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Supplementary Table 1. List of the known pathogenic mutations within

GGCX’s critical regions.

FIX binding regions

GGCX
Region Mutation site Symptom Carboxylation activity
characterization
FIX (98 + 1%)
VKCFD after Wild-type
P8oL '3 MGP (99 *+ 1%)
trauma GGCX activity
BGP (78 £ 8%)
FIX (32 + 6%)
MGP (81 + 3%)
BGP (59 * 6%)
PXE-like and
R83W?3*® / FIl (23.1% at 1 uM K1/38% at 10 uM Kj)
VKCFD
Redion 1 FX (0.5% at1 uM K1/43.3% at 10 pM Kj)
egion
PC (64.1% at 1 yM K4/40.9% at 10 uM
K1)
FIX (40 + 4%)
MGP (76 = 2%)
VKCFD and
BGP (55 * 6%)
R83P3 5. ¢ facial /
FIl (0% at 1 uM K4/29.2% at 10 uM Ky)
dysmorphism
FX (55.4% at1 pM K4/85.1% at 10 uM Ky)
PC (25.4% at 1 uM K4/13% at 10 uM Ky)
FIX (66 + 1%)
MGP (39 + 7%)
VKCFD and BGP (32 £ 1%)
Reduced
D153G3 %7 Keutel FIl (68.7% at 1 pM K4/101% at10 uM Kj)
GGCX activity
syndrome FX (0.2% at1 yM K1/66.8% at 10 uM K)
PC (106.8% at1 uM K4/44.2% at 10 uM
Region 2 K1)
VKCFD, FIX (49 + 6%)
midfacial MGP (34 £ 2%)
Significantly
hypoplasia, and BGP (12 £ 4%)
W157R3 56,8 reduced
chondrodysplasi Fll (25.4% at 1 uyM K4/93.1% at 10 uM K)
GGCX activity
a FX (13.1% at 1 pM K4/97.2% at 10 uM Ky)
punctata PC (7.4% at 1 uM K4/16.4% at 10 uM Ky)
FIX (106 £ 7%)
MGP (163 £ 14%)
Impaired BGP (102 + 2%)
PXE-like and
Region 3 V255M3 5. ° carboxylation FIl (0% at 1 uM K4/119% at 10 pM Ky)
VKCFD

processivity

FX (49.4% at 1 uM K1/130.9% at 10 pM
Kq)
PC (144.1% at 1 uM K+/87% at 10 uM K1)




FIl (0% at 1 uM K4/0% at 10 uM Ky)

PXE-like and
F299S5: 10 / FX (0% at 1 pM K4/0% at 10 uM Kj)
VKCFD
PC (0% at 1 pM K4/0% at 10 uM Kj)
FIX (8 £ 1%)
Region 4 MGP (21 + 2%)
Significantly
PXE-like and BGP (19 £ 2%)
S300F35° reduced
VKCFD FIl (0% at 1 pM K4/1% at 10 uM Kj)
GGCX activity
FX (0% at 1 pM K4/0% at 10 uM Kj)
PC (0% at 1 pM K4/0.2% at 10 uM Kj)
FIX (38 + 2%)
Impaired
MGP (72 + 2%)
binding for
BGP (64 £ 3%)
glutamate-
L394R3 5 1113 VKCFD Fll (0% at 1 yM K4/20.5% at 10 pM Kj)
containing
FX (0% at 1 uM K4/49.3% at 10 uM Ky)
substrates
PC (55.5% at 1 uM K4/37.3% at 10 uM
Region 5 K1)
FIX (48 + 2%)
Impaired
MGP (78 + 3%)
binding for
BGP (47 £ 3%)
H404p3 5.6 14 VKCFD glutamate-
Fil (0% at 1 pM K4/8% at 10 uM Kj)
containing
FX (8% at 1 uM K4/72.5% at 10 uM Kj)
substrates
PC (0% at 1 pM K4/0% at 10 M Kjy)
FIX (94 + 6%)
MGP (183 £ 10%)
PXE-like and BGP (82 £ 3%)
R47GC3 5,10, 15
VKCFD FIl (78.8%, 1 uM K1/87.3%, 10 pM Kj)
FX (12.1%, 1 uM Ki/12%, 10 pM Ky)
PC (0%, 1 uM K4/32.4%, 10 uM Ky)
FIX (93 + 1%)
MGP (200 £ 12%)
BGP (93 £ 4%)
PXE-like and
R476H?3 5 10.15 / Fll (0% at 1 pM K4/113.5% at 10 uM Ky)
VKCFD
Region 7 FX (0% at 1 uM K4/67.1% at 10 uM Kj)
PC (95.9% at 1 uM K4/57.4% at 10 uM
K1)
FIX (59 + 4%)
MGP (37 + 4%)
VKCFD and
BGP (33 £ 2%)
conradi- Reduced
Fil (28% at 1 uM K1/27.6% at 10 uM Ky)
R485pP3 5 14 Hinermann- propeptide
FX (67.2% at 1 yM K4/117.9% at 10 yM
Happle binding
K1)
syndrome

