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CXCR2 deficiency with myelokathexis caused by a novel 
variant: correction via CRISPR/Cas9
Myelokathexis is a severe form of neutropenia caused by 
retention of neutrophils in the bone marrow, with accu-
mulation of both live and apoptotic neutrophils, resulting 
in neutropenia in peripheral blood.1,2 One cause of myelo-
kathexis is WHIM syndrome, a rare inborn error of immu-
nity (IEI) named after its characteristics, including human 
Pappilomavirus-induced Warts, hypogammaglobulinemia, 
recurrent infections and myelokathexis.3,4 More recently 
biallelic loss-of-function variants in CXCR2 were reported 
to represent another WHIM-like IEI with neutropenia and 
varying degrees of myelokathexis.5-7 CXCR2 deficiency is 
exceedingly rare with currently nine cases published.5-7 
The neutropenia characteristic of WHIM syndrome and 
CXCR2 deficiency stems from the essential roles of CXCR4 
and CXCR2 in inhibiting and promoting neutrophil egress 
from the bone marrow into the blood stream, respectively. 
Stimulation of CXCR4 by its ligand C-X-C motif ligand 12 
(CXCL12), which is constitutively expressed by bone mar-
row stromal cells, promotes neutrophil retention, whereas 
CXCR2 stimulation by interleukin 8 (IL-8) promotes release 
of neutrophils from the bone marrow to peripheral blood.8,9 
CXCR2, also known as interleukin 8 receptor β, is a G-pro-
tein-coupled seven transmembrane receptor for the CXC 
subclass of chemokines10 expressed predominantly on 
neutrophils, and to a lesser extent on monocytes, macro-
phages, NK cells, and endothelial cells.11,12

Two brothers from a family of healthy non-consanguineous 
Norwegian parents and one healthy brother presented with 
severe neutropenia. Patient 1 (P1) had been suffering from 
frequent upper respiratory tract infections since the age of 
1. He was diagnosed with neutropenia at 3 years of age at 
which time a bone marrow biopsy showed high cellularity 
(80% of cells being granulocytes) and myelokathexis. Im-
munophenotyping of peripheral blood mononucelar cells 
(PBMC) showed normal distribution of T, B, and NK cells 
with marginally increased fraction of plasmablasts. At age 
29, he still experiences frequent tonsillitis/pharyngitis and 
suffers from severe gingival ulcerations. His neutrophil 
count has continuously been decreased in the range of 
0.5-1.2x109/L (normal range 1.8-6.9x109/L) (Figure 1A; Online 
Supplementary Figure S1A, B). P2, the younger brother of 
P1, was admitted to hospital with pneumonia at the age 
of 3 years and was diagnosed with neutropenia at the age 
of 16, at which time hematological evaluation revealed 
persistent neutropenia. A bone marrow biopsy showed 
increased myelopoiesis and myelokathexis (estimated to 
affect ~33% mature granulocytes), with normal maturation 
of neutrophils, reminiscent of previous descriptions of 
myelokathexis in conjunction with WHIM syndrome (Fig-
ure 1B). During follow-up, the patient’s neutrophil count 

has repeatedly been in the range of 0.1-0.2x109/L (Online 
Supplementary Figure S1C). At age 23 his major symptoms 
are ulcerations in the nose and oral cavity. Both parents 
and a third younger brother were healthy without oral ul-
cerations or infections (although the mother experienced 1 
episode of neutropenia) and with neutrophil counts in the 
lower normal range (father 2.1x109/L, mother 2.8x109/L and 
brother 3.2x109/L). The patients, their family, and healthy 
controls were included following oral and written consent 
in accordance with Declaration of Helsinki and national 
ethics guidelines. The study was approved by the Danish 
National Committee on Health Ethics, the Data Protection 
Agency, and the Institutional Review Board.
Due to the notable presentation of the two brothers with 
isolated severe neutropenia and myelokathexis combined 
with the family pedigree, an autosomal recessive IEI with 
neutropenia was suspected. Genetic analysis by whole 
exome sequencing (WES) revealed that P2 was homo-
zygous for a CXCR2 missense variant c.865C>T, resulting 
in substitution of a positively charged arginine to neutral 
cysteine amino acid (p.R289C) (Figure 1C). P1 was found to 
be homozygous for the same variant by Sanger sequencing, 
whereas both parents and the third brother were hetero-
zygous carriers of the variant (Figure 1D; Online Supple-
mentary Figure S1D). The variant was classified as likely 
pathogenic according to the American College of Medical 
Genetics and Genomics (ACMG)/Association for Molecular 
Pathology (AMP) sequence variant guidance13 (for details 
see Online Supplementary Figure S1E). The CXCR2 R289C 
missense variant is rare, has a relatively high combined 
annotation-dependent depletion (CADD) score of 23.5 and 
shows a high degree of evolutionary conservation (Figure 
1C, E). No individuals homozygous for the specific CXCR2 
c.865C>T variant have been reported in GnomAD v.4.1.0,5-7 

whereas heterozygosity for this variant has been associat-
ed with reduced neutrophil counts.5 According to protein 
structure analysis14 CXCR2 Arg289 is located towards the 
extracellular end of the seventh transmembrane α helix 
(Figure 1F).
