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Multi-parameter flow cytometry (MFC) is an essential ancillary technique used in B- 

lymphoblastic leukemia/lymphoma (B-ALL) diagnosis and monitoring to identify 

abnormal B precursor cell populations in patient specimens. Minimal (measurable) 

residual disease (MRD) analysis is essential for clinical management of B-ALL. 1 In 

experts’ hands, MFC is a well-established, relatively inexpensive, and highly accurate 

technique for MRD with sensitivities as high as 2 in 106 cells. 2 Currently, accurate MFC 

result interpretation primarily depends on the expertise of highly trained personnel. 

Despite panel and instrument standardization, interpretive challenges remain a barrier 

to broader utilization. For example, a recent study involving expert, high-volume 

laboratories participating in Children’s Oncology B-ALL trials revealed substantial 

variability in distinguishing normal immature B cells from leukemic counterparts. 3 

Automated analysis approaches may, in theory, improve the situation, but have yet to 

show sufficient accuracy to be impactful in routine clinical practice.    

 

In recent years, automated MFC analysis for cell population identification and 

characterization has been demonstrated in research studies.4 CellCNN, a supervised 

deep-learning model that utilizes annotated data, can identify rare disease-associated 

cells using a small flow cytometry dataset.5 Recent machine learning studies on B-ALL 

flow cytometry analysis, utilizing methods such as Gaussian mixture model–based 

pipelines, SVM-optimized radar plots, and deep neural networks, have developed high-

performing tools that support expert interpretation and show strong concordance with 

manual gating. 6-8 However, comparisons across studies remain difficult due to 

differences in analytical focus, MRD inclusion, and evaluation metrics. Despite these 

advances, current systems have not yet achieved clinical-grade accuracy as standalone 

tools and are best suited for human-in-the-loop applications rather than fully automated 

assessment.9  

 

To narrow the gap to the real-world clinical practice, we developed FlowARC (Flow 

analysis using Residual Convolutional network), a novel deep-learning approach for 

precise and automated B-ALL detection, including in MRD setting. FlowARC model 

employs a cascaded 3-stage architecture (Figure 1), a cell-level module (Audit stage), a 



cell-ranking step (Reorder stage), and a sample-level module (Classify stage). In the 

Audit stage, individual cells within a flow cytometry sample are classified as normal or 

tumorous, with a leukemic probability score assigned to each cell. The Reorder stage 

ranks all cells by their leukemic probability and retains the top 7,500 most likely 

leukemic cells for further analysis. In the Classify stage, this subset is used by the 

sample-level module to determine whether the overall sample is tumorous or normal. 

Additionally, a separate quantification module estimates tumor burden, an essential 

feature for clinical reporting, particularly in the context of MRD.   

 

FlowARC was trained and evaluated using a large retrospective clinical cohort of 

patients tested for B-ALL at our institution between 2015 and 2019, using an 8-color 

flow cytometry assay that followed standard diagnostic protocols. 10, 11 This assay 

included surface markers (CD20, CD34, CD10, CD33, CD58, CD45, CD19, CD38) 

along with forward scatter (FSC-H, FSC-A) and side scatter (SSC-H, SSC-A) 

parameters. The cohort comprised 1,681 flow cytometry samples from 333 patients 

(184 male, 149 female), including 1,149 B-ALL-positive and 532 B-ALL-negative cases, 

totaling approximately 85.7 million B cells. Most samples were derived from bone 

marrow (1,141 positive and 532 negative), with a small number from peripheral blood (n 

= 6 positive) and tissue (n = 2 positive). The mean age of patients was 32.8 years (SD 

22.2, range 0-81 years). The Institutional Review Board at Memorial Sloan Kettering 

Cancer Center approved the study. 

 

All FCS files from the cohort were processed using a standardized preprocessing 

pipeline including compensation and transformation using flowCore 12 (R package 

version 2.14.2) as well as automatic B-cells extraction by flowDensity (Supplementary 

Figure 1). 13 In negative cases, all extracted B-cells were labeled as normal. For a 

representative subset of 137 B-ALL positive bone marrow samples, abnormal immature 

B-cells were manually annotated by an expert hematopathologist (MR). These 

annotations were used to train the cell-level module and to generate synthetic datasets 

for training the sample-level and quantification modules. Synthetic data were generated 

to enhance the diversity of tumor cell populations across a wide range of tumor burdens, 



including 25 to 500 B-cells (low MRD), 500 to 25,000 B-cells (high MRD), 25,000 to 

50,000 B-cells (low tumor burden), and 50,000 to 500,000 B-cells (high tumor burden). 

