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Background and Objective. Thrombopoietin (TPO),
also referred to as Mpl ligand, is the most potent
cytokine that physiologically regulates platelet pro-
duction. With the availability of sufficient amounts of
recombinant forms of the protein, the biological in
vitro and in vivo activities of this cytokine have been
extensively studied. The objective of this review is to
summarize the published data focusing on TPO pro-
duction and regulation and to discuss the pleiotrop-
ic biological action of this hormone. The review also
highlights the results so far obtained in preclinical
and clinical trials. 

Evidence and Information Sources. The material
examined in this review includes data published by
the author and articles or abstracts published in jour-
nals covered by Medline®. The author has con-
tributed to the isolation of TPO, has been working in
the field for several years and has contributed origi-
nal papers on the TPO/Mpl system in normal and
pathologic situations. 

State of the Art. TPO is a hormone constitutively pro-
duced by the liver and kidneys. Plasma levels of TPO
are regulated through receptor-mediated uptake,
internalization and catabolism. First thought to be a
lineage dominant factor promoting megakaryocy-
topoiesis, several lines of evidence indicate that TPO
has pleiotropic effects on hematopoiesis. In vitro
studies show that TPO alone, or in combination with
early acting cytokines, stimulates the proliferation
and enhances the expansion of primitive CD34+

CD38– hematopoietic progenitor cells. In vivo stud-
ies with c-mpl- and TPO-null mice reveal that the mol-
ecule sustains the survival and proliferation of early
committed progenitor cells of various type. Preclini-
cal and clinical trials indicate that recombinant TPO
molecules increase platelet counts and megakaryo-
cyte numbers in normal or mildly thrombocytopenic
states. However, no significant effects of TPO admin-
istration on platelet recovery have so far been report-
ed in patients subjected to intensive chemotherapy
regimens. Recombinant molecules appear to be safe
to administer and very little toxicity is reported. TPO
augments the number of erythroid and myeloid com-
mitted progenitor cells in marrow, and mobilized
stem cells in peripheral blood.  

Perspectives. The potential clinical use of TPO is still
unclear. With the increased knowledge of the multi-
ple effects of TPO on hematopoiesis, it is expected
that future carefully monitored clinical trials will pro-
vide more information regarding the eventual benefits
of this cytokine in the treatment of thrombocytope-
nia. At present, one successful application of TPO
appears to be its addition in cytokine cocktails used
to expand hematopoietic stem cells ex vivo. 
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Megakaryocytopoiesis is the cellular process
of proliferation and differentiation leading
to the production of platelets. Back in

1958, it was suggested that this hematopoietic cel-
lular lineage was regulated by a humoral growth fac-
tor, termed thrombopoietin,1 present in plasma from
severely thrombocytopenic animals and patients.
However, all attempts to purify this molecule
remained frustrated. With the isolation of several
recombinant cytokines and data obtained mainly
from cultures, it was thought that megakaryocyto-
poiesis was regulated at multiple cellular levels
because certain pleiotropic cytokines were able to
promote the proliferation of committed megakary-
ocyte (BFU- and CFU-MK) progenitors, while others
primarily induced the differentiation of megakary-
oblasts (for reviews, see refs. #2-4). These cytokines
are classically divided into 3 groups. Interleukin-3 (IL-
3) and granulocyte macrophage-colony stimulating
factor (GM-CSF) used alone in culture systems are
potent stimulators of MK progenitor proliferation,
but have little effect on maturation. The interleukin-
6 family members (IL-6, IL-11, oncostatin M and LIF)
have virtually no effect on proliferation of MK prog-
enitors, but potentiate the action of IL-3 and GM-
CSF by acting predominantly on MK maturation.
Stem cell factor (SCF, also known as c-kit ligand or
steel factor) and Flk2/Flt3 ligand (fetal liver kinase)
alone have minor effects on MK colony formation,
but synergize the proliferative action of several
cytokines. Although these cytokines lack specificity
for the megakaryocytic lineage, their thrombopoiet-
ic effects have been evaluated in clinical trials (for a
review see ref. #5).  