To investigate the deleteriousness of the CXCR2 patient 
variant, we used HeLa cells as a model. Transfected HeLa 
cells expressing either CXCR2 wild-type (WT) or R289C 
showed that the patient variant led to reduced CXCR2 pro-
tein expression in the cytosol as well as at the cell surface 
(Figure 2A, B). Furthermore, the CXCR2 R289C variant failed 
to mediate phosphorylation of the MAPK signaling kinase 
Erk1/2 in response to IL-8 stimulation, revealing impaired 
signaling (Figure 2C, D). Treating transfected HeLa cells 
with the proteasome inhibitor MG132 selectively increased 
the abundance of CXCR2 R289C protein and not CXCR2 
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Figure 1. Identification of a Norwegian family with CXCR2 deficiency in two brothers due to homozygosity for a novel CXCR2 variant. 
(A) Blood neutrophil counts for patient 1 (P1) in the period from 2023-2025. (B) Photomicrographs from bone marrow trephine bi-
opsy of P2 taken at age 16. Top panel: 25x magnification showing hypercellular marrow with no fat cells present. Middle panel: 100x 
magnification showing small scattered erythroid islands (arrows) and few megakaryocytes (arrowheads) while right-shifted myelo-
poiesis predominates. Bottom panel: 400x magnification demonstrating numerous hypersegmented granulocytes with conspicuous 
thin strands of chromatin connecting nuclear lobes (arrows). (C) Summary of genetic information and in silico predictions for the 
identified CXCR2 c.865C>T variant (p.R289C). The CXCR2 R289C variant was identified through whole exome sequencing analysis 
performed on genomic DNA extracted from EDTA blood samples of the patients using a QIAsymphony instrument with correspond-
ing DNA purification kits (Qiagen). The combined annotation-dependent depletion (CADD) score and allele frequency for CXCR2 were 
found on gnomAD v4.1.0, variant 2-218135666-C-T (GRCh38). The results from a genome wide single nucleotide polymorphism array 
showed that P1 had a small region of homozygosity (ROH) surrounding the CXCR2 locus on chromosome 2q35, confirming true ho-
mozygosity for the c.865C>T T variant and ruling out a large deletion. (D) Family pedigree. (E) PopViz plot for known homozygous 
variants reported for CXCR2 in gnomAD v4.1.0, in this publication, or in the literature.6,7 To ensure that all registered variants were 
included, we selected predicted loss-of-function and missense/in frame insertions/deletions variants for CXCR2 in gnomAD v4.1.0. 
(F) Structural representation of CXCR2 in complex with monomeric interleukin 8 (IL-8), created using the cryoelectron microsco-
py-solved protein structure (pdb ID: 6LFO)14 and PyMol™ v2.2.2 (Schrödinger). Left: overview with CXCR2 in cyan, IL-8 in deep purple, 
and amino acid Arg289 position indicated in red. Upper right: close-up view of Arg289 showing hydrogen bonds to Glu4 and poly-
peptide backbone of IL-8. Lower right: close-up view of Cys289. MAF: minor allele frequency; MSC: mutation significance cutoff.
