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Multi-parameter flow cytometry (MFC) is an essential ancillary technique used in B-
lymphoblastic leukemia/lymphoma (B-ALL) diagnosis and monitoring to identify
abnormal B precursor cell populations in patient specimens. Minimal (measurable)
residual disease (MRD) analysis is essential for clinical management of B-ALL. ! In
experts’ hands, MFC is a well-established, relatively inexpensive, and highly accurate
technique for MRD with sensitivities as high as 2 in 10° cells. 2 Currently, accurate MFC
result interpretation primarily depends on the expertise of highly trained personnel.
Despite panel and instrument standardization, interpretive challenges remain a barrier
to broader utilization. For example, a recent study involving expert, high-volume
laboratories participating in Children’s Oncology B-ALL trials revealed substantial
variability in distinguishing normal immature B cells from leukemic counterparts. >
Automated analysis approaches may, in theory, improve the situation, but have yet to

show sufficient accuracy to be impactful in routine clinical practice.

In recent years, automated MFC analysis for cell population identification and
characterization has been demonstrated in research studies.* CellCNN, a supervised
deep-learning model that utilizes annotated data, can identify rare disease-associated
cells using a small flow cytometry dataset.” Recent machine learning studies on B-ALL
flow cytometry analysis, utilizing methods such as Gaussian mixture model-based
pipelines, SVM-optimized radar plots, and deep neural networks, have developed high-
performing tools that support expert interpretation and show strong concordance with
manual gating. ®® However, comparisons across studies remain difficult due to
differences in analytical focus, MRD inclusion, and evaluation metrics. Despite these
advances, current systems have not yet achieved clinical-grade accuracy as standalone
tools and are best suited for human-in-the-loop applications rather than fully automated

assessment.’

To narrow the gap to the real-world clinical practice, we developed FlIowARC (Flow
analysis using Residual Convolutional network), a novel deep-learning approach for
precise and automated B-ALL detection, including in MRD setting. FlowARC model

employs a cascaded 3-stage architecture (Figure 1), a cell-level module (Audit stage), a



cell-ranking step (Reorder stage), and a sample-level module (Classify stage). In the
Audit stage, individual cells within a flow cytometry sample are classified as normal or
tumorous, with a leukemic probability score assigned to each cell. The Reorder stage
ranks all cells by their leukemic probability and retains the top 7,500 most likely
leukemic cells for further analysis. In the Classify stage, this subset is used by the
sample-level module to determine whether the overall sample is tumorous or normal.
Additionally, a separate quantification module estimates tumor burden, an essential

feature for clinical reporting, particularly in the context of MRD.

FlowARC was trained and evaluated using a large retrospective clinical cohort of
patients tested for B-ALL at our institution between 2015 and 2019, using an 8-color
flow cytometry assay that followed standard diagnostic protocols. **** This assay
included surface markers (CD20, CD34, CD10, CD33, CD58, CD45, CD19, CD38)
along with forward scatter (FSC-H, FSC-A) and side scatter (SSC-H, SSC-A)
parameters. The cohort comprised 1,681 flow cytometry samples from 333 patients
(184 male, 149 female), including 1,149 B-ALL-positive and 532 B-ALL-negative cases,
totaling approximately 85.7 million B cells. Most samples were derived from bone
marrow (1,141 positive and 532 negative), with a small number from peripheral blood (n
= 6 positive) and tissue (n = 2 positive). The mean age of patients was 32.8 years (SD
22.2, range 0-81 years). The Institutional Review Board at Memorial Sloan Kettering

Cancer Center approved the study.