Isolation of thrombopoietin, the ligand for the
proto-oncogene c-mpl

The isolation of the mutant murine myeloprolifer-
ative leukemia virus (MPLV) opened a way to the iden-
tification of the physiologic regulator of platelet pro-
duction.6 This retrovirus has naturally transduced in
its genome the v-mpl oncogene which corresponds to
a truncated version of a cellular gene named c-mpl.7

Sequencing of the human and murine c-mpl cDNAs
revealed that the polypeptide was a transmembrane
receptor, structurally and functionally related to
members of the hematopoietic receptor superfamily
devoided of intrinsic catalytic domains.8-11 Subse-
quently, c-mpl expression was shown to be restricted
to MK, platelets and CD34+ cells in human marrow
populations.12,13 Exposure of CD34+ purified cells to
antisense oligodeoxynucleotides blocking c-mpl mRNA
expression resulted in a significant inhibition of devel-
opment of CFU-MK-derived colonies without affect-
ing erythroid or granulocyte/macrophage colony for-
mation.12 In addition, mice lacking c-mpl expression
were generated by homologous recombination. The
homozygous animals exhibited an 80-90% reduction
in platelet counts, but no decrease in the numbers of
the other mature blood cells.14 Together, these obser-
vations strongly implicated the Mpl receptor and its
putative ligand in the regulation of megakaryocy-
topoiesis and platelet production. 

The isolation of a ligand capable of binding and
activating Mpl was reported by five independent
groups in 1994.15-19 This ligand, present in minute
amounts in the serum from severely thrombocyto-
penic animals, received different names: Mpl ligand
(ML or Mpl-L), thrombopoietin (TPO), megakaryo-
cyte growth and development factor (MGDF) or
megapoietin. The molecule stimulates both the pro-
liferation and differentiation of CFU-MK progenitors
arguing against the theory that megakaryopoiesis was
regulated at multiple cellular levels.20 Different recom-
binant Mpl ligands are used for experimental or clin-
ical investigations. To clarify the terms, TPO should
be the name of the physiologic native form of the
protein. Mpl-L should be the scientific name for the
recombinant polypeptide. A recombinant full-length
glycosylated form of the human polypeptide (termed
rHuTPO) is produced in mammalian cells by Genen-
tech-Pharmacia-Upjohn.16 A recombinant non-gly-
cosylated truncated version of the human Mpl-L is
produced in Escherichia coli by Amgen-Kirin-ZymoGe-
netics. This protein is termed rHuMGDF.15 A poly-
ethylene glycol tail is coupled to the polypeptide
(PEG-rHuMGDF) to increase its potency and in vivo
half-life.21,22

Structure of the TPO protein and TPO gene
The native human TPO protein is a 60-70 kDa heav-

ily glycosylated polypeptide comprising 332 amino
acids. The molecule can be structurally and function-
ally divided into 2 domains. The amino-terminal

domain is highly conserved across species. It contains
153 amino acids showing 23% sequence identity and
50% similarity with erythropoietin (EPO), including 4
conserved cysteine residues (EPO-like domain). The
carboxy-terminal domain shows wide species diver-
gence. It contains six potential N-linked and several
O-linked glycosylation sites. This domain has no
homology with other known proteins.15-17,23-26 The
EPO-like domain is sufficient to induce the full spectrum
of biological responses in vitro and in vivo. The carbo-
hydrate domain is required for efficient biosynthesis
and secretion, and to increase stability and potency of
the protein.24, 26-28 A crystal structure of native TPO is
not yet available. Nevertheless, computer analysis pre-
dicts that the N-terminus domain (aa 22-153) forms
a four-a-helix bundle similarly to the other members
of the cytokine family.29,30 Library screening of random
peptides displayed on filamentous phage has allowed
the identification of several agonists for Mpl. A 14-
mer peptide covalently dimerized is as potent as
recombinant Mpl ligand in promoting megakaryo-
poiesis in vitro and in increasing platelet production in
animals.31,32

The human TPO gene is mapped to chromosome
3q27-28.18,24,27,33,34 The gene spans over 8 kb and con-
sists of 5 coding exons and 1 or 2 additional upstream
non-coding exons.14,18,27,35 The promoter region con-
tains no TATA- or CAAT-box motifs and multiple sites
for initiation of transcription have been identi-
fied.18,27,36 The molecular mechanisms controlling the
expression of the TPO gene are still unknown,
although it has been reported that the Ets family
member E4TF1/GABP is required for high expression
in liver cells.36

Because thrombocytosis and dysmegakaryocyto-
poiesis are usual hematologic features found in AML
patients with structural abnormalities of the chro-
mosome 3q26 region, a possible involvement of the
TPO gene was searched for. No deregulation was
found suggesting that the stimulated thrombocy-
topoiesis was not due to overexpression of the mol-
ecule.33,34,37