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Figure 2. The patient CXCR2 variant causes loss of CXCR2 surface expression and signaling. HeLa cells were transfected with pcDNA3.1 
vectors encoding either CXCR2 wild-type (WT), CXCR2 R289C variant, or empty vector as negative control. (A, B) CXCR2 expression 3 
days post transfection analyzed in whole-cell lysates using immunoblotting (A) and on the cell surface using flow cytometry (B). To 
visualize CXCR2 protein, cell lysates were treated with PNGaseF to remove N-linked glycosylation. (C, D) Two days post transfection, 
HeLa cells were stimulated with interleukin 8 (IL-8) (100 ng/mL) for 2 minutes. Phosphorylated Erk1/2 relative to total Erk1/2 was an-
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WT, (Figure 2E, F) suggesting that CXCR2 R289C under-
goes accelerated degradation by the proteasome pathway, 
thereby accounting for the reduced levels of CXCR2 variant 
expression. Next, we performed confocal microscopy to 
visualize CXCR2 in relation to the endoplasmatic reticulum 
(ER) and Golgi in transfected HeLa cells. While CXCR2 WT 
was expressed at high levels and with even distribution 
on the cell surface, the CXCR2 R289C variant was largely 
undetectable at the cell surface but localized intracellularly 
in a perinuclear distribution. Furthermore, we observed 
that a significantly increased fraction of CXCR2 R289C was 
co-localized with both the ER and Golgi apparatus when 
compared to CXCR2 WT protein (Figure 2G-J; Online Sup-
plementary Figure S2A, B). These data suggest a post-tran-
scriptional defect impairing synthesis and trafficking of 
the CXCR2 R289C variant through the secretory pathway, 
ultimately abolishing the expression of a functional CXCR2 
receptor protein at the cell surface.
Having established the impaired function of the CXCR2 R289C 
variant we examined patient blood cells. In patient PBMC, 
expression of CXCR2 mRNA was comparable to healthy con-
trols, whereas levels of CXCR2 protein were reduced (Figure 
3A-C). Flow cytometry demonstrated that CXCR2 surface 
expression was significantly reduced on patient NK cells, 
monocytes, and neutrophils compared to controls (Figure 
3D-G; Online Supplementary Figure S2C, D). A trans-well 
migration assay using whole blood revealed markedly re-
duced ability of patient neutrophils to migrate towards IL-8 
(Figure 3H). Finally, to explore the therapeutic potential of 
gene correction, we used CRISPR/Cas9 gene editing with DNA 
templates for homology directed repair (HDR) to correct the 
deleterious CXCR2 gene variant in patient PBMC. We expand-
ed T cells from patient PBMC and performed gene editing 
on these cells (Figure 3I). This led to almost 100% editing 
efficiency for correction of the CXCR2 c.865C>T gene vari-
ant in patient cells (Figure 3J). CRISPR activation (CRISPRa)
a was used to induce CXCR2 transcription which resulted 
in similarly increased levels of CXCR2 surface expression in 
gene-edited patient and healthy control T cells (Figure 3K-
L; Online Supplementary Figure S2E). These results confirm 
that the CXCR2 defect caused by the R289C variant can be 
corrected via gene editing to reconstitute expression of CX-
CR2 WT. Importantly, these data demonstrate the feasibility 
of this editing approach and imply a therapeutic potential for 

CRISPR/Cas9 gene editing for the two patients with CXCR2 
deficiency, and in general for patients with this condition.
The clinical presentation of these patients with a novel 
CXCR2 R289C missense variant, including isolated neutro-
penia and myelokathexis with moderate susceptibility to 
infection, is largely in line with the previously published 
cases on CXCR2 deficiency.5-7 Although we initially hypoth-
esized that the CXCR2 R289C variant might interrupt IL-8 
binding to the CXCR2 receptor, we instead established the 
mechanism to be failure of the variant to be expressed at 
the cell surface, likely accounting for the defective signaling 
and impaired chemotaxis of patient cells. At the molecular 
level this may be due to improper protein folding in the ER 
and impaired trafficking through the secretory pathway to 
the cell surface, combined with increased protein turnover 
via proteasomal degradation in the cytosol. In contrast 
to our findings of reduced CXCR2 surface expression on 
neutrophils, monocytes and NK cells,6 Marin-Esteban et al. 
presented a case in which the R289C variant in heterozy-
gosity did not lead to a reduced CXCR2 surface expression, 
suggesting that homozygosity is required for this variant 
to result in loss of surface expression.
CXCR2 deficiency was first described by Auer et al. reporting 
on a homozygous variant in two siblings (CXCR2 c.968del/p.
His323LeufsTer7) who suffered from congenital myelokath-
exis and neutropenia with recurrent bacterial infections.5 
Another publication reported four patients with different 
CXCR2 variants, including a homozygous deletion on chro-
mosome 2q35 affecting the entire CXCR2 locus, homozygous 
missense variants (p.Arg144Cys and p.Ala212Trp) and com-
pound heterozygosity for the nonsense variant p.Arg184Ter 
and the variant we describe herein (p.Arg289Cys)6 (Online 
Supplementary Table S1). All four had severe oral lesions, 
and two responded well to G-CSF-treatment, but only the 
patient carrying the whole-gene deletion had myelokathexis, 
underscoring the variability of CXCR2 deficiency severity.6 
Finally, three additional families with CXCR2 deficiency 
were recently described.7 The missense variant pArg144His 
was present in all three families, either in homozygous or 
compound heterozygous combination. In cases where bone 
marrow investigation was performed, a hypercellular my-
eloid series but no overt myelokathexis was described. The 
clinical phenotype was characterized by recurrent upper 
airway and skin infections together with oral ulcerations. 