In our synthetic sample generation, we set a minimum leukemic population of 25 cells, 

corresponding to a theoretical sensitivity of up to 10-5, depending on the total number of 

cells analyzed, reflecting the real-world detection threshold of the underlying flow 

cytometry assay (Supplementary Figure 2). To avoid data leakage, patient-level splits 

were performed prior to synthetic data generation. Among negative cases, 65% were 

randomly allocated for training. Of the 137 manually annotated positive samples, 75% 

were used for training, while the remaining 25%, along with all unannotated positive 

cases, were reserved for testing. To evaluate model robustness, five independent 

instances of the cell-level, sample-level, and quantification modules were trained using 

different random weight initializations. Data preprocessing and model training 

(Supplementary Table 1) codes are available at https://github.com/MSK-Computational-

HemePath/FlowARC. 

 

FlowARC demonstrated high performance in differentiating abnormal B-cell precursors 

from normal cells at the cell level, achieving an area under the receiver operating 

characteristic curve (AUROC) of 0.995 (95% CI: 0.994–0.995). The corresponding 

confusion matrix included 10,028,906 true normal cells, 2,057,835 true tumor cells, 

77,621 false normal cells (0.6%), and 341,424 false tumor cells (2.7%) (Figure 2C). At 

the sample level, reflecting clinical diagnoses, FlowARC continued to show excellent 

results. It achieved an AUROC of 0.994 (95% CI: 0.990–0.998) on the synthetic test set 

and maintained similarly high performance on real-world patient samples with an 

AUROC of 0.991 (95% CI: 0.987–0.995), accuracy of 97.5%, sensitivity of 96.4%, and 

specificity of 98.7% (Figure 2A). The sample-level confusion matrix comprised 225 true 

normal, 245 true tumor, 4 false normal (0.8%), and 6 false tumor cases (1.6%) (Figure 

2D). Compared with the CellCNN model trained and tested on identical preprocessed 

data, FlowARC significantly outperformed CellCNN (AUROC: 0.995 vs. 0.869; p < 10-11 

by DeLong’s test) (Figure 2B). Tumor burden quantification model was performed on 

real-world patient samples, and demonstrated strong agreement with expert-assessed 

tumor content, achieving an R² of 0.879 (95% CI: 0.877–0.881), a slope of 0.963 (95% 



CI: 0.960–0.966), and an intercept of 0.111 (95% CI: 0.095–0.127), indicating that the 

model’s estimates closely matched the true measured values (Figure 2C). 

 

Beyond accurate B-ALL detection, FlowARC provides explainable outputs and visual 

tools to aid clinical interpretation. Using the SHAP (Shapley Additive ExPlanations) 

algorithm, we identified key markers contributing to predictions, with low CD38, high 

forward scatter (FSC-A), and increased CD58 emerging as the strongest predictors of 

tumor cells, consistent with known disease phenotypes (Figure 2D). These SHAP 

values help elucidate the phenotypic profiles underlying the model’s abnormal cell 

predictions. 

 

FlowARC’s cell-level predictions can be visualized using standard bi-parametric flow 

cytometry plots. In true tumor cases, high-probability cells form distinct clusters across 

multiple markers (Figure 3A, bottom), whereas in true negatives or false positives, 

misclassified cells appear scattered without clustering (Figure 3A, top; 3B, top). In false 

negatives, abnormal cells may still form clusters resembling true positives (Figure 3B, 

bottom). These visualization features support pathologist-in-the-loop verification, 

improving diagnostic accuracy and interpretability. The same approach is effective for 

low-cell-count samples (<7,500 B-cells), where true tumors form compact clusters and 

true negatives remain diffuse (Figure 3C), extending FlowARC’s utility even in 

challenging cases. 

