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Abstract

We previously used a disease-specific B cell receptor (BCR) point mutation (IGLV3-21R110) for selective targeting of a high-
risk subset of chronic lymphocytic leukemia (CLL) with chimeric antigen receptor (CAR) T cells. Since CLL is a disease of 
the elderly and a significant fraction of patients is not able to physically tolerate CAR T-cell treatment, we explored bispe-
cific antibodies as an alternative for precision targeting of this tumor mutation. Heterodimeric IgG1-based antibodies con-
sisting of a fragment crystallizable region (Fc) attached to both an anti-IGLV3-21R110 Fab and an anti-CD3 (UCHT1) single 
chain variable fragment (R110-bsAb) selectively killed cell lines engineered to express high levels of the neoepitope as well 
as primary CLL cells using healthy donor and CLL patient-derived T cells as effectors. R110-bsAb spared polyclonal human 
B cells (as opposed to CD19-targeting blinatumomab) as well as CD34+ human stem cells. Yet, R110-bsAb induced lower 
T-cell activation than blinatumomab with primary CLL cells likely due to lower expression of target antigen. In vivo, R110-
bsAb specifically killed IGLV3-21R110-expressing cell lines and CLL cells while sparing peripheral blood mononuclear cells. 
These findings highlight bispecific antibodies as a potential off-the-shelf immunotherapy for high-risk CLL patients, offer-
ing selective targeting while preserving healthy B cells.

Introduction

The treatment landscape for chronic lymphocytic leuke-
mia (CLL) has undergone profound changes, evolving from 
predominantly chemotherapy and antibody combinations 
to the use of small molecule inhibitors targeting the B-cell 
receptor (BCR) and BCL2 pathways.1-3 With these novel 
therapies, life expectancy is now approaching that of the 

general population.3 However, certain patient subsets do 
not yet experience the same benefits, highlighting the need 
for novel treatment options.3 These include patients from 
stereotypic BCR subsets, which may have a poor prognosis 
and derive only limited long-term benefits from current 
approaches, including BCR pathway-targeted therapies.4-6 

Stereotypic subsets are characterized by distinct comple-
mentarity-determining region 3 (CDR3) sequence motifs, 
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oligomeric membrane organization, and autonomous sig-
naling through BCR-BCR interactions.1,7-11 Stereotypy may 
also extend to the BCR’s light chain.10,12,13 The IGLV3-21R110 
subset is one such light chain-defined subset that typi-
cally exhibits an aggressive clinical course.11,13-16 IGLV3-21R110 
is expressed in 10-15% of unselected CLL patients but is 
over-represented in cases requiring treatment.13,16  Func-
tionally, the G-to-R exchange at position 110 of the IGLV3-21 
light chain, along with several conserved amino acids in 
the heavy chain, confers autonomous signaling capacity 
to the BCR by mediating self-interactions.13,14,16   
Since the IGLV3-21R110 BCR is specific to CLL and acts as a 
critical tumor driver, we hypothesized that targeting this 
receptor would spare normal B cells and that it bears a 
low risk of epitope escape due to its functional relevance. 
Additionally, the absence of persistent B cell aplasia could 
reduce infection-related complications and preserve vac-
cination responses.17 To this end, we previously developed 
IGLV3-21R110-targeted CAR T cells and demonstrated their 
function in vitro and in vivo, providing proof-of-concept 
that this targeting approach may be feasible.18 
In this study, we investigated whether our precision therapy 
approach could be adapted into an off-the-shelf bispecific 
antibody format to extend its applicability to a broader 
range of CLL patients, including those too frail for CAR 
T-cell therapy.

Methods

Cell lines, primary chronic lymphocytic leukemia and 
healthy donor blood cells
Cell lines (DMSZ) and IGLV3-21R110 or IGLV3-21G110 light chain 
expressing variants thereof were generated as previously 
described.18 Blood samples from CLL patients were col-
lected after informed consent as approved by the ethics 
committees of the Universities of Hamburg–Eppendorf, 
Halle-Wittenberg, and Basel. The clinical characteristics 
of these patients are to be found in Online Supplementary 
Table S1. Peripheral blood mononuclear cells (PBMC) were 
isolated by Ficoll gradient centrifugation. In addition, if 
necessary, Pan T cells, Pan B cells or CD34+ hematopoietic 
stem cells were isolated via magnetic-activated cell sorting 
(MACS, Miltenyi Biotec). 