Physiologic regulation of TPO levels
TPO transcripts are detected in several organs

throughout the body, but expression predominates in
the liver and kidney.16,23 In situ hybridization tech-
niques have detected TPO mRNA in liver parenchy-
mal and sinusoidal endothelial cells38,39 and kidney
proximal convoluted tubular cells.40 Biologically
active TPO can be demonstrated in culture super-
natants from rat primary hepatocytes, mouse sinu-
soidal endothelial cells, hepatoma cell lines, the
human embryonic kidney HEK cell line and bone
marrow-derived stroma cells.39,41-43

The endogenous TPO levels in plasma are inverse-
ly correlated with the platelet counts.44 By analogy to
the transcriptional regulation of EPO mRNA by ane-
mia,45 it was suggested that transcription of the TPO
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gene might be upregulated in response to the platelet
demand. Alternatively, TPO production might be
constant and activity in plasma could be regulated by
the binding to platelets and catabolism.46 Several
experimental models were analyzed to discriminate
between these possibilities. Mice were made severely
thrombocytopenic by radiation, chemotherapy, anti-
platelet antibodies injections or combined treat-
ments, or markedly thrombocythemic by platelet
transfusions. No transcriptional regulation of the
TPO  gene was observed in the liver or kidney from
these animals.40,47-49 In addition, no variation in TPO
alternative splice forms encoding non-secreted pro-
teins was detected.24,47,48,50,51 Moreover, while homo-
zygous TPO-deficient mice show a 90% reduction in
their platelet counts, the number of platelets in het-
erozygous animals is half that of normal littermates.52

This gene dosage effect on platelet counts strongly
argues against a control occurring at a transcriptional
level.52 Nevertheless, it is reported that TPO upregu-
lation might occur in marrow stromal cells in
response to a decrease in platelet counts.53,54 

Platelets and MK display a single class of high affin-
ity Mpl receptors (approximately 30 receptors/platelet
with a kd of 100 to 200 pmol/L55 and 2,000-12,140
receptors/MK with a kd of 749 pmol/L56,57). Platelets
exposed in vitro to iodinated Mpl-L actively bind, inter-
nalize and degrade the protein.51,55,58 C-mpl-deficient
mice have low platelet numbers and elevated TPO lev-
els in plasma.14 When these mice are transfused with
platelets from normal donors, TPO levels rapidly
decrease.51 Surprisingly, no elevation of TPO levels is
seen in the plasma of profoundly thrombocytopenic
homozygous NF-E2-deficient mice.59 The marrow
from these mice contains numerous mature MK with
a well developed demarcation membrane system, but
a total absence of platelet shedding. These observa-
tions strongly suggest that the MK mass could also be
involved in the regulation of the plasma concentra-
tion of TPO.60 ELISA assays61,62 indicate that serum
TPO levels are more correlated with the combined MK
and platelet mass than with platelet numbers. In
patients with aplastic anemia, amegakaryocytic
thrombocytopenia or after bone marrow transplanta-
tion, where thrombocytopenia is associated with MK
hypoplasia, TPO levels are extremely high.63,64 In con-
trast, patients with immune thrombocytopenic pur-
pura (ITP) exhibit normal or only mildly elevated TPO
levels.63-69 Collectively, these data are consistent with a
model in which no sensing system controls the pro-
duction of TPO. From the published data, it appears
that TPO is constitutively synthesized by the liver and
kidney. It is the binding and degradation by Mpl recep-
tors present on the surface of platelets and MKs that
regulate the circulating levels of TPO. However, it has
not yet been excluded that TPO might upregulate its
own receptors, as is the case for IL-2 and G-CSF recep-
tors.70,71

Pleiotropic action of Mpl ligand/TPO
Studies performed in vitro demonstrate that Mpl-L

is a central cytokine for full development of MK and
platelets.72-80 MKs and platelets produced in culture
are morphologically and functionally identical to bone
marrow MK and blood-derived platelets77,79,81-83 How-
ever, Mpl-L may be dispensable for the late steps of
MK maturation. Indeed, proplatelet formation occurs
in vitro after Mpl-L deprivation81,84 and human CD34+

progenitor cells stimulated with a combination of IL-
3+IL-6+SCF produce platelets.83 Furthermore, homo-
zygous TPO-deficient mice still produce a low number
of functionally normal platelets.85 The effects of Mpl-
L on platelet activation was a major concern. Mpl-L
induces phosphorylation of several proteins in
platelets,86-88 but it does not induce spontaneous
platelet aggregation. However, platelets stimulated
with non-physiologic doses of Mpl-L become more
sensitive to activation agonists.86,87, 89-92 