All FCS files from the cohort were processed using a standardized preprocessing
pipeline including compensation and transformation using flowCore *? (R package
version 2.14.2) as well as automatic B-cells extraction by flowDensity (Supplementary
Figure 1). *® In negative cases, all extracted B-cells were labeled as normal. For a
representative subset of 137 B-ALL positive bone marrow samples, abnormal immature
B-cells were manually annotated by an expert hematopathologist (MR). These
annotations were used to train the cell-level module and to generate synthetic datasets
for training the sample-level and quantification modules. Synthetic data were generated
to enhance the diversity of tumor cell populations across a wide range of tumor burdens,



including 25 to 500 B-cells (low MRD), 500 to 25,000 B-cells (high MRD), 25,000 to
50,000 B-cells (low tumor burden), and 50,000 to 500,000 B-cells (high tumor burden).
In our synthetic sample generation, we set a minimum leukemic population of 25 cells,
corresponding to a theoretical sensitivity of up to 10, depending on the total number of
cells analyzed, reflecting the real-world detection threshold of the underlying flow
cytometry assay (Supplementary Figure 2). To avoid data leakage, patient-level splits
were performed prior to synthetic data generation. Among negative cases, 65% were
randomly allocated for training. Of the 137 manually annotated positive samples, 75%
were used for training, while the remaining 25%, along with all unannotated positive
cases, were reserved for testing. To evaluate model robustness, five independent
instances of the cell-level, sample-level, and quantification modules were trained using
different random weight initializations. Data preprocessing and model training
(Supplementary Table 1) codes are available at https://github.com/MSK-Computational-
HemePath/FIowARC.

FlowARC demonstrated high performance in differentiating abnormal B-cell precursors
from normal cells at the cell level, achieving an area under the receiver operating
characteristic curve (AUROC) of 0.995 (95% CI: 0.994—-0.995). The corresponding
confusion matrix included 10,028,906 true normal cells, 2,057,835 true tumor cells,
77,621 false normal cells (0.6%), and 341,424 false tumor cells (2.7%) (Figure 2C). At
the sample level, reflecting clinical diagnoses, FlIowARC continued to show excellent
results. It achieved an AUROC of 0.994 (95% CI: 0.990-0.998) on the synthetic test set
and maintained similarly high performance on real-world patient samples with an
AUROC of 0.991 (95% CI: 0.987-0.995), accuracy of 97.5%, sensitivity of 96.4%, and
specificity of 98.7% (Figure 2A). The sample-level confusion matrix comprised 225 true
normal, 245 true tumor, 4 false normal (0.8%), and 6 false tumor cases (1.6%) (Figure
2D). Compared with the CellCNN model trained and tested on identical preprocessed
data, FlowARC significantly outperformed CellCNN (AUROC: 0.995 vs. 0.869; p < 10™*
by DelLong'’s test) (Figure 2B). Tumor burden quantification model was performed on
real-world patient samples, and demonstrated strong agreement with expert-assessed
tumor content, achieving an R? of 0.879 (95% CI: 0.877—-0.881), a slope of 0.963 (95%



Cl: 0.960-0.966), and an intercept of 0.111 (95% CI: 0.095-0.127), indicating that the

model’s estimates closely matched the true measured values (Figure 2C).

Beyond accurate B-ALL detection, FlowARC provides explainable outputs and visual
tools to aid clinical interpretation. Using the SHAP (Shapley Additive ExPlanations)
algorithm, we identified key markers contributing to predictions, with low CD38, high
forward scatter (FSC-A), and increased CD58 emerging as the strongest predictors of
tumor cells, consistent with known disease phenotypes (Figure 2D). These SHAP
values help elucidate the phenotypic profiles underlying the model’s abnormal cell

predictions.

FlowARC's cell-level predictions can be visualized using standard bi-parametric flow
cytometry plots. In true tumor cases, high-probability cells form distinct clusters across
multiple markers (Figure 3A, bottom), whereas in true negatives or false positives,
misclassified cells appear scattered without clustering (Figure 3A, top; 3B, top). In false
negatives, abnormal cells may still form clusters resembling true positives (Figure 3B,
bottom). These visualization features support pathologist-in-the-loop verification,
improving diagnostic accuracy and interpretability. The same approach is effective for
low-cell-count samples (<7,500 B-cells), where true tumors form compact clusters and
true negatives remain diffuse (Figure 3C), extending FlIowARC'’s utility even in

challenging cases.