Bispecific antibody constructs
The bispecific antibody construct is derived from the human-
ized antigen-binding fragment (Fab) of the IGLV3-21R110-spe-
cific antibody from AVA Lifescience GmbH (Denzlingen, 
Germany; patent EP 4 227 322 A1). The R110 bispecific 
antibody (R110-bsAb) was designed as a heterodimeric 
IgG1-based antibody consisting of a fragment crystallizable 
region (Fc) with knob-into-whole mutations19 attached to 
an anti-IGLV3-21R110 Fab and an anti-CD3 (UCHT1) single 
chain variable fragment (anti-CD3 scFv). L234A and L235A 

point mutations were induced to reduce unspecific Fc-FcR 
interactions.20 

Bispecific antibody production and purification
Antibody production was performed using CHO-S cells 
and the MaxCyte STX Scalable Transfection Systems.21,22 
For purification, antibody was isolated from supernatant 
with Capture SelectTM CH1 Affinity Matrix (Thermo Fisher 
Scientific). Multimers were excluded via size exclusion 
chromatography using the Äkta Chromatography System 
(Cytiva). Blinatumomab was used as positive control.23 

In vitro cytotoxicity assay and cytokine quantification
For in vitro cytotoxicity assays, 2x104 target cells (NALM-6 Luc 
(-R110), NALM-6, RAJI or OCI-LY1 (G110/R110)) or 4x104 primary 
CLL cells were used. bsAb-dependent T-cell activation was 
determined using flow cytometry. Target cell lysis and fold-
change calculation of activation markers is described in the 
Online Supplementary Appendix. IFN-g release was quantified 
using the LEGENDplex immunoassay (Biolegend). 

In vivo killing assays
All studies with mice were performed in accordance with 
the respective animal welfare regulations, approved by the 
respective board/committee: the local ethics committee of 
Basel-Stadt, Switzerland (approval: 3036, license: 1007-2H), 
the Institutional Animal Care and Use Committee (IACUC) 
of the Feinstein Institute for Medical Research (approval: 
24-1114, AAALAC: 000751) and the veterinary office of the 
canton of Zurich, Switzerland (license: ZH067/2023).
For xenografts, activated healthy donor T cells were ex-
panded for nine days in culture. A total of 10 NSG (NOD/
SCID/IL2rgnull) mice were injected subcutaneously (s.c.) into 
the right flank with 2x106 NALM-6 R110 lymphoma cells. On 
day 7, 3x106 expanded healthy donor T cells were injected 
intravenously either alone or with R110-bsAb (0.5 mg/kg/
dose). Subsequently, animals were treated biweekly with 
R110-bsAb for a total of 5 times. Tumor volume was mea-
sured every 2-3 days starting on day 10. 
Patient-derived xenograft assays were performed as de-
scribed previously.24 After ten days, the mice were divided 
equally into three groups (N=5/group) and treated intrave-
nously with either PBS, 0.25 µg/g R110-bsAb or 0.25 µg/g 
blinatumomab. Bispecific antibodies were further readmin-
istered biweekly. After three weeks, mice were sacrificed 
and spleens were harvested. T and B cells were quantified 
by flow cytometry. 
Lastly, the effect of R110-bsAb on healthy, polyclonal PBMC 
was analyzed using 3-5-month-old NFA2 mice that were 
injected intraperitoneally (i.p.) with 2.5x106 PKH26-labeled 
PBMC originating from two different donors, either alone or 
in presence of 0.25 µg/g of R110-bsAb or blinatumomab (in 
total N=18). After 16 hours, the mice were sacrificed, and 
peritoneal cells were collected via lavage and analyzed by 
flow cytometry. 
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Additional details of the methods are provided in the Online 
Supplementary Appendix.