The obtainment of c-mpl- and TPO-null mice allowed
clear demonstration of the lineage-dominant action of
TPO on platelet production.14,52 The homozygous ani-
mals display an identical phenotype with a 80-90%
reduction in platelet counts and a markedly decreased
number of MKs with a low ploidy in marrow and
spleen. Red blood cell and leukocyte counts of
homozygous animals are similar to those of wild-type
littermates. Nevertheless, c-mpl–/– and TPO–/– mice show
a 60% reduction in the absolute numbers of all
myeloid progenitors, including primitive progenitors
forming CFU-blast-derived colonies.93,94 In addition,
recently reported results show that progenitor cells
exhibiting long-term repopulating ability are signifi-
cantly reduced in c-mpl-null mice and that all the long-
term repopulating activity of wild type murine fetal liv-
er progenitor population (AA4+ Sca+) segregates with
Mpl expression.95 Furthermore, a direct comparison
of the reconstituting ability of human CD34+ CD38– c-
mpl+ and CD34+ CD38– c-mpl- into NOD/SCID mice
shows that c-mpl expression correlates with signifi-
cantly better donor-derived engraftment.95 This indi-
cates that TPO not only stimulates megakaryopoiesis
and platelet production, but has a pleiotropic range
of action in hematopoiesis.96

Action of TPO on early stem cells
Several in vitro studies demonstrate that TPO acts

synergistically with the early acting growth factors,
Flt3 ligand, c-kit ligand or interleukin-3, to stimulate
the proliferation of primitive hematopoietic stem cells
directly .75,97-105 Of potential interest for ex vivo  expan-
sion of CD34+ cells, it has been shown that progeni-
tors expanded in medium containing TPO in combi-
nation with c-kit ligand or Flt3 ligand retain a primi-
tive phenotype, and maintain the capacity for multi-
lineage colony formation.103,104 In addition, TPO
enhances the expansion and survival of CD34+ CD38–

progenitors in culture.105
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Preclinical and clinical studies
The in vivo biological activities of recombinant Mpl-

L have been extensively reviewed.26,74,106-108 In normal
animals receiving repeated injections of Mpl-L,
platelet numbers increase several-fold but the num-
bers of red blood cells and leukocytes are not signif-
icantly affected. The increment in platelet numbers is
preceded by an increase in MK progenitors, and an
increase in MK number, volume and ploidy.22,72 Com-
parable results are obtained after a single intravenous
injection.109,110

In mildly thrombocytopenic mice treated with a
single injection of carboplatin, rHuMGDF reverses
thrombocytopenia.111 In more severe models of
thrombocytopenia induced by a combination of sub-
lethal irradiation and carboplatin, daily administra-
tion of PEG-rHuMGDF reduced the severity of the
platelet nadir, accelerated platelet recovery and
reduced mortality.21,112 No effect113 or an accelerated
platelet recovery114 were reported when Mpl-L/PEG-
rHuMGDF was given after bone marrow transplan-
tation. Both group of investigators observed that the
rate of platelet reconstitution was highly accelerated
when donors were pretreated with Mpl-L/PEG-
rHuMGDF prior to graft harvest.113,115 Similar results
are obtained in myelosuppressed primates.22,116-119 In
addition to the major effect on platelet recovery, Mpl
ligands also dramatically accelerated the recovery of
all progenitor classes, improved neutrophil and retic-
ulocyte recovery and mobilized progenitor cells in
myelosuppressed mice and monkeys.21,111, 113,117,120,121

Results of phase I/II clinical trials with Mpl ligands
have been extensively reviewed.108,122 PEG-rHuMGDF
was injected subcutaneously at escalating doses rang-
ing from 0.03 to 1 µg/kg/day during 10 days to
patients with advanced cancer before chemothera-
py.123,124 Platelet counts started to increase on day 6,
peaked between day 12 and 18 and remained ele-
vated until day 26 for the highest doses of 0.3 and 1
µg/kg. There was no drug-related toxicity and no evi-
dence of ischemia or thromboembolism even in one
patient who developed a very high number of
platelets (> 1,8003109/L ). In another study, patients
with sarcoma were given a single intravenous dose of
rHuTPO at doses ranging from 0.3 to 2.4 µg/kg.
Platelets started to increase in a dose-dependent
manner on day 4 and peaked at day 12. No major
side effects were reported.125 In addition, Mpl ligand-
treatment expanded marrow myeloid, erythroid and
multipotential progenitors and markedly mobilized
progenitor cells in blood, but these expansions did
not translate into an increment in peripheral leuko-
cytes or red blood cells.123-126 After chemotherapy,
PEG-rHuMGDF was injected daily for up to 16 days
to patients with non-small cell lung cancer receiving
carboplatin and paclitaxel. Patients experienced a
more rapid platelet recovery and a higher nadir
platelet count than the placebo group.127,128 Howev-
er, in a series of patients with de novo AML receiving