In summary, we developed the FlowARC model for automated detection of B-ALL,
achieving over 0.99 AUROC in real-world clinical cases (Figure 1E). Its novel cascaded
architecture, combining cell-level and sample-level modules, overcomes the limitations
of previous methods and enables clinical-grade detection of lymphoblastic lymphoma in
both diagnostic and MRD samples. The model achieved performance comparable to
expert pathologists, with superior reproducibility and consistency, whereas human
performance is influenced by inter-observer variability with reported concordance of 74—
93%.% % 1* Misclassifications primarily occurred in samples with very low tumor burden
(<0.01%) or overlapping aberrant and regenerative immunophenotypes, which are



scenarios that challenge both Al and human reviewers, while cell-level visualization of

prediction scores helped identify and correct some of these borderline cases.

Although FIowARC was developed and validated using data from our institution, its
architecture and training strategy are broadly adaptable. The model is panel-specific,
but the training framework is universally applicable and can be retrained on any clinical
flow cytometry panel with limited locally annotated data. Model performance aligns with
the analytical capability of the target clinical assay, facilitating cross-institutional
consistency in diagnostic quality. Moreover, the same architecture can be adapted to
other leukemia types, such as AML and T-ALL, by retraining on disease-specific panels

and ensuring sufficient positive cases to account for immunophenotypic variability.

FlowARC addresses the extensive data requirements of deep learning by using
synthetic samples generated from real clinical data, which closely mirror real-world
cellular variability. This approach enables effective training with a limited number of
curated cases. An ablation study showed that approximately 200 annotated cases (100
normal and 100 abnormal) are sufficient to achieve clinically acceptable performance,
with only a modest decline from the full model. Using locally representative cases,
ideally verified by an expert hematopathologist, further ensures FlowARC's practicality
and accessibility for clinical laboratories integrating Al-driven diagnostics into routine

workflows.

The resulting automation enabled by FIowARC holds considerable potential for
optimizing diagnostic and MRD evaluation workflows. It streamlines key analytical
processes, resulting in notably shorter diagnostic turnaround times, improved workflow
efficiency, and reduced variability from manual interpretation. These enhancements in
diagnostic accuracy and speed are likely to lead to more informed clinical decisions and
improved patient outcomes.
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Figure legends:

Figure 1: FlowARC Architecture

FlIowARC, a novel and multi-module deep-learning-based model, follows a cascaded
approach for detecting tumor presence in flow cytometry data. (A)LJFlow cytometry
data acquisition and preprocessing pipeline: Raw flow cytometry samples undergo
preprocessing to extract B-cell populations based on forward/side scatter detectors and
fluorescent markers.”(B)C1Cell-level module training (Audit stage): A small subset of
cells is manually annotated by pathologists as normal or tumor cells. These annotations
train the cell-level neural network to classify individual cells and assign tumor probability
scores.[1(C) Probability-based cell reordering (Reorder stage): Within each flow
cytometry sample, cells are automatically reordered based on their tumor probability
scores from the cell-level module, ranking cells from highest to lowest tumor likelihood.
This allows sample truncation from hundreds of thousands of cells to the most relevant
thousands for efficient processing.[1(D) 1Sample-level classification (Classify stage):
The reordered and truncated flow samples, labeled at the sample level (normal vs.
tumor), train the sample-level module to classify entire flow cytometry samples as
normal or tumorous.” (E) Summarization of Key Innovations and Clinical Impact of
the FlowARC Model.