Results

Anti-IGLV3-21R110 bispecific antibodies mediate epitope-
selective tumor cell lysis in vitro
For the treatment of CLL patients with the IGLV3-21R110 light 
chain mutation (R110), we developed a bispecific antibody 
construct containing a R110-specific binding moiety cou-
pled to the anti-CD3 domain UCHT1 (Figure 1A). 
Cell lines expressing a recombinant BCR containing the 
IGLV3-21R110 or a corresponding wild-type IGLV3-21G110 light 
chain were generated as described in a previous project 
(Figure 1B).18 The conditions for co-culture experiments 
were set up using the NALM-6 Luc cell line as target cells 
with different ratios of healthy donor T cells as effector 
cells (effector to target ratios; E:T) and the anti-CD19 
bispecific T-cell engager blinatumomab as positive con-
trol at the previously established concentration of 2 nM 
(Online Supplementary Figure S1A).25,26 In addition, we used 
primary R110-negative CLL cells as target cells (Online 
Supplementary Figure S1B). In both settings, an E:T ratio of 
5:1 appeared to allow for efficient lysis of both the target 
cell line and primary CLL cells.
Co-culture of NALM-6 Luc-R110 cells with healthy donor T 
cells and increasing concentrations of R110-bsAb showed 
increasing levels of epitope-selective lysis of the NALM-6 
Luc-R110 cell line, while control NALM-6 Luc cells were 
unaffected (Figure 1C). Blinatumomab equally lysed both 
CD19-positive cell lines independently of the R110 epitope 
(Figure 1C). Without the addition of bispecific antibodies, 
only baseline levels of killing were observed. If no effector 
cells were present or the antibody did not have an anti-CD3 
domain, as in the case of the monospecific antibody R110-
Ab, no specific killing above baseline occurred (Online 
Supplementary Figure S1C). This suggests that R110-bsAb 
killing was mediated by engagement of effector T cells 
(Figure 1C). Cell lysis was accompanied by expression of 
CD25 and CD69 on the activated CD8+ T cells (Figure 1D). 
These results were reproducible with alternative B-cell 
lines transduced to express the R110-epitope such as 
NALM-6 (without Luciferase), OCI-LY1 and RAJI (Online 
Supplementary Figure S2A, B). To confirm specificity for 
the R110 point mutation, we included for each cell line a 
variant expressing the IGLV3-21 light chain in wild-type 
configuration (G110). As expected, these wild-type variants 
were unaffected by R110-bsAb treatment (Online Supple-
mentary Figure S2A, B). The mutation-specific pattern was 
also observed if IFN-g secretion was used as a read-out 
(Figure 1E). Since the RAJI cell line transduced to express 
the R110 neoepitope showed lowest killing rates by flow 
cytometry (Online Supplementary Figure S2A), we wished 
to further corroborate our findings by confocal microscopy. 

RAJI R110 showed extensive cluster formation upon R110-
bsAb treatment suggesting sufficient T-cell engagement 
(Figure 1F). 

T cells lyse primary chronic lymphocytic leukemia cells 
in the presence of R110-directed bispecific antibodies 
We chose a CLL case with known R110-expression and a 
R110-negative case to test our R110-bsAb compared to 
CD19-directed blinatumomab in a setting of primary hu-
man CLL cells (Figure 2A). The mean fluorescence intensity 
(MFI) of the BCR carrying the R110 mutation is notably re-
duced in primary CLL as compared to transduced cell lines 
(Figure 2B). Nevertheless, R110 epitope-specific patterns 
of cell lysis were observed with primary human CLL cells 
as targets using the lysis assay described above (Figure 
2C). Blinatumomab lysed primary CLL cells independently 
of R110 status (Figure 2C). R110-bsAb and blinatumomab 
dosing required for optimal lysis was higher in this model 
using primary CLL cells as compared to the cell line model. 
This was also reproducible when testing the R110-positive 
cells from a second patient (Online Supplementary Figure 
S3). T-cell activation accompanied the observed effects, 
but blinatumomab more potently induced T-cell activation 
than R110-bsAb (Figure 2D, E). We noted very similar acti-
vation patterns for CD4 and CD8 (Figure 2D, E). Since T-cell 
activation by the two T-cell engaging antibodies was equal 
in the cell line model with high expression of the target 
antigens CD19 and R110, the differences in the assays with 
primary cells were interpreted to be related to lower R110 
antigen density in CLL, as previously shown (Figure 2B).18 