 

In summary, we developed the FlowARC model for automated detection of B-ALL, 

achieving over 0.99 AUROC in real-world clinical cases (Figure 1E). Its novel cascaded 

architecture, combining cell-level and sample-level modules, overcomes the limitations 

of previous methods and enables clinical-grade detection of lymphoblastic lymphoma in 

both diagnostic and MRD samples. The model achieved performance comparable to 

expert pathologists, with superior reproducibility and consistency, whereas human 

performance is influenced by inter-observer variability with reported concordance of 74–

93%.3, 9, 14 Misclassifications primarily occurred in samples with very low tumor burden 

(<0.01%) or overlapping aberrant and regenerative immunophenotypes, which are 



scenarios that challenge both AI and human reviewers, while cell-level visualization of 

prediction scores helped identify and correct some of these borderline cases. 

  

Although FlowARC was developed and validated using data from our institution, its 

architecture and training strategy are broadly adaptable. The model is panel-specific, 

but the training framework is universally applicable and can be retrained on any clinical 

flow cytometry panel with limited locally annotated data. Model performance aligns with 

the analytical capability of the target clinical assay, facilitating cross-institutional 

consistency in diagnostic quality. Moreover, the same architecture can be adapted to 

other leukemia types, such as AML and T-ALL, by retraining on disease-specific panels 

and ensuring sufficient positive cases to account for immunophenotypic variability. 

 

FlowARC addresses the extensive data requirements of deep learning by using 

synthetic samples generated from real clinical data, which closely mirror real-world 

cellular variability. This approach enables effective training with a limited number of 

curated cases. An ablation study showed that approximately 200 annotated cases (100 

normal and 100 abnormal) are sufficient to achieve clinically acceptable performance, 

with only a modest decline from the full model. Using locally representative cases, 

ideally verified by an expert hematopathologist, further ensures FlowARC’s practicality 

and accessibility for clinical laboratories integrating AI-driven diagnostics into routine 

workflows. 

 

The resulting automation enabled by FlowARC holds considerable potential for 

optimizing diagnostic and MRD evaluation workflows. It streamlines key analytical 

processes, resulting in notably shorter diagnostic turnaround times, improved workflow 

efficiency, and reduced variability from manual interpretation. These enhancements in 

diagnostic accuracy and speed are likely to lead to more informed clinical decisions and 

improved patient outcomes.  
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Figure legends:  
 

Figure 1: FlowARC Architecture   
FlowARC, a novel and multi-module deep-learning-based model, follows a cascaded 
approach for detecting tumor presence in flow cytometry data. (A)�Flow cytometry 
data acquisition and preprocessing pipeline: Raw flow cytometry samples undergo 
preprocessing to extract B-cell populations based on forward/side scatter detectors and 
fluorescent markers.�(B)�Cell-level module training (Audit stage): A small subset of 
cells is manually annotated by pathologists as normal or tumor cells. These annotations 
train the cell-level neural network to classify individual cells and assign tumor probability 
scores.�(C) Probability-based cell reordering (Reorder stage): Within each flow 
cytometry sample, cells are automatically reordered based on their tumor probability 
scores from the cell-level module, ranking cells from highest to lowest tumor likelihood. 
This allows sample truncation from hundreds of thousands of cells to the most relevant 
thousands for efficient processing.�(D)�Sample-level classification (Classify stage): 
The reordered and truncated flow samples, labeled at the sample level (normal vs. 
tumor), train the sample-level module to classify entire flow cytometry samples as 
normal or tumorous.�(E) Summarization of Key Innovations and Clinical Impact of 
the FlowARC Model.  
  
