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Supplementary Table 1. List of the known pathogenic mutations within 

GGCX’s critical regions.  

FIX binding regions 

Region Mutation site Symptom 
GGCX 

characterization 
Carboxylation activity 

Region 1 

P80L1-3 
VKCFD after 

trauma 

Wild-type 

GGCX activity 

FIX (98 ± 1%) 

MGP (99 ± 1%) 

BGP (78 ± 8%) 

R83W3-5 
PXE-like and 

VKCFD 
/ 

FIX (32 ± 6%) 

MGP (81 ± 3%) 

BGP (59 ± 6%) 

FII (23.1% at 1 μM K1/38% at 10 μM K1) 

FX (0.5% at1 μM K1/43.3% at 10 μM K1) 

PC (64.1% at 1 μM K1/40.9% at 10 μM 

K1) 

R83P3, 5, 6 

VKCFD and 

facial 

dysmorphism 

/ 

FIX (40 ± 4%) 

MGP (76 ± 2%) 

BGP (55 ± 6%) 

FII (0% at 1 μM K1/29.2% at 10 μM K1) 

FX (55.4% at1 μM K1/85.1% at 10 μM K1) 

PC (25.4% at 1 μM K1/13% at 10 μM K1) 

Region 2 

D153G3, 5, 7 

VKCFD and 

Keutel 

syndrome 

Reduced 

GGCX activity 

FIX (66 ± 1%) 

MGP (39 ± 7%) 

BGP (32 ± 1%） 

FII (68.7% at 1 μM K1/101% at10 μM K1) 

FX (0.2% at1 μM K1/66.8% at 10 μM K1) 

PC (106.8% at1 μM K1/44.2% at 10 μM 

K1) 

W157R3, 5, 6, 8 

VKCFD, 

midfacial 

hypoplasia, and 

chondrodysplasi

a 

punctata 

Significantly 

reduced 

GGCX activity 

FIX (49 ± 6%) 

MGP (34 ± 2%) 

BGP (12 ± 4%) 

FII (25.4% at 1 μM K1/93.1% at 10 μM K1) 

FX (13.1% at 1 μM K1/97.2% at 10 μM K1) 

PC (7.4% at 1 μM K1/16.4% at 10 μM K1) 

Region 3 V255M3, 5, 9 
PXE-like and 

VKCFD 

Impaired 

carboxylation 

processivity 

FIX (106 ± 7%) 

MGP (163 ± 14%) 

BGP (102 ± 2%) 

FII (0% at 1 μM K1/119% at 10 μM K1) 

FX (49.4% at 1 μM K1/130.9% at 10 μM 

K1) 

PC (144.1% at 1 μM K1/87% at 10 μM K1) 



Region 4 

F299S5, 10 
PXE-like and 

VKCFD 
/ 

FII (0% at 1 μM K1/0% at 10 μM K1) 

FX (0% at 1 μM K1/0% at 10 μM K1) 

PC (0% at 1 μM K1/0% at 10 μM K1) 

S300F3, 5, 9 
PXE-like and 

VKCFD 

Significantly 

reduced 

GGCX activity 

FIX (8 ± 1%) 

MGP (21 ± 2%) 

BGP (19 ± 2%) 

FII (0% at 1 μM K1/1% at 10 μM K1) 

FX (0% at 1 μM K1/0% at 10 μM K1) 

PC (0% at 1 μM K1/0.2% at 10 μM K1) 

Region 5 

L394R3, 5, 11-13 VKCFD 

Impaired 

binding for 

glutamate-

containing 

substrates 

 

FIX (38 ± 2%) 

MGP (72 ± 2%) 

BGP (64 ± 3%) 

FII (0% at 1 μM K1/20.5% at 10 μM K1) 

FX (0% at 1 μM K1/49.3% at 10 μM K1) 

PC (55.5% at 1 μM K1/37.3% at 10 μM 

K1) 

H404P3, 5, 6, 14 VKCFD 

Impaired 

binding for 

glutamate-

containing 

substrates 

FIX (48 ± 2%) 

MGP (78 ± 3%) 

BGP (47 ± 3%) 

FII (0% at 1 μM K1/8% at 10 μM K1) 

FX (8% at 1 μM K1/72.5% at 10 μM K1) 

PC (0% at 1 μM K1/0% at 10 μM K1) 

Region 7 

R476C3, 5, 10, 15 
PXE-like and 

VKCFD 
/ 

FIX (94 ± 6%) 

MGP (183 ± 10%) 

BGP (82 ± 3%) 

FII (78.8%, 1 μM K1/87.3%, 10 μM K1) 

FX (12.1%, 1 μM K1/12%, 10 μM K1) 