up to 21 doses (2.5 and 5 µg/kg/day) of PEG-
rHuMGDF after the first cycle of chemotherapy, no
significant differences in platelet counts were seen
between the PEG-rHuMGDF-treated and the place-
bo group.129 Patients with sarcoma received one or
two intravenous bolus injections of rHuTPO after the
second cycle of high dose chemotherapy. A sustained
4-fold increase in platelet counts was observed
accompanied by a significant increase of MK in the
bone marrow and a mobilization of progenitor cells
of multiple lineages in blood. Anti-TPO antibodies
were surveyed in the sera from 12 rHuTPO-treated
patients. Not neutralizing antibodies were transitori-
ly detected in one patient indicating the need to mon-
itor the administration of these recombinant hor-
mones carefully.130 Basser et al. reported the com-
bined effects of increasing doses of PEG-rHuMGDF
(0.03 to 5.0 µg/kg/day) and G-CSF (filgrastim, 5
µg/kg/day) given to 41 patients treated with carbo-
platin and cyclophosphamide.131 No difference in the
depth of platelet nadir was noted between PEG-rHu-
MGDF-treated patients and the placebo group.
However, platelet recovery to baseline levels was
reached 4 days earlier (median of 17 days versus 22
days) in patients treated with PEG-rHuMGDF. It is
noteworthy that, when PEG-rHuMGDF was admin-
istered both before and after chemotherapy, platelet
recovery was hastened as it was during the second
cycle of chemotherapy. 

These early clinical data indicate that PEG-
rHuMGDF and rHuTPO are well tolerated molecules
and powerful agents for increasing platelet counts in
normal or mildly thrombocytopenic patients. How-
ever, in severely thrombocytopenic states induced by
intensive regimens, the therapeutic benefit of treat-
ment with either of the Mpl ligands is modest or
insignificant. At the present time, clinical trials with
PEG-rHuMGDF are discontinued due to evidence of
neutralizing antibodies in a few patients.  

Involvement of the TPO/Mpl receptor system
in human pathology 

The TPO/Mpl system has been examined in myelo-
proliferative disorders with an excess of MKs to under-
stand whether abnormalities could be involved in the
pathogenesis of these diseases. In essential thrombo-
cythemia (ET), it has been reported that serum TPO
levels are either normal or slightly elevated when com-
pared to those of normal subjects. Given the regula-
tion of TPO plasma levels by the platelet and MK
masses, this observation was quite unexpected. Flow
cytometry and Western blot analyses indicate that Mpl
expression is markedly reduced in platelets from ET
patients as compared to platelets from normal sub-
jects.132,133 Another study shows that expression of Mpl
is markedly reduced in platelets from patients with
either polycythemia vera (PV) or idiopathic myelo-
fibrosis (PMF), but not in patients with ET.134 A study
performed on a family with hereditary thrombocy-
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themia reports that all affected members have elevat-
ed serum TPO levels. Genetic analyses demonstrate
that a splice donor mutation in the TPO gene is
responsible for overexpression of the protein due to
increased translational efficiency.135 More recently, we
have investigated a possible involvement of the
TPO/Mpl system in CD34+ and MK from patients with
ET or PMF. We show that, in both diseases, CD34+

progenitor cells produce autonomously developing
MK colonies at a single cell level. We were unable to
detect autocrine production of TPO in the CD34+

population or in mature MKs despite using a highly
sensitive and quantitative RT-PCR technique. In addi-
tion, no missense mutation in the coding region of the
c-mpl gene was detected. Interestingly, addition of sol-
uble Mpl to cultures specifically inhibited the growth
of autonomous MK colonies.136,137 Our data indicate
that it seems unlikely that the primary defect in ET and
PMF is at the level of the TPO/Mpl loop. More work
is needed to understand whether a molecular defect
involving a regulatory protein along the signal trans-
duction cascade is involved in these pathologies, as
recently suggested for PV.138 Together, these data pro-
vide new insights into the physiopathology of myelo-
proliferative disorders.
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