R110-directed bispecific antibodies spare polyclonal 
human B cells, peripheral blood mononuclear cells and 
hematopoietic stem cells
T cells in the presence of R110-bsAb did not lyse and were 
not activated by polyclonal human B cells (BC) at an E:T ratio 
of 5:1 (Figure 3A-C). In conditions with blinatumomab, cell 
lysis and T-cell activation were observed with polyclonal 
human B cells as target cells, as expected (Figure 3A-C).
To explore B cell lysis in a more natural setting, we used 
healthy donor derived peripheral blood mononuclear cells 
(PBMC) and treated them with R110-bsAb. The natural E:T 
ratio in these samples was 9:1 and was, therefore, even 
higher than in the previous experiments. T cells in the pres-
ence of R110-bsAb did not lyse and were not activated by 
PBMC, while with blinatumomab lysis and activation were 
observed (Figure 3A-C).
Since the R110-epitope is tumor-specific, we did not expect 
any reactivity with normal tissues. To explicitly rule out 
stem cell toxicity, we included hematopoietic CD34-positive 
stem cells (HSC) in our co-culture experiment. CD19-neg-
ative HSC were isolated from a leukapheresis product of 
a human donor by CD34 sorting. As expected, no killing or 
activation of T cells was observed with R110-bsAb (Figure 
3A-C).
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Figure 1. Precision targeting the IGLV3-21R110 neoepitope with bispecific antibodies. (A) Schematic depiction of the design and 
mechanism of action of R110-bsAb. Created with BioRender.com. (B) Expression of CD19 and the IGLV3-21R110 BCR on the cell 
surface of NALM-6 Luc and NALM-6 Luc-R110 cell lines. (C) Specific killing of NALM-6 Luc and NALM-6 Luc-R110 target cells via 
bispecific antibody T-cell engagement with an effector cell (E) to target cell (T) (E:T) ratio of 5:1 after 24 hours (hr). Healthy donor 
(HD) T cells were used as effector cells with blinatumomab or with the monospecific R110-Ab serving as a control. Killing was 
normalized to the cell viability of target cells in absence of effector cells or bispecific antibodies. (D) Expression of activation 
markers CD69 and CD25 on CD8+ HD T cells after the 24-hr co-culture with NALM-6 Luc or NALM-6 Luc-R110 cells (E:T = 5:1) 
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and a non-serial dilution of bispecific antibodies blinatumomab, R110-Ab and R110-bsAb. Each point represents the mean of at 
least two technical replicates with error bars as standard deviation (SD). A non-linear regression analysis was performed to eval-
uate how specific killing or T-cell activation changes upon increasing bsAb concentration. (E) IFN-g secretion in supernatants 
harvested after 24 hr of co-culture with healthy donor T cells and indicated target cells. (F) Confocal microscopy pictures rep-
resentative for target-effector cell engagement after 24 hr incubation with 2 nM blinatumomab or R110-bsAb stained with Hoechst 
for cell nucleus and Nile Red for cytoplasm. E: effector cells; T: target cells.

