

Structural and functional insights into γ -glutamyl carboxylase-factor IX interaction: implications for vitamin K-dependent bleeding disorders

Authors

Kang Liu,^{1*} Shixin Li,^{1*} Guomin Shen,^{2*} Jiangbo Tong,¹ Nan Jiang,¹ Minwen Hong,¹ Yi Gu,¹ Luju Chen,¹ Yuan Zhao,¹ Jinlin Huang,^{1,3} Jian-Ke Tie⁴ and Zhenyu Hao^{1,5}

¹College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China; ²Department of Cell Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China; ³Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou, Jiangsu, China; ⁴Department of Biology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA and ⁵Affiliated Hospital, Yangzhou University, Yangzhou, Jiangsu, China

*KL, SL and GS contributed equally as first authors.

Correspondence:

J. HUANG - jinlin@yzu.edu.cn
J.-K. TIE - jktie@email.unc.edu
Z. HAO - zhyuhao@hotmail.com

<https://doi.org/10.3324/haematol.2025.287736>

Received: March 20, 2025.

Accepted: August 1, 2025.

Early view: August 21, 2025.

©2026 Ferrata Storti Foundation

Published under a CC BY-NC license

Supplemental Materials

Structural and functional insights into γ -glutamyl carboxylase-factor IX interaction: implications for vitamin K-dependent bleeding disorders

Kang Liu^{1#}, Shixin Li^{1#}, Guomin Shen^{2#}, Jiangbo Tong¹, Nan Jiang¹, Minwen Hong¹, Yi Gu¹, Luju Chen¹, Yuan Zhao¹, Jinlin Huang^{1,3*}, Jian-Ke Tie^{4*}, Zhenyu Hao^{1,5*}

¹College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China

²Department of Cell Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China.

³Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou, Jiangsu 225009, China

⁴Department of Biology, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA

⁵Affiliated hospital, Yangzhou University, Yangzhou, Jiangsu 225009, China

#These authors contributed equally to this work

*Co-corresponding

The Supplemental Data includes:

Supplemental Table 1

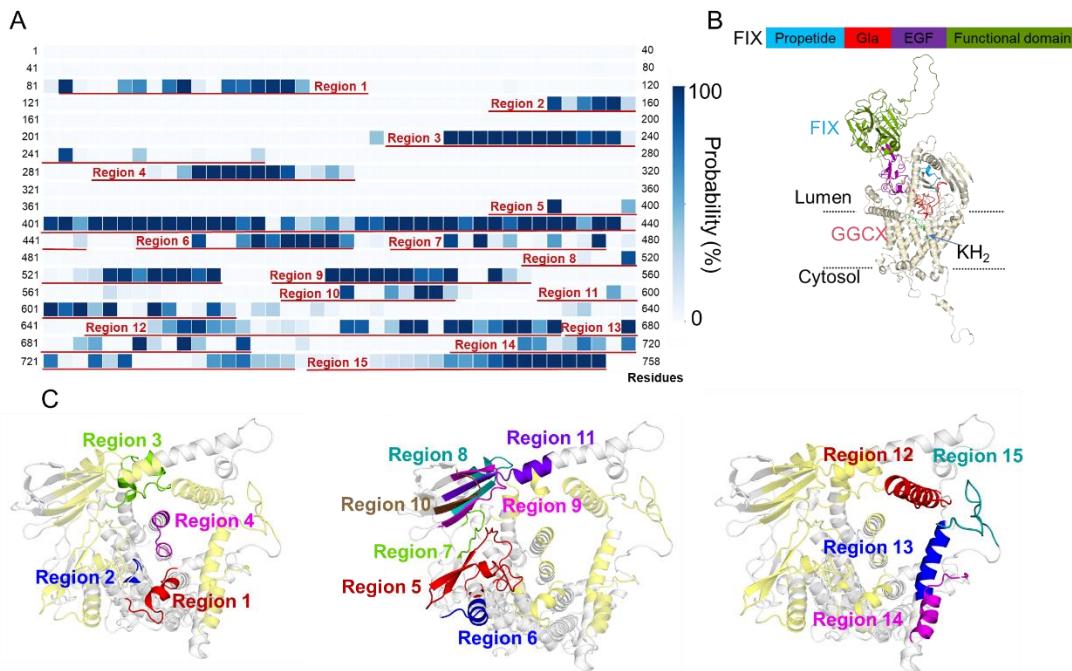
Supplemental Figures 1 to 2

Supplementary Table 1. List of the known pathogenic mutations within GGCX's critical regions.