Figure 2: Performance of FlowARC

Comprehensive performance evaluation of FlowARC for tumor detection in flow
cytometry samples. (A)'1Receiver operating characteristic (ROC) curve with 95%
confidence interval for FlowARC on patient test cases. The inset shows a magnified
view of the high-performance region (AUC = 0.991 + 0.006).' /(B)[ IComparison of area
under the ROC curve (AUC) between CellCNN and FlowARC models with 95%
confidence intervals.7(C)[] Tumor burden was calculated by combining information
from two complementary parts of the model. For samples with fewer than 7,500 tumor
cells, the quantification module was used to estimate tumor content. In contrast,
samples exceeding this threshold were analyzed using the cell-level module. Tumor
burden quantification showing correlation between FlIowARC-predicted and true tumor
cell populations. Each point represents a patient case, color-coded by percentage of
tumor cells in white blood cells (WBC) as determined by institutional case reports. The
dashed line indicates perfect prediction (R2 = 0.879 + 0.002, slope = 0.963 + 0.003,
intercept = 0.111 + 0.016). Cases marked "Neg" represent tumor-negative samples. |
(D)I'SHAP (SHapley Additive exPlanations) feature importance plots for tumor cell
prediction (top) and normal cell prediction (bottom). Features (cell surface markers) are
ranked by decreasing importance, with individual SHAP values shown as points colored
by raw feature value (blue = low, pink = high).

Figure 3: Flow Cytometry Visualization of B-ALL Detection by FlowARC Cell-Level
Module

Direct visualization of FlowARC's cell-by-cell tumor probability assignments across
representative patient cases. Each row represents a single patient case



displayed across four biaxial plots: CD45 vs CD20, CD34 vs CD38, CD10 vs CD38, and
t-SNE dimensionality reduction (components 1 and 2). Individual cells are color-coded
by FlIowARC-predicted tumor likelihood (purple = high tumor probability, orange =
normal cells, as indicated by color bar).[1(A) Correctly classified cases: True negative
(top row) shows uniform orange coloring indicating correct identification of normal B-
cells; true positive (bottom row) displays distinct purple tumor cell populations clearly
separated from normal cells.(B)[1Misclassified cases: False positive (top row) shows
scattered likely-tumor cells that do not form tight clusters in any biaxial plots, indicating
misclassification of the case as abnormal; false negative (bottom row) demonstrates
likely-tumor cells that, although few, form tight clusters in CD34 vs CD38 and t-SNE
plots, indicating model misclassification as normal. /(C)! ICases with insufficient B-cell
counts (<7,500 cells) excluded from sample-level analysis: normal case (top row) does
not show clusters of likely-tumor cells, while the abnormal case (bottom row) displays a
distinct purple tumor cluster as expected. Despite being unable to process these cases
through the complete FlIowARC pipeline due to low B-cell numbers, the cell-level
module visualization remains highly informative for identifying tumor populations even
in these low cell count samples. These visualizations demonstrate FlowARC's ability

to identify phenotypically distinct tumor populations while highlighting edge cases and
current limitations.
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Supplementary Figure 1

Automated B-cell extraction via flowDenstiy

A four-step automated gating strategy for CD19+ B-cell isolation from flow cytometry data
using flowDensity. Step 1: Quality control filtering removes margin events and doublets.
Margin events are excluded using empirically defined FSC and SSC minimum/maximum
thresholds, while doublets are identified and removed based on FSC-A/FSC-H ratio
exceeding median plus four standard deviations. Steps 2-3: Sequential gating isolates
viable mononuclear cell populations using side scatter parameters (Step 2: SSC-H <0.605;
Step 3: SSC-A >0.22). Step 4: CD19+ B-cells are identified from the mononuclear
population using density-based clustering with a CD19 expression threshold >0.3. All
threshold values were optimized by comparing automated gating results to manual expert
annotations across a validation set of 15 randomly selected patient cases, ensuring
concordance between automated and manual B-cell populations. This standardized
approach enables consistent, reproducible B-cell extraction across large-scale flow
cytometry datasets without manual intervention.
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Supplementary Figure 2