PC (124.6% at 1 yM K4/94.7% at 10 uM
K1)




FIX (59 + 3%)

PXE-like and
R513K3 16 / MGP (196 £ 6%)
VKCFD
BGP (35 £ 5%)
FIX (224 £ 10%)
VKCFD after
1532723 / MGP (134 £ 3%)
trauma
BGP (97 £ 17%)
Region 8
VKCFD,
midfacial
FIX (49 £ 3%)
hypoplasia
D534V3 6 / MGP (43 % 4%)
dystrophia,
BGP (38 £ 1%)
and
microcephaly
FIX (61 = 5%)
MGP (94 % 4%)
BGP (79 £ 5%)
Clotting
G537A3 510 / FIl (349.4% at 1 uM K4/234.6% at 10 uM
deficiency
K1)
FX (25.7% at 1 uyM K4/79.5% at 10 pM Ky)
PC (79% at 1 uM K4/73.5% at 10 uM Ky)
Abolished
Region 9
1553fs"7: 18 VKCFD GGCX /
activity
FIX (19 £ 4%)
MGP (13  4%)
Reduced
PXE-like and BGP (28 £ 2%)
G558R3 5 10 propeptide
VKCFD FIl (1.7% at 1 yM K4/113.2% at 10 uM Ky)
binding
FX gla (0% at 1 uM K4/0% at 10 pM Kj)
PC (0% at 1 pM K4/21.2% at 10 uM Kj)
Abolished FIX (19 £ 3%)
Region 10 T591K3 8 VKCFD GGCX MGP (9 £ 2%)
activity BGP (6 = 1%)
Minor effect on FIX (50 % 8%)
Region 14 R704X3 1819 VKCFD GGCX MGP (46 * 2%)
activity BGP (5 = 1%)
FIX (10 £ 1%)
PXE-like and
Region 15 S741fs* 20 / MGP (36 * 3%)
VKCFD
BGP (18 £ 5%)
Reduced vitamin K binding regions
GGCX
Region Mutation site symptom Carboxylation activity
characterization
FIX (98 £ 1%)
VKCFD after Wild-type
Region A P8oL "3 MGP (99 % 1%)
trauma GGCX activity

BGP (78 + 8%)




FIX (32 + 6%)
MGP (81 + 3%)
BGP (59 + 6%)