Figure 2. Specificity and activity of R110-bsAb against primary chronic lymphocytic leukemia cells. (A) Expression of CD19 and 
the IGLV3-21R110 BCR on the cell surface of primary CLL462 (R110 negative) and CLL472 (R110 positive). (B) Mean fluorescence in-
tensity (MFI) of the IGLV3-21R110 BCR expression on cell lines and on primary IGLV3-21R110 negative and IGLV3-21R110 positive chron-
ic lymphocytic leukemia (CLL) cells. (C) Specific target cell lysis of primary target cells CLL462 (R110 negative) and CLL472 (R110 
positive) after 24 hours (hr) of co-culture with HD T cells. An effector cell (E) to target cell (T) (E:T) ratio of 5:1 was used in com-
bination with a non-serial dilution of R110-bsAb or blinatumomab. Cell lysis was normalized to the cell lysis of target cells with-
out effector cells or bispecific antibody. (D) Percentage of CD69 and CD25 activation marker expressing CD8+ healthy donor (HD) 
T cells after a 24-hr co-culture with primary CLL samples (E:T = 5:1) and a non-serial dilution of the bispecific antibodies. (E) 
Percentage of CD69 and CD25 activation marker expressing CD4+ HD T cells after a 24-hr co-culture with primary CLL samples 
(E:T = 5:1) and a non-serial dilution of bispecific antibodies blinatumomab and R110-bsAb. Each point represents the mean of 
two technical replicates with error bars as standard deviation (SD). A non-linear regression analysis was performed to evaluate 
the effects of increasing bsAb concentration on target cell killing and effector cell activation. E: effector cells; T: target cells.
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Chronic lymphocytic leukemia patient-derived T cells 
lyse target cells in the presence of R110-directed 
bispecific antibodies 
To better simulate the patient setting, we next asked if 
this targeting principle is also applicable to primary CLL T 
cells. We, therefore, isolated T cells from a total of 3 CLL 
patients and 3 healthy donors and used them as effector 
cells in co-culture assays using the OCI-LY1 R110 model 
system. Indeed, the epitope-specific patterns of cell lysis 
were equally observed with primary CLL-derived T cells 
as effector cells using the lysis and activation assays de-
scribed above (Figure 4A-C). Blinatumomab showed epi-
tope-independent killing with primary CLL-derived T cells 
in this cell line model (Figure 4A-C). 

R110-directed bispecific antibodies are efficacious in 
xenograft IGLV3-21R110-models
Next, we evaluated the in vivo efficacy of our R110-bsAb 
in three different mouse models. We engrafted NSG mice 
with NALM-6 R110 cells and administered repeated treat-
ments of the R110-bsAb, while untreated mice served as 

controls (Figure 5A). Monitoring tumor growth over time, 
we observed exponential tumor growth in mice without 
treatment starting 20 days post tumor injection (Figure 
5B). In contrast, tumor growth was effectively suppressed 
in mice treated with the R110-bsAb (Figure 5B). 
To further validate the therapeutic efficacy of R110-bsAb, a 
human CLL PBMC xenograft mouse model was generated 
from an R110-positive patient (patient ID: CLL472). NSG mice 
were injected intravenously with patient CLL472-derived 
PBMC and T cells in a 40:1 ratio and treated with R110-bsAb 
or blinatumomab biweekly for three weeks starting ten days 
post CLL PBMC injection (Figure 5C). After sacrificing the 
mice, the distribution of human CD3+ and CD19+ cells in the 
mouse spleen was analyzed by flow cytometry. We observed 
a nearly complete clearance of B cells form the spleen of 
R110-bsAb- and blinatumomab-treated mice (Figure 5D, 
right panel). Mice treated with PBS retained high levels of 
B cells. Importantly, there was no significant difference 
between the CD3+ T-cell counts after R110-bsAb and after 
blinatumomab administration (Figure 5D, left panel). 
Finally, injecting NFA2 mice with human healthy donor poly-

Figure 3. Absence of cytotoxic effects of R110-bsAb on the healthy immune 
cell repertoire and hematopoietic stem cells. (A) Specific cell lysis of healthy 
B cells (BC, PBMC) or hematopoietic stem cells (HSC) after 24 hours (hr) of 
co-culture with HD T cells in either an allogenic (E:T = 5:1) or an autologous 
(E:T = 9:1) system. For the allogenic systems, target cells were isolated from 
healthy peripheral blood mononuclear cells (PBMC) and incubated with 
sorted effector cells and 100 nM blinatumomab or R110-bsAb. In the autol-
ogous system, PBMC were incubated directly after the addition of 100 nM 
of bispecific antibodies. Cell lysis was normalized to the baseline cell lysis 
without bispecific antibody. Each dot represents a technical replicate. (B 
and C) Percentage of activation marker expressing CD8+ (B) or CD4+ (C) T 
cells after 24-hr co-culture of HD T cells cultured with BC, HSC (E:T = 5:1) 
or PBMC (E:T = 9:1) and a non-serial dilution of blinatumomab or R110-bsAb. 
Non-linear regression analyses were performed to highlight the dose-de-
pendent upregulation of T-cell activation due to T-cell engagement. Each 
dot represents the mean of at least three technical replicates with error 
bars as Standard Deviation (SD). For statistical analysis, an ordinary one-way 
Analysis of Variance (ANOVA) combined with a Šidák’s multiple comparisons 
test was used. BC: B cells; E: effector cells; T: target cells.
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clonal PBMC and our R110-bsAb revealed no significant reduc-
tion in the B-cell population compared to the non-injected 
mice (Figure 5E, F). In contrast, blinatumomab treatment 
led to a significant decrease in B-cell numbers compared 
to pre-injection levels or R110-bsAb treatment (Figure 5F).