alyzed by immunoblotting from whole-cell lysates. Shown are one representative blot (C) and quantification of 3 replicates in 2 inde-
pendent experiments (D), represented as fold increase of mock-treated samples (medium only). (E, F) Twenty-four hours post trans-
fection, HeLa cells were treated with 2 µM proteasome inhibitor MG132 or dimethyl sulfoxide (DMSO) as vehicle control for 20 hours 
before immunoblot analysis of CXCR2 protein and GAPDH as control. (E) Immunoblots. Lysates were treated with PNGase F before 
loading. (F) Quantification of (E) and 2 replicate experiments. Shown are fold increase of mock-treated samples (only medium). (G, H) 
Two days post transfection, HeLa cells were immunostained and analyzed by using an LSM800 confocal microscope. Shown are im-
munofluorescence images of transfected HeLa cells stained for CXCR2 (green), DNA (DAPI, blue), and endoplasmatic reticulum (ER) 
(PDI, magenta) (G) or Golgi (golgin97, magenta) (H). The scale bar (white) indicates 10 µm. (I, J) Co-localization of CXCR2 with ER (I) or 
Golgi (J), quantified with Pearson’s correlation coefficients. Data are representative of 2 (C, D, G, I) or 3 (A, B, F, H, J) independent ex-
periments. Graphs show individual values plus mean ± standard deviation. *P<0.05; ***P<0.001; ****P<0.0001; not significant (NS), 
unpaired two-tailed t test (B, I, J) and paired two-tailed t test with Holm- Šídák multiple comparisons (D, F).
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Figure 3. Patient peripheral blood mononuclear cells have impaired CXCR2 surface expression and chemotaxis and gene editing by 
CRISPR/Cas9-based homology-directed repair restores CXCR2 surface expression. (A, B) Determination of P1 CXCR2 mRNA tran-
scripts relative to TBP by real-time quantitative polymerase chain reaction (A, N=3 healthy controls) or P1 CXCR2 protein expression 
relative to GAPDH by immunoblotting (B). (C) Quantification of (B) and 4 additional replicates (N=7 healthy controls). (D, E) Histograms 
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Overall, the currently published cases of CXCR2 deficiency 
reveal some variability regarding the degree of neutropenia, 
the extent of myelokathexis, abnormalities in IgG, IgM, and/
or IgA levels, and the severity of the infectious phenotype. 
Indeed, myelokathexis is a rare feature among individuals 
with CXCR2 deficiency and was reported in only two of 
nine published cases, of which one was only partial (35%)5-7 
(Online Supplementary Table S1). Collectively, neutropenia 
and oral ulcerations are key features and common char-
acteristics of CXCR2 deficiency, prompting the suggestion 
that CXCR2 deficiency be regarded as a genetic etiology 
of severe neutropenia that may or may not be associated 
with myelokathexis and thus distinct from WHIM syndrome. 
Moreover, our results together with other reports suggest 
CXCR2 R289C heterozygosity as a potential risk factor for 
neutropenia. Whether patients with CXCR2 deficiency may 
experience an increased risk of malignancy, like the case 
for WHIM syndrome, remains undetermined.
Treatment options for WHIM syndrome and CXCR2 defi-
ciency are limited. Granulocyte colony- stimulating factor 
(G-CSF) is commonly used to treat neutropenia since it 
drives neutrophil differentiation and neutrophil mobiliza-
tion.15 Another treatment approach consists of the CXCR4 
antagonists plerixafor16 and mavorixafor,17 which block CX-
CL12-binding to CXCR4 and thereby counteract the inhibi-
tion of neutrophil efflux from the bone marrow. Finally, we 
here demonstrate efficient HDR CRISPR/Cas correction of 
CXCR2 in patient PBMC, suggesting that a similar strategy 
in patient CD34+ hematopoietic stem cells may constitute 
a curative gene therapy for these patients following further 
validation of efficiency and safety. To our knowledge this 
is the first in vitro attempt at demonstrating CRISPR/Cas 
gene correction in CXCR2 deficiency.
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