Figure 2: Performance of FlowARC  
Comprehensive performance evaluation of FlowARC for tumor detection in flow 
cytometry samples. (A)�Receiver operating characteristic (ROC) curve with 95% 
confidence interval for FlowARC on patient test cases. The inset shows a magnified 
view of the high-performance region (AUC = 0.991 ± 0.006).�(B)�Comparison of area 
under the ROC curve (AUC) between CellCNN and FlowARC models with 95% 
confidence intervals.�(C)� Tumor burden was calculated by combining information 
from two complementary parts of the model. For samples with fewer than 7,500 tumor 
cells, the quantification module was used to estimate tumor content. In contrast, 
samples exceeding this threshold were analyzed using the cell-level module. Tumor 
burden quantification showing correlation between FlowARC-predicted and true tumor 
cell populations. Each point represents a patient case, color-coded by percentage of 
tumor cells in white blood cells (WBC) as determined by institutional case reports. The 
dashed line indicates perfect prediction (R² = 0.879 ± 0.002, slope = 0.963 ± 0.003, 
intercept = 0.111 ± 0.016). Cases marked "Neg" represent tumor-negative samples.� 
(D)�SHAP (SHapley Additive exPlanations) feature importance plots for tumor cell 
prediction (top) and normal cell prediction (bottom). Features (cell surface markers) are 
ranked by decreasing importance, with individual SHAP values shown as points colored 
by raw feature value (blue = low, pink = high).  
 
  
Figure 3: Flow Cytometry Visualization of B-ALL Detection by FlowARC Cell-Level 
Module  
Direct visualization of FlowARC's cell-by-cell tumor probability assignments across 
representative patient cases. Each row represents a single patient case 



displayed across four biaxial plots: CD45 vs CD20, CD34 vs CD38, CD10 vs CD38, and 
t-SNE dimensionality reduction (components 1 and 2). Individual cells are color-coded 
by FlowARC-predicted tumor likelihood (purple = high tumor probability, orange = 
normal cells, as indicated by color bar).�(A) Correctly classified cases: True negative 
(top row) shows uniform orange coloring indicating correct identification of normal B-
cells; true positive (bottom row) displays distinct purple tumor cell populations clearly 
separated from normal cells.�(B)�Misclassified cases: False positive (top row) shows 
scattered likely-tumor cells that do not form tight clusters in any biaxial plots, indicating 
misclassification of the case as abnormal; false negative (bottom row) demonstrates 
likely-tumor cells that, although few, form tight clusters in CD34 vs CD38 and t-SNE 
plots, indicating model misclassification as normal.�(C)�Cases with insufficient B-cell 
counts (<7,500 cells) excluded from sample-level analysis: normal case (top row) does 
not show clusters of likely-tumor cells, while the abnormal case (bottom row) displays a 
distinct purple tumor cluster as expected. Despite being unable to process these cases 
through the complete FlowARC pipeline due to low B-cell numbers, the cell-level 
module visualization remains highly informative for identifying tumor populations even 
in these low cell count samples. These visualizations demonstrate FlowARC's ability 
to identify phenotypically distinct tumor populations while highlighting edge cases and 
current limitations.  
  
 









Automated B-cell extraction via flowDenstiy

A four-step automated gating strategy for CD19+ B-cell isolation from flow cytometry data 

using flowDensity. Step 1: Quality control filtering removes margin events and doublets. 

Margin events are excluded using empirically defined FSC and SSC minimum/maximum 

thresholds, while doublets are identified and removed based on FSC-A/FSC-H ratio 

exceeding median plus four standard deviations. Steps 2-3: Sequential gating isolates 

viable mononuclear cell populations using side scatter parameters (Step 2: SSC-H <0.605; 

Step 3: SSC-A > 0.22). Step 4: CD19+ B-cells are identified from the mononuclear 

population using density-based clustering with a CD19 expression threshold > 0.3. All 

threshold values were optimized by comparing automated gating results to manual expert 

annotations across a validation set of 15 randomly selected patient cases, ensuring 

concordance between automated and manual B-cell populations. This standardized 

approach enables consistent, reproducible B-cell extraction across large-scale flow 

cytometry datasets without manual intervention. 