Discussion

Cell-based and bispecific antibody-based immunothera-
pies have become essential treatment options for patients 
with B-cell lymphomas, achieving long-term remission in 

Figure 4. Comparison of R110-
bsAb mediated cytotoxicity and 
activation of healthy donor or 
chronic lymphocytic leukemia 
patient-derived T cells. (A) Spe-
cific killing of OCI-LY1-G110 and 
OCI-LY1-R110 cells after 24 hours 
(hr) of co-culture with either 
healthy donor (HD) T cells or 
chronic lymphocytic leukemia 
(CLL) T cells (E:T = 5:1) in com-
bination with a non-serial dilu-
tion of blinatumomab or R110-
bsAb. (B) Expression of activation 
markers CD69 and CD25 on CD8+ 
HD or CLL T cells after 24-hr 
co-culturing with target cells 
and a non-linear dilution of 
bispecific antibodies. (C) Expres-
sion of activation markers CD69 
and CD25 on CD4+ HD or CLL T 
cells after 24-hr co-culturing 
with target cells and a non-lin-
ear dilution of bispecific anti-
bodies. Non-linear regression 
analyses were performed to 
demonstrate the dose-response 
of target cell viability and effec-
tor cell activation towards bispe-
cific antibody treatment. Each 
data point represents the mean 
of 3 different CLL patients 
(CLL424, CLL477, CLL479) or 3 
healthy donors (HD) (HD003, 
HD169, HD174) with two techni-
cal replicates each. Error bars 
indicate the Standard Deviation 
(SD).
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Figure 5. In vivo activity of R110-bsAb. (A) Workflow of the NALM-6 R110 cell line xenograft model. (B) Growth of NALM-6 R110 
tumor cells subcutaneously engrafted in NSG mice untreated or treated with R110-bsAb every 2-3 days for three weeks. Engraft-
ed mice treated only with T cells served as negative controls. Each data point represents one mouse with the mean tumor vol-
ume and error bars as Standard Deviation (SD). One outlier was identified by Grubbs Test and removed from the analysis. Sta-
tistical analysis was performed using two-way ANOVA combined with a Šidák’s multiple comparisons test. (C) Workflow of the 
primary human CLL peripheral blood mononuclear cells (PBMC) xenograft model. (D) Percentage of human CD3 and CD19 positive 
cells derived from spleens of NSG mice engrafted with primary CLL derived from the IGLV3-21R110-positive CLL donor CLL472. 20 
million CLL PBMC were injected intravenously (i.v.) together with 0.5 million autologous, activated T cells. Starting on day 10, mice 
were treated with R110-bsAb, blinatumomab or PBS twice a week before being sacrificed after three weeks. Each data point 
represents one mouse with error bars as SD. For statistical analysis, a Kruskal-Wallis test was used. (E) Workflow of the prima-
ry human PBMC xenograft model. (F) Percentage of human CD19 positive cells in NFA2 mice injected i.p with healthy, polyclonal 
PBMC +/- R110-bsAb or blinatumomab. Mice were sacrificed after 16 hours and cells harvested from the peritoneum were ana-
lyzed via flow cytometry. Each dot presents one mouse injected with PBMC derived from one donor and each square represents 
one mouse injected with PBMC derived from another donor with error bars as SD. Statistical analysis was performed using the 
ordinary one-way ANOVA paired with Tukey`s multiple comparisons test. i.p.: intraperitoneal; i.v.: intravenous; s.c.: subcutaneous.
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many patients.27-34 However, in CLL, these therapies are not 
as widely used as in other lymphomas.35 Currently in the 
USA, only CD19 CAR T cells have been approved for CLL, 
and, so far, no bispecific antibody therapies have been 
approved.31,35 One challenge in using these treatments is 
the eradication of the entire B-cell lineage, potentially 
leading to infectious complications and lack of response 
to vaccination.17,36  Since CLL patients are often elderly 
and frail, the applicability of CAR T-cell therapy may, in 
general, also be somewhat compromised by more se-
vere side effects compared to bispecific antibodies.37-39 
Consequently, there is a need for targeted and tolerable 
therapeutic approaches especially for patients with high-
risk disease.
To address these challenges, we have developed a bispe-
cific T-cell engager that targets a recurrent oncogenic point 
mutation in the BCR light chain of malignant CLL cells.18 The 
data presented here show that this bispecific approach is 
effective, even when using CLL-derived T cells as effector 
cells. Importantly, however, our construct selectively spared 
healthy B cells, similar to the precision targeting seen in 
our CAR T-cell approach.18 
A critical consideration for the clinical translation of our 
approach is the relatively low surface expression of the 
mutated B-cell receptor on CLL cells.40 In our primary in 
vitro assays, T-cell activation and cytotoxicity were con-
sistently lower with our specific bispecific T-cell engager 
than with CD19-directed bispecific antibodies, which likely 
reflects the reduced antigen density of the R110 target. This 
highlights the importance of optimizing dosing strategies to 
ensure sufficient T-cell engagement. Indeed, in our in vivo 
model, tumor regrowth was observed 11 days after the final 
bsAb administration, suggesting that sustained or repeated 
dosing may be necessary to maintain therapeutic efficacy. 
Moreover, it is important to acknowledge that ex vivo as-
says in CLL were hampered by technical limitations in this 
study. CLL cells are notoriously difficult to maintain in cul-
ture due to their low intrinsic vitality outside the patient’s 
microenvironment, which can impact the robustness and 
reproducibility of functional assays. This inherent fragility 
poses challenges for immunotherapy testing and underscores 
the need for cautious interpretation of ex vivo findings. De-
spite these challenges, this mutation-directed approach 
could serve as a valuable addition to existing therapies. In 
particular, combining lineage-specific targeting (e.g., CD19) 
with mutation-specific bispecific antibodies may enhance 
specificity, reduce off-target effects, and provide a strategy 
to overcome antigen escape or resistance in high-risk CLL 
subsets such as those carrying the R110 mutation.
Thereby, our research contributes to the broader effort of 
developing immunotherapies that target restricted, ide-
ally tumor-specific, rather than lineage-specific, surface 
molecules. Several studies have explored this direction, 
notably the application of similar concepts to target clo-

notypic T-cell receptors (TCR) in T-cell lymphomas with 
antibody-drug conjugates41 or bispecific antibodies.42 How-
ever, T-cell lymphomas are less clonal, with approximately 
50% of cases being oligoclonal for the TCR, which limits the 
applicability of this strategy.43,44  Also, in CLL, several other 
more tumor-specific surface molecules are currently being 
explored for immunotherapy, such as Siglec-645 or ROR-1.46 
One of the major challenges in CLL is T-cell dysfunction, 
which may limit the efficacy of such therapies.38,39,47 In our 
study, we observed little to no reduction in the potency 
of T cells recruited to lyse target cells when using pa-
tient-derived effector cells of 3 individual CLL patients. 
Nevertheless, the efficacy of these T cells may vary between 
individual patients and at different stages of treatment. 
Before progressing to clinical trials, it will be important to 
conduct repeated testing with more CLL T-cell donors at 
different disease stages to better understand the factors 
influencing treatment efficacy. Given that T-cell dysfunction 
worsens over time in these patients,47 it may be advisable 
to test these strategies early in the course of high-risk 
IGLV3-21R110 disease.
In summary, we provide proof-of-concept for a muta-
tion-targeted bispecific antibody approach in CLL, which 
warrants further study.
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