Synthetic Dataset Generation Strategy for Sample-Level Model Training

Construction of balanced synthetic flow cytometry datasets for training, validation, and testing of the
sample-level module. (A) Distribution of cases in synthetic datasets: Each dataset maintains a 50:50
balance between normal and tumor-positive cases, with tumor cases further stratified into four burden
categories: low MRD (25-500 tumor cells), high MRD (500-25,000 tumor cells), low tumor burden
(25,000-50,000 tumor cells), and high tumor burden (50,000-500,000 tumor cells). A minimum of 25
tumor cells was required for all positive cases. (B) Normal case generation workflow: Normal cases
are synthesized by: (1) randomly selecting multiple normal patient samples with combined cell count
>10,000, (2) coalescing these samples, and (3) randomly sampling N cells (ranging from
10,000-50,000) to create individual synthetic normal cases. This approach captures the natural
variability in cell counts and phenotypes observed in clinical samples. (C) Tumor case generation
workflow: Synthetic tumor cases combine normal and tumor cell populations by: (1) generating a
normal B-cell background (NN cells) using the process from panel B, (2) selecting a tumor sample
containing NA < cell count < 3x NA tumor cells (where NA is the desired tumor cell count), and (3)
randomly sampling NA tumor cells to combine with the normal population, yielding cases with N = NN
+ NA total cells. This strategy generated 15,000 training, 6,000 validation, and 9,000 testing synthetic
samples from annotated patient data, ensuring robust model development across the full spectrum of
tumor burdens encountered clinically, from MRD to overt disease.



Module Input Output Key Implementation &

Hyperparameters
Cell-level (1%x12) (2%1) Random weight initialization; Loss
Module Each cell with 12 cell | probability for function: cross-entropy + Orthogonal

Projection Loss (gamma=0.5,
alpha=1); Trained for 100 epochs,
batch size =800, Stochastic gradient
descent optimizer with momentum=0.9,
weight decay=1e-3; learning rate =0.01
decaying 10% at epochs
(5,10,20,30,50,70); class imbalance
handled via imbalanced sampler;
hyperparams selected by AUROC
metfric

Sample- (3% 7,500 x 14) (2%1) Random weight initialization; Loss
level Matrix of top 7,500 probability for function: cross-entropy + Orthogonal
Projection Loss (gamma=0.5,
alpha=1); Trained for 100 epochs,
batch size =10, Stochastic gradient
and tumor + FFT real descent optimizer with momentum=0.9,
& imaginary of that weight decay=1e-3; learning rate =0.01
mafrix decaying 10% at epochs
(5,10,20,30,50,70); FFT added for
noise robustness; hyperparams
selected by AUROC metric

markers normal and tumor
class

Module cells after reordering | normal vs tumor
and added cell-level class
probability for normal

Quantificati | Same as sample- (1%x1) Same as sample-level module but with
on Module | level module with the | 51ue between 0 | Huber loss (delta=0.007); trained only
value at [0,0,0] and 1 multiplied on synthetic B-ALL positive samples;

replaced with the pre- by input size to hyperparams selected by R2 metric
truncation cell count get absolute

for that sample tumor count

Supplementary Table 1

FlowARC Module Architecture and Training Parameters

Summary of neural network architectures and hyperparameters for the three FlowARC modules.Cell-
level Module:Processes individual cells (1x12 feature vector) using 1D ResNet-18 (15) to output
binary tumor/normal probabilities (2%1). Trained with combined cross-entropy and Orthogonal
Projection Loss (y=0.5, a=1) to handle class imbalance via imbalanced sampling. Sample-level
Module:Analyzes top 7,500 reordered cells as a 3x7,500x14 tensor (cells x markers x probability
scores + FFT transformations) using 2D ResNet-101 to classify entire samples as normal or tumor.
FFT components enhance noise robustness.Quantification Module:Employs the same architecture
as the sample-level module but replaces probability scores with pre-truncation cell counts and uses
Huber loss (6=0.007) for regression to estimate absolute tumor cell numbers. All modules utilize
stochastic gradient descent with momentum (0.9), weight decay (10~ 2), and learning rate scheduling
(initial 0.01, 10% decay at epochs 5, 10, 20, 30, 50, 70). Hyperparameters were optimized using
AUROC for classification modules and R? for the quantification module on validation datasets. The
quantification module was trained exclusively on synthetic B-ALL positive samples to ensure
accurate tumor burden estimation.
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