PC (0%, 1 μM K1/32.4%, 10 μM K1) 

R476H3, 5, 10, 15 
PXE-like and 

VKCFD 
/ 

FIX (93 ± 1%) 

MGP (200 ± 12%) 

BGP (93 ± 4%) 

FII (0% at 1 μM K1/113.5% at 10 μM K1) 

FX (0% at 1 μM K1/67.1% at 10 μM K1) 

PC (95.9% at 1 μM K1/57.4% at 10 μM 

K1) 

R485P3, 5, 14 

VKCFD and 

conradi-

Hünermann-

Happle 

syndrome 

Reduced 

propeptide 

binding 

FIX (59 ± 4%) 

MGP (37 ± 4%) 

BGP (33 ± 2%) 

FII (28% at 1 μM K1/27.6% at 10 μM K1) 

FX (57.2% at 1 μM K1/117.9% at 10 μM 

K1) 

PC (124.6% at 1 μM K1/94.7% at 10 μM 

K1) 



Region 8 

R513K3, 16 
PXE-like and 

VKCFD 
/ 

FIX (59 ± 3%) 

MGP (196 ± 6%) 

BGP (35 ± 5%) 

I532T2, 3 
VKCFD after 

trauma 
/ 

FIX (224 ± 10%) 

MGP (134 ± 3%) 

BGP (97 ± 17%) 

D534V3, 6 

VKCFD, 

midfacial 

hypoplasia 

dystrophia, 

and 

microcephaly 

/ 

FIX (49 ± 3%) 

MGP (43 ± 4%) 

BGP (38 ± 1%) 

Region 9 

G537A3, 5, 10 
Clotting 

deficiency 
/ 

FIX (61 ± 5%) 

MGP (94 ± 4%) 

BGP (79 ± 5%) 

FII (349.4% at 1 μM K1/234.6% at 10 μM 

K1) 

FX (25.7% at 1 μM K1/79.5% at 10 μM K1) 

PC (79% at 1 μM K1/73.5% at 10 μM K1) 

I553fs17, 18 VKCFD 

Abolished 

GGCX 

activity 

/ 

G558R3, 5, 10 
PXE-like and 

VKCFD 

Reduced 

propeptide 

binding 

FIX (19 ± 4%) 

MGP (13 ± 4%) 

BGP (28 ± 2%) 

FII (1.7% at 1 μM K1/113.2% at 10 μM K1) 

FX gla (0% at 1 μM K1/0% at 10 μM K1) 

PC (0% at 1 μM K1/21.2% at 10 μM K1) 

Region 10 T591K3, 8 VKCFD 

Abolished 

GGCX 

activity 

FIX (19 ± 3%) 

MGP (9 ± 2%) 

BGP (6 ± 1%) 

Region 14 R704X3, 18, 19 VKCFD 

Minor effect on 

GGCX 

activity 

FIX (50 ± 8%) 

MGP (46 ± 2%) 

BGP (5 ± 1%) 

Region 15 S741fs3, 20 
PXE-like and 

VKCFD 
/ 

FIX (10 ± 1%) 

MGP (36 ± 3%) 

BGP (18 ± 5%) 

Reduced vitamin K binding regions 

Region Mutation site symptom 
GGCX 

characterization 
Carboxylation activity 

Region A P80L1-3 
VKCFD after 

trauma 

Wild-type 

GGCX activity 

FIX (98 ± 1%) 

MGP (99 ± 1%) 

BGP (78 ± 8%) 



R83W3-5 
PXE-like and 

VKCFD 
/ 

FIX (32 ± 6%) 

MGP (81 ± 3%) 

BGP (59 ± 6%) 

FII (23.1% at 1 μM K1/38% at10 μM K1) 

FX (0.5% at 1 μM K1/43.3% at 10 μM K1) 

PC (64.1% at 1 μM K1/40.9% at 10 μM 

K1) 

R83P3, 5, 6 

VKCFD and 

facial 

dysmorphism 

/ 

FIX (40 ± 4%) 

MGP (76 ± 2%) 

BGP (55 ± 6%) 

FII (0% at 1 μM K1/29.2% at 10 μM K1) 

FX (55.4% at 1 μM K1/85.1% at 10 μM K1) 

PC (25.4% at 1 μM K1/13% at 10 μM K1) 

Region B 

D153G3, 5, 7 

VKCFD and 

Keutel 

syndrome 

Reduced 

GGCX activity 

FIX (66 ± 1%) 

MGP (39 ± 7%) 

BGP (32 ± 1%) 

FII (68.7% at 1 μM K1/101% at 10 μM K1) 

FX (0.2% at 1 μM K1/66.8% at 10 μM K1) 

PC (106.8% at 1 μM K1/44.2% at 10 μM 

K1) 