Supplementary Figure 1



Synthetic Dataset Generation Strategy for Sample-Level Model Training 
Construction of balanced synthetic flow cytometry datasets for training, validation, and testing of the 
sample-level module. (A) Distribution of cases in synthetic datasets: Each dataset maintains a 50:50 
balance between normal and tumor-positive cases, with tumor cases further stratified into four burden 
categories: low MRD (25-500 tumor cells), high MRD (500-25,000 tumor cells), low tumor burden 
(25,000-50,000 tumor cells), and high tumor burden (50,000-500,000 tumor cells). A minimum of 25 
tumor cells was required for all positive cases. (B) Normal case generation workflow: Normal cases 
are synthesized by: (1) randomly selecting multiple normal patient samples with combined cell count 
>10,000, (2) coalescing these samples, and (3) randomly sampling N cells (ranging from 
10,000-50,000) to create individual synthetic normal cases. This approach captures the natural 
variability in cell counts and phenotypes observed in clinical samples. (C) Tumor case generation 
workflow: Synthetic tumor cases combine normal and tumor cell populations by: (1) generating a 
normal B-cell background (NN cells) using the process from panel B, (2) selecting a tumor sample 
containing NA < cell count < 3× NA tumor cells (where NA is the desired tumor cell count), and (3) 
randomly sampling NA tumor cells to combine with the normal population, yielding cases with N = NN 
+ NA total cells. This strategy generated 15,000 training, 6,000 validation, and 9,000 testing synthetic 
samples from annotated patient data, ensuring robust model development across the full spectrum of 
tumor burdens encountered clinically, from MRD to overt disease. 

Supplementary Figure 2



Module Input Output Key Implementation & 

Hyperparameters

Cell-level 

Module

(1 × 12)

Each cell with 12 cell 

markers

(2 × 1)

probability for 

normal and tumor 

class

Random weight initialization; Loss 

function: cross-entropy + Orthogonal 

Projection Loss (gamma=0.5, 

alpha=1); Trained for 100 epochs, 

batch size =800, Stochastic gradient 

descent optimizer with momentum=0.9, 

weight decay=1e-3; learning rate =0.01 

decaying 10% at epochs 

(5,10,20,30,50,70); class imbalance 

handled via imbalanced sampler; 

hyperparams selected by AUROC 

metric

Sample-

level 

Module

(3 × 7,500 × 14)

Matrix of top 7,500 

cells after reordering 

and added cell-level 

probability for normal 

and tumor + FFT real 

& imaginary of that 

matrix

(2 × 1)

probability for 

normal vs tumor 

class

Random weight initialization; Loss 

function: cross-entropy + Orthogonal 

Projection Loss (gamma=0.5, 

alpha=1); Trained for 100 epochs, 

batch size =10, Stochastic gradient 

descent optimizer with momentum=0.9, 

weight decay=1e-3; learning rate =0.01 

decaying 10% at epochs 

(5,10,20,30,50,70); FFT added for 

noise robustness; hyperparams 

selected by AUROC metric

Quantificati

on Module

Same as sample-

level module with the 

value at [0,0,0] 

replaced with the pre-

truncation cell count 

for that sample

(1 × 1)

value between 0 

and 1 multiplied 

by input size to 

get absolute 

tumor count

Same as sample-level module but with 

Huber loss (delta=0.007); trained only 

on synthetic B-ALL positive samples; 

hyperparams selected by R2 metric

Supplementary Table 1

FlowARC Module Architecture and Training Parameters 
Summary of neural network architectures and hyperparameters for the three FlowARC modules. Cell-
level Module: Processes individual cells (1×12 feature vector) using 1D ResNet-18 (15) to output 
binary tumor/normal probabilities (2×1). Trained with combined cross-entropy and Orthogonal 
Projection Loss (γ=0.5, α=1) to handle class imbalance via imbalanced sampling.   Sample-level 
Module: Analyzes top 7,500 reordered cells as a 3×7,500×14 tensor (cells × markers × probability 
scores + FFT transformations) using 2D ResNet-101 to classify entire samples as normal or tumor. 
FFT components enhance noise robustness. Quantification Module: Employs the same architecture 
as the sample-level module but replaces probability scores with pre-truncation cell counts and uses 
Huber loss (δ=0.007) for regression to estimate absolute tumor cell numbers. All modules utilize 
stochastic gradient descent with momentum (0.9), weight decay (10⁻³), and learning rate scheduling 
(initial 0.01, 10% decay at epochs 5, 10, 20, 30, 50, 70). Hyperparameters were optimized using 
AUROC for classification modules and R² for the quantification module on validation datasets. The 
quantification module was trained exclusively on synthetic B-ALL positive samples to ensure 
accurate tumor burden estimation. 
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