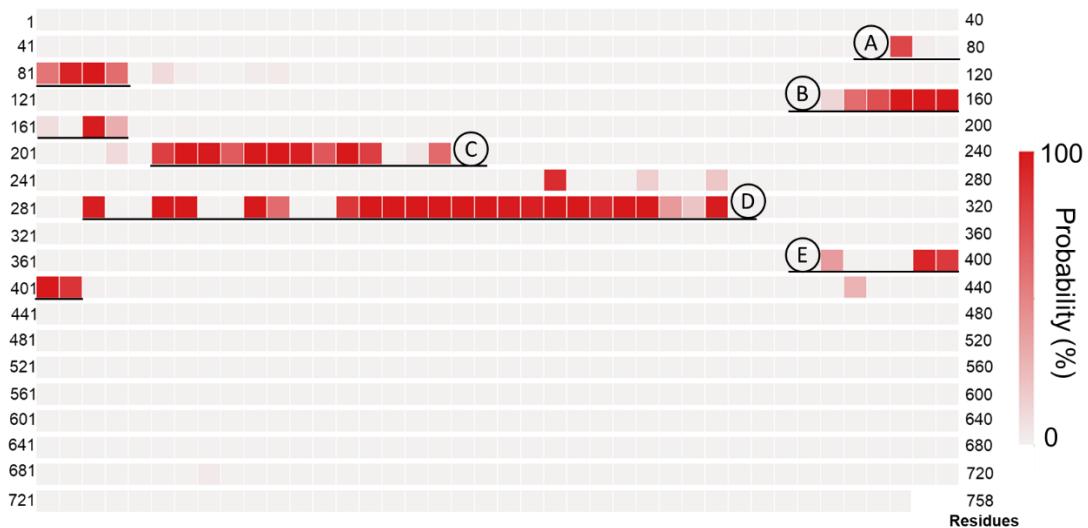
FIX binding regions				
Region	Mutation site	Symptom	GGCX characterization	Carboxylation activity
Region 1	<u>P80L</u> ¹⁻³	VKCFD after trauma	Wild-type GGCX activity	FIX (98 ± 1%)
				MGP (99 ± 1%)
				BGP (78 ± 8%)
	R83W ³⁻⁵	PXE-like and VKCFD	/	FIX (32 ± 6%) MGP (81 ± 3%) BGP (59 ± 6%)
Region 2	<u>R83P</u> ^{3, 5, 6}	VKCFD and facial dysmorphism	/	FII (23.1% at 1 μM K ₁ /38% at 10 μM K ₁) FX (0.5% at 1 μM K ₁ /43.3% at 10 μM K ₁) PC (64.1% at 1 μM K ₁ /40.9% at 10 μM K ₁)
				FIX (40 ± 4%) MGP (76 ± 2%) BGP (55 ± 6%)
				FII (0% at 1 μM K ₁ /29.2% at 10 μM K ₁) FX (55.4% at 1 μM K ₁ /85.1% at 10 μM K ₁) PC (25.4% at 1 μM K ₁ /13% at 10 μM K ₁)
	<u>D153G</u> ^{3, 5, 7}	VKCFD and Keutel syndrome	Reduced GGCX activity	FIX (66 ± 1%) MGP (39 ± 7%) BGP (32 ± 1%) FII (68.7% at 1 μM K ₁ /101% at 10 μM K ₁) FX (0.2% at 1 μM K ₁ /66.8% at 10 μM K ₁) PC (106.8% at 1 μM K ₁ /44.2% at 10 μM K ₁)
Region 3	<u>W157R</u> ^{3, 5, 6, 8}	VKCFD, midfacial hypoplasia, and chondrodysplasia punctata	Significantly reduced GGCX activity	FIX (49 ± 6%) MGP (34 ± 2%) BGP (12 ± 4%) FII (25.4% at 1 μM K ₁ /93.1% at 10 μM K ₁) FX (13.1% at 1 μM K ₁ /97.2% at 10 μM K ₁) PC (7.4% at 1 μM K ₁ /16.4% at 10 μM K ₁)
				FIX (106 ± 7%) MGP (163 ± 14%) BGP (102 ± 2%) FII (0% at 1 μM K ₁ /119% at 10 μM K ₁) FX (49.4% at 1 μM K ₁ /130.9% at 10 μM K ₁) PC (144.1% at 1 μM K ₁ /87% at 10 μM K ₁)
	<u>V255M</u> ^{3, 5, 9}	PXE-like and VKCFD	Impaired carboxylation processivity	

