001) 0.651  733.912  0.100
ADmaxBulk 0.999 (0.998-1.000)  0.545  760.226  0.126 1.003 (1.000-1.005) 0531  758.962  0.058*
A%DmaxBulk 0.992 (0.988-0.996)  0.611  748.764  5.82e-05* | 0.999 (0.990-1.008) 0.611  750.690  0.787

AlIC=Akaike information criterion
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Table S5. Sensitivity scores using the clinical PET model

B
Progression-Free Survival (months)

Risk to Correctl False False
progression classified )(/n) positives  negatives  Sensitivity Specificity Accuracy PPV NPV
(%) (n) (n)
5 84 37 17 0.798 0.315 0.609 0.644  0.500
10 79 22 37 0.560 0.593 0.573 0.681 0.464
20 73 12 53 0.369 0.778 0.529 0.721  0.442
30 62 6 70 0.167 0.889 0.449 0.700  0.407
40 59 6 78 0.071 0.982 0.428 0.857  0.405



Table S6. Overview of second-line therapy

Type n =138 Time in months between' EOT PET
and start therapy (median, IQR)

No second-line therapy 50 -

Radiotherapy (RT) 18 1.15 (0.46-1.25)
Chemo(immuno)therapy 29 1.08 (0.44-4.90)
Chemo(immuno)therapy + ASCT (+ RT*) 17 1.12 (0.62-6.47)
Chemo(immuno)therapy + RT 4 1.95 (1.28-3.24)
Unknown 20 -

*5 patients in this group had also received radiotherapy (RT); ASCT=Autologous stem cell
transplantation

Table S7. Distribution of PFS for patients receiving radiotherapy
Event NoEvent Total

Radiotherapy 12 15 27 (19.6%)
No Radiotherapy 63 32 95 (68.8%)
Unknown 9 7 16 (11.6%)
Total 84 54 138 (100.0%)

Table S8. Distribution of PFS for patients receiving second-line therapy (general)
Event NoEvent Total

Second-line therapy 53 18 71 (51.4%)
No Second-line therapy 21 29 50 (36.2%)
Unknown 10 7 17 (12.3%)
Total 84 54 138 (100.0%)

Results S2: Consolidating radiotherapy

A subgroup of 122 patients in our database had data available on receiving
consolidating radiotherapy. In this group 27 (22%) patients received radiotherapy
after first-line treatment, of which 14 patients had a single lesion at EOT and 12
patients showed progression within 2 years. The radiotherapy status (binary) did not

improve the performance of model 1 (p=0.340) and 2 (p=0.603), suggesting limited

additional predictive value (Table S9).

Table S9. Hazards of models after addition of radiotherapy in a subset of n=122 patients
Model 1 (AIC=600.163, c-index=0.752) Model 2 (AIC=597.707, c-index=0.773)

Variable HR (95% CI) p-value HR (95% CI) p-value
TLRpeakmean-EOT 2.007 (1.454-2.773) 2.33e-05* 1.906 (1.368-2.656) 1.37e-04*
TLRpeakmean-EOT"  0.254 (0.111-0.582) 0.001* 0.316 (0.132- 0.753) 0.009*
NOL-EOT 1.185 (0.962-1.458) 0.110 1.164 (0.946-1.432) 0.152
NOL-EOT' 0.703 (0.317-1.556) 0.384 0.735 (0.332-1.627) 0.447
SUVmean-BL - - 0.912 (0.835-0.996) 0.041
Radiotherapy 0.733 (0.387-1.388) 0.340 0.840 (0.435-1.621) 0.603

‘= splined variable; HR=hazard ratio
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