W157R3, 5, 6, 8 

VKCFD, 

midfacial 

hypoplasia, and 

chondrodysplasi

a 

punctata 

Significantly 

reduced 

GGCX activity 

FIX (49 ± 6%) 

MGP (34 ± 2%) 

BGP (12 ± 4%) 

FII (25.4% at 1 μM K1/93.1% at 10 μM K1) 

FX (13.1% at 1 μM K1/97.2% at 10 μM K1) 

PC (7.4% at 1 μM K1/16.4% at 10 μM K1) 

M174R2, 5, 7 VKCFD 

Abolished 

GGCX 

activity 

FII (0% at 1 μM K1/0% at 10 μM K1) 

FX (0% at 1 μM K1/0.3% at 10 μM K1) 

PC (0% at 1 μM K1/0% at 10 μM K1) 

Region C R204C3, 5, 6 

VKCFD and 

midfacial 

hypoplasia 

/ 

FIX (52 ± 4%) 

MGP (20 ± 6%) 

BGP (20 ± 6%) 

FII (20.1% at 1 μM K1/105.1% at 10 μM 

K1) 

FX (41.9% at 1 μM K1/120.8% at 10 μM 

K1) 

PC (0% at 1 μM K1/49.9% at 10 μM K1) 

Region D 

S277C3, 21 VKCFD / 

FIX (87 ± 5%) 

MGP (96 ± 4%) 

BGP (50 ± 3%) 

S284P3, 5, 6 

Atrial septal 

defect 

and 

/ 

FIX (133 ± 3%) 

MGP (134 ± 11%) 

BGP (90 ± 6%) 



supra valvular 

pulmonary artery 

stenosis 

FII (30.3% at 1 μM K1/84.1% at 10 μM K1) 

FX (55% at 1 μM K1/123% at 10 μM K1) 

PC (37.5% at 1 μM K1/128.6% at 10 μM 

K1) 

F299S5, 10 
PXE-like and 

VKCFD 
/ 

FII (0% at 1 μM K1/0% at 10 μM K1) 

FX (0% at 1 μM K1/0% at 10 μM K1) 

PC (0% at 1 μM K1/0% at 10 μM K1) 

S300F3, 5, 9 
PXE-like and 

VKCFD 

Significantly 

reduced 

GGCX activity 

FIX (8 ± 1%) 

MGP (21 ± 2%) 

BGP (19 ± 2%) 

FII (0% at 1 μM K1/1% at 10 μM K1) 

FX (0% at 1 μM K1/0% at 10 μM K1) 

PC (0% at 1 μM K1/0.2% at 10 μM K1) 

W315X3, 6, 18 / / BGP (5 ±2%) 

Region E L394R3, 5, 11-13 / / 

FIX (38 ± 2%) 

MGP (72 ± 2%) 

BGP (64 ± 3%) 

FII (0% at 1 μM K1/20.5% at 10 μM K1) 

FX (0% at 1 μM K1/49.3% at 10 μM K1) 

PC (55.5% at 1 μM K1/37.3% at 10 μM 

K1) 

 

Abbreviations: Protein C is represented as PC, matrix gla protein as MGP, bone gla 

protein as BGP, and the coagulation factors IX, X, and II are denoted as FIX, FX, and 

FII, respectively. Vitamin K1 is denoted as K1. Pseudoxanthoma elasticum-like is 

denoted as PXE-like. Vitamin K-dependent coagulation factor deficiency is denoted as 

VKCFD. Pathogenic mutations located within ten residues of the designated critical 

region boundaries for GGCX are underlined. Numerically labeled regions correspond 

to residue clusters contacting proFIX, while alphabetically labeled regions denote 

those interacting with reduced vitamin K, according to the topological map of GGCX 

provided in Figure 1B. 

 

 



 

Supplementary Figure 1. Visualization of 15 binding regions in GGCX. A. 

Contact probability distribution of GGCX residues with proFIX based on 

molecular dynamics simulation trajectories. Residue–residue contacts were 

defined using a 0.6 nm cutoff for the minimum distance between any heavy 

atoms, encompassing both backbone and side chain atoms. The scale bar 

denotes normalized probability values. B. Theoretical calculation-predicted 

model of proFIX bound to GGCX with KH2. GGCX is depicted in light goldenrod 

yellow, while KH2 is shown in green. C. Visualization of 15 binding regions in 

GGCX. Data are representative of three independent experiments. 

 

 
Supplementary Figure 2. Contact probability distribution of GGCX residues 

with KH2 based on molecular dynamics simulation trajectory. The color intensity 

corresponds to the binding strength. The scale bar denotes normalized 

probability values. Data are representative of three independent experiments. 
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