PXE-like and
R83W?3® c / FIl (23.1% at 1 uM K1/38% at10 pM Ky)
VKCFD
FX (0.5% at 1 uM K4/43.3% at 10 uM K;)
PC (64.1% at 1 uM K4/40.9% at 10 uM
K4)
FIX (40 + 4%)
MGP (76 + 2%)
VKCFD and
BGP (55 + 6%)
R83P3 56 facial
FIl (0% at 1 uM K4/29.2% at 10 uM Kj)
dysmorphism
FX (55.4% at 1 M K4/85.1% at 10 uM K)
PC (25.4% at 1 pM K/13% at 10 uM Ky)
FIX (66 + 1%)
MGP (39 + 7%)
VKCFD and BGP (32 £ 1%)
Reduced
D153G> %7 Keutel FIl (68.7% at 1 uM K4/101% at 10 pM Ky)
GGCX activity
syndrome FX (0.2% at 1 uM K4/66.8% at 10 uM Kj)
PC (106.8% at 1 uM K/44.2% at 10 yM
K1)
VKCFD, FIX (49 £ 6%)
Region B midfacial MGP (34 + 2%)
Significantly
hypoplasia, and BGP (12 £ 4%)
W157R3 6.8 reduced
chondrodysplasi Fil (25.4% at 1 M K1/93.1% at 10 pM Ky)
GGCX activity
a FX (13.1% at 1 M K4/97.2% at 10 uM K)
punctata PC (7.4% at 1 pM K4/16.4% at 10 pM K;)
Abolished FIl (0% at 1 uM K4/0% at 10 uM Ky)
M174R% 57 VKCFD GGCX FX (0% at 1 uM K4/0.3% at 10 uM Ky)
activity PC (0% at 1 pM K4/0% at 10 uM Kjy)
FIX (52 + 4%)
MGP (20 + 6%)
BGP (20 £ 6%)
VKCFD and
FIl (20.1% at 1 uM K4/105.1% at 10 pM
Region C R204C% 5 © midfacial )
Ki
hypoplasia
FX (41.9% at 1 pM K1/120.8% at 10 pM
K1)
PC (0% at 1 uM K1/49.9% at 10 uM Kj)
FIX (87 + 5%)
S277¢c% 2 VKCFD / MGP (96 + 4%)
BGP (50 £ 3%)
Region D
Atrial septal FIX (133 £ 3%)
S284p3. 5.6 defect / MGP (134 £ 11%)
and BGP (90 £ 6%)




supra valvular F11(30.3% at 1 uyM K1/84.1% at 10 uM Ky)

pulmonary artery FX (65% at 1 uM K4/123% at 10 uyM Kj)
stenosis PC (37.5% at 1 yM K4/128.6% at 10 uM
Ki)
PXElike and FIl (0% at 1 uM K4/0% at 10 uM Ky)
F29985: 10 VKGED / FX (0% at 1 uM K4/0% at 10 uM Ky)

PC (0% at 1 uM K4/0% at 10 uM K)
FIX (8 + 1%)
MGP (21 + 2%)

Significantly
PXE-like and BGP (19 £ 2%)
S300F35° reduced
VKCFD FIl (0% at 1 uM K4/1% at 10 uM Ky)
GGCX activity
FX (0% at 1 pM K4/0% at 10 uM Kj)
PC (0% at 1 uM K4/0.2% at 10 uM Kj)
W315x3 6. 18 / / BGP (5 +2%)

FIX (38 + 2%)
MGP (72 £ 2%)
BGP (64 + 3%)
Region E L394R3 5 1113 / / FIl (0% at 1 uM K4/20.5% at 10 uM Kj)
FX (0% at 1 uM K4/49.3% at 10 uM Ky)
PC (55.5% at 1 yM K4/37.3% at 10 uM
Ki)

Abbreviations: Protein C is represented as PC, matrix gla protein as MGP, bone gla
protein as BGP, and the coagulation factors IX, X, and Il are denoted as FIX, FX, and
Fll, respectively. Vitamin K1 is denoted as Ki. Pseudoxanthoma elasticum-like is
denoted as PXE-like. Vitamin K-dependent coagulation factor deficiency is denoted as
VKCFD. Pathogenic mutations located within ten residues of the designated critical
region boundaries for GGCX are underlined. Numerically labeled regions correspond
to residue clusters contacting proFIX, while alphabetically labeled regions denote
those interacting with reduced vitamin K, according to the topological map of GGCX
provided in Figure 1B.
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Supplementary Figure 1. Visualization of 15 binding regions in GGCX. A.
Contact probability distribution of GGCX residues with proFIX based on
molecular dynamics simulation trajectories. Residue—residue contacts were
defined using a 0.6 nm cutoff for the minimum distance between any heavy
atoms, encompassing both backbone and side chain atoms. The scale bar
denotes normalized probability values. B. Theoretical calculation-predicted
model of proFIX bound to GGCX with KH2. GGCX is depicted in light goldenrod
yellow, while KH2 is shown in green. C. Visualization of 15 binding regions in
GGCX. Data are representative of three independent experiments.
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Supplementary Figure 2. Contact probability distribution of GGCX residues
with KH2 based on molecular dynamics simulation trajectory. The color intensity
corresponds to the binding strength. The scale bar denotes normalized
probability values. Data are representative of three independent experiments.
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