	F299S ^{5, 10}	PXE-like and VKCFD	/	FII (0% at 1 μ M K ₁ /0% at 10 μ M K ₁) FX (0% at 1 μ M K ₁ /0% at 10 μ M K ₁) PC (0% at 1 μ M K ₁ /0% at 10 μ M K ₁)
Region 4				FIX (8 \pm 1%)
	S300F ^{3, 5, 9}	PXE-like and VKCFD	Significantly reduced GGCX activity	MGP (21 \pm 2%) BGP (19 \pm 2%) FII (0% at 1 μ M K ₁ /1% at 10 μ M K ₁) FX (0% at 1 μ M K ₁ /0% at 10 μ M K ₁) PC (0% at 1 μ M K ₁ /0.2% at 10 μ M K ₁)
	<u>L394R</u> ^{3, 5, 11-13}	VKCFD	Impaired binding for glutamate- containing substrates	FIX (38 \pm 2%) MGP (72 \pm 2%) BGP (64 \pm 3%) FII (0% at 1 μ M K ₁ /20.5% at 10 μ M K ₁) FX (0% at 1 μ M K ₁ /49.3% at 10 μ M K ₁) PC (55.5% at 1 μ M K ₁ /37.3% at 10 μ M K ₁)
Region 5				
	H404P ^{3, 5, 6, 14}	VKCFD	Impaired binding for glutamate- containing substrates	FIX (48 \pm 2%) MGP (78 \pm 3%) BGP (47 \pm 3%) FII (0% at 1 μ M K ₁ /8% at 10 μ M K ₁) FX (8% at 1 μ M K ₁ /72.5% at 10 μ M K ₁) PC (0% at 1 μ M K ₁ /0% at 10 μ M K ₁)
	R476C ^{3, 5, 10, 15}	PXE-like and VKCFD	/	FIX (94 \pm 6%) MGP (183 \pm 10%) BGP (82 \pm 3%) FII (78.8%, 1 μ M K ₁ /87.3%, 10 μ M K ₁) FX (12.1%, 1 μ M K ₁ /12%, 10 μ M K ₁) PC (0%, 1 μ M K ₁ /32.4%, 10 μ M K ₁)
Region 7	<u>R476H</u> ^{3, 5, 10, 15}	PXE-like and VKCFD	/	FIX (93 \pm 1%) MGP (200 \pm 12%) BGP (93 \pm 4%) FII (0% at 1 μ M K ₁ /113.5% at 10 μ M K ₁) FX (0% at 1 μ M K ₁ /67.1% at 10 μ M K ₁) PC (95.9% at 1 μ M K ₁ /57.4% at 10 μ M K ₁)
	<u>R485P</u> ^{3, 5, 14}	VKCFD and conradi- Hünermann- Happle syndrome	Reduced propeptide binding	FIX (59 \pm 4%) MGP (37 \pm 4%) BGP (33 \pm 2%) FII (28% at 1 μ M K ₁ /27.6% at 10 μ M K ₁) FX (57.2% at 1 μ M K ₁ /117.9% at 10 μ M K ₁) PC (124.6% at 1 μ M K ₁ /94.7% at 10 μ M K ₁)

	<u>R513K</u> ^{3, 16}	PXE-like and VKCFD	/	FIX (59 ± 3%) MGP (196 ± 6%) BGP (35 ± 5%)
	<u>I532T</u> ^{2, 3}	VKCFD after trauma	/	FIX (224 ± 10%) MGP (134 ± 3%) BGP (97 ± 17%)
Region 8		VKCFD, midfacial hypoplasia dystrophy, and microcephaly	/	FIX (49 ± 3%) MGP (43 ± 4%) BGP (38 ± 1%)
	<u>D534V</u> ^{3, 6}			
	<u>G537A</u> ^{3, 5, 10}	Clotting deficiency	/	FIX (61 ± 5%) MGP (94 ± 4%) BGP (79 ± 5%) FII (349.4% at 1 µM K ₁ /234.6% at 10 µM K ₁) FX (25.7% at 1 µM K ₁ /79.5% at 10 µM K ₁) PC (79% at 1 µM K ₁ /73.5% at 10 µM K ₁)
Region 9	<u>I553fs</u> ^{17, 18}	VKCFD	GGCX activity	Abolished /
	<u>G558R</u> ^{3, 5, 10}	PXE-like and VKCFD	Reduced propeptide binding	FIX (19 ± 4%) MGP (13 ± 4%) BGP (28 ± 2%) FII (1.7% at 1 µM K ₁ /113.2% at 10 µM K ₁) FX gla (0% at 1 µM K ₁ /0% at 10 µM K ₁) PC (0% at 1 µM K ₁ /21.2% at 10 µM K ₁)
Region 10	<u>T591K</u> ^{3, 8}	VKCFD	GGCX activity	Abolished FIX (19 ± 3%) MGP (9 ± 2%) BGP (6 ± 1%)
Region 14	<u>R704X</u> ^{3, 18, 19}	VKCFD	GGCX activity	Minor effect on FIX (50 ± 8%) MGP (46 ± 2%) BGP (5 ± 1%)
Region 15	<u>S741fs</u> ^{3, 20}	PXE-like and VKCFD	/	FIX (10 ± 1%) MGP (36 ± 3%) BGP (18 ± 5%)


Reduced vitamin K binding regions

Region	Mutation site	symptom	GGCX characterization	Carboxylation activity
Region A	P80L ¹⁻³	VKCFD after trauma	Wild-type GGCX activity	FIX (98 ± 1%) MGP (99 ± 1%) BGP (78 ± 8%)


		PXE-like and VKCFD	/	FIX (32 ± 6%) MGP (81 ± 3%) BGP (59 ± 6%)
	R83W ³⁻⁵			FII (23.1% at 1 µM K ₁ /38% at 10 µM K ₁) FX (0.5% at 1 µM K ₁ /43.3% at 10 µM K ₁) PC (64.1% at 1 µM K ₁ /40.9% at 10 µM K ₁)
	R83D ^{3, 5, 6}	VKCFD and facial dysmorphism	/	FIX (40 ± 4%) MGP (76 ± 2%) BGP (55 ± 6%)
	<u>D153G</u> ^{3, 5, 7}	VKCFD and Keutel syndrome	Reduced GGCX activity	FII (0% at 1 µM K ₁ /29.2% at 10 µM K ₁) FX (55.4% at 1 µM K ₁ /85.1% at 10 µM K ₁) PC (25.4% at 1 µM K ₁ /13% at 10 µM K ₁)
Region B		VKCFD, midfacial hypoplasia, and chondrodysplasi a punctata		FIX (66 ± 1%) MGP (39 ± 7%) BGP (32 ± 1%)
	W157R ^{3, 5, 6, 8}		Significantly reduced GGCX activity	FII (68.7% at 1 µM K ₁ /101% at 10 µM K ₁) FX (0.2% at 1 µM K ₁ /66.8% at 10 µM K ₁) PC (106.8% at 1 µM K ₁ /44.2% at 10 µM K ₁)
Region C	<u>M174R</u> ^{2, 5, 7}	VKCFD	Abolished GGCX activity	FIX (49 ± 6%) MGP (34 ± 2%) BGP (12 ± 4%)
	<u>R204C</u> ^{3, 5, 6}	VKCFD and midfacial hypoplasia	/	FII (25.4% at 1 µM K ₁ /93.1% at 10 µM K ₁) FX (13.1% at 1 µM K ₁ /97.2% at 10 µM K ₁) PC (7.4% at 1 µM K ₁ /16.4% at 10 µM K ₁)
Region D	<u>S277C</u> ^{3, 21}	VKCFD	/	FIX (52 ± 4%) MGP (20 ± 6%) BGP (20 ± 6%)
	S284P ^{3, 5, 6}	Atrial septal defect and		FII (20.1% at 1 µM K ₁ /105.1% at 10 µM K ₁) FX (41.9% at 1 µM K ₁ /120.8% at 10 µM K ₁) PC (0% at 1 µM K ₁ /49.9% at 10 µM K ₁)

	supra valvular pulmonary artery stenosis		FII (30.3% at 1 μ M K ₁ /84.1% at 10 μ M K ₁) FX (55% at 1 μ M K ₁ /123% at 10 μ M K ₁) PC (37.5% at 1 μ M K ₁ /128.6% at 10 μ M K ₁)
F299S ^{5, 10}	PXE-like and VKCFD	/	FII (0% at 1 μ M K ₁ /0% at 10 μ M K ₁) FX (0% at 1 μ M K ₁ /0% at 10 μ M K ₁) PC (0% at 1 μ M K ₁ /0% at 10 μ M K ₁)
S300F ^{3, 5, 9}	PXE-like and VKCFD	Significantly reduced GGCX activity	FIX (8 \pm 1%) MGP (21 \pm 2%) BGP (19 \pm 2%) FII (0% at 1 μ M K ₁ /1% at 10 μ M K ₁) FX (0% at 1 μ M K ₁ /0% at 10 μ M K ₁) PC (0% at 1 μ M K ₁ /0.2% at 10 μ M K ₁)
<u>W315X</u> ^{3, 6, 18}	/	/	BGP (5 \pm 2%)
Region E	<u>L394R</u> ^{3, 5, 11-13}	/	FIX (38 \pm 2%) MGP (72 \pm 2%) BGP (64 \pm 3%) FII (0% at 1 μ M K ₁ /20.5% at 10 μ M K ₁) FX (0% at 1 μ M K ₁ /49.3% at 10 μ M K ₁) PC (55.5% at 1 μ M K ₁ /37.3% at 10 μ M K ₁)

Abbreviations: Protein C is represented as PC, matrix gla protein as MGP, bone gla protein as BGP, and the coagulation factors IX, X, and II are denoted as FIX, FX, and FII, respectively. Vitamin K₁ is denoted as K₁. Pseudoxanthoma elasticum-like is denoted as PXE-like. Vitamin K-dependent coagulation factor deficiency is denoted as VKCFD. Pathogenic mutations located within ten residues of the designated critical region boundaries for GGCX are underlined. Numerically labeled regions correspond to residue clusters contacting proFIX, while alphabetically labeled regions denote those interacting with reduced vitamin K, according to the topological map of GGCX provided in Figure 1B.

Supplementary Figure 1. Visualization of 15 binding regions in GGCX. **A.** Contact probability distribution of GGCX residues with proFIX based on molecular dynamics simulation trajectories. Residue–residue contacts were defined using a 0.6 nm cutoff for the minimum distance between any heavy atoms, encompassing both backbone and side chain atoms. The scale bar denotes normalized probability values. **B.** Theoretical calculation-predicted model of proFIX bound to GGCX with KH₂. GGCX is depicted in light goldenrod yellow, while KH₂ is shown in green. **C.** Visualization of 15 binding regions in GGCX. Data are representative of three independent experiments.

Supplementary Figure 2. Contact probability distribution of GGCX residues with KH₂ based on molecular dynamics simulation trajectory. The color intensity corresponds to the binding strength. The scale bar denotes normalized probability values. Data are representative of three independent experiments.

References:

1. Tie J-K, Zheng M-Y, Hsiao K-LN, Perera L, Stafford DW, Straight DL. Transmembrane domain interactions and residue proline 378 are essential for proper structure, especially disulfide bond formation, in the human vitamin K-dependent gamma-glutamyl carboxylase. *Biochemistry*. 2008;47(24):6301-6310.
2. Lunghi B, Redaelli R, Caimi TM, Corno AR, Bernardi F, Marchetti G. Novel phenotype and γ -glutamyl carboxylase mutations in combined deficiency of vitamin K-dependent coagulation factors. *Haemophilia*. 2011;17(5):822-824.
3. Hao Z, Jin D-Y, Chen X, Schurges LJ, Stafford DW, Tie J-K. γ -Glutamyl carboxylase mutations differentially affect the biological function of vitamin K-dependent proteins. *Blood*. 2021;137(4):533-543.
4. Li Q, Schurges LJ, Smith ACM, Tsokos M, Uitto J, Cowen EW. Co-existent pseudoxanthoma elasticum and vitamin K-dependent coagulation factor deficiency: compound heterozygosity for mutations in the GGCX gene. *Am J Pathol*. 2009;174(2):534-540.
5. Ghosh S, Kraus K, Biswas A, et al. GGCX mutations show different responses to vitamin K thereby determining the severity of the hemorrhagic phenotype in VKCFD1 patients. *J Thromb Haemost*. 2021;19(6):1412-1424.
6. Watzka M, Geisen C, Scheer M, et al. Bleeding and non-bleeding phenotypes in patients with GGCX gene mutations. *Thromb Res*. 2014;134(4):856-865.
7. Tie J-K, Carneiro JDA, Jin D-Y, Martinhago CD, Vermeer C, Stafford DW. Characterization of vitamin K-dependent carboxylase mutations that cause bleeding and nonbleeding disorders. *Blood*. 2016;127(15):1847-1855.
8. Darghouth D, Hallgren KW, Shtofman RL, et al. Compound heterozygosity of novel missense mutations in the gamma-glutamyl-carboxylase gene causes hereditary combined vitamin K-dependent coagulation factor deficiency. *Blood*. 2006;108(6):1925-1931.
9. Li Q, Grange DK, Armstrong NL, et al. Mutations in the GGCX and ABCC6 genes in a family with pseudoxanthoma elasticum-like phenotypes. *J Invest Dermatol*. 2009;129(3):553-563.
10. Vanakker OM, Martin L, Gheduzzi D, et al. Pseudoxanthoma elasticum-like phenotype with cutis laxa and multiple coagulation factor deficiency represents a separate genetic entity. *J Invest Dermatol*. 2007;127(3):581-587.
11. Brenner B, Sánchez-Vega B, Wu SM, Lanir N, Stafford DW, Solera J. A missense mutation in gamma-glutamyl carboxylase gene causes combined deficiency of all vitamin K-dependent blood coagulation factors. *Blood*. 1998;92(12):4554-4559.
12. Mutucumarana VP, Stafford DW, Stanley TB, et al. Expression and characterization of the naturally occurring mutation L394R in human gamma-glutamyl carboxylase. *J Biol Chem*. 2000;275(42):32572-32577.
13. Mutucumarana VP, Acher F, Straight DL, Jin D-Y, Stafford DW. A conserved region of human vitamin K-dependent carboxylase between residues 393 and 404 is important for its interaction with the glutamate substrate. *J Biol Chem*. 2003;278(47):46488-46493.

14. Rost S, Geisen C, Fregin A, Seifried E, Müller CR, Oldenburg J. Founder mutation Arg485Pro led to recurrent compound heterozygous GGCX genotypes in two German patients with VKCFD type 1. *Blood Coagul Fibrinolysis*. 2006;17(6):503-507.
15. De Vilder E, Debacker J, Vanakker O. GGCX-Associated Phenotypes: An Overview in Search of Genotype-Phenotype Correlations. *Int J Mol Sci*. 2017;18(2):240.
16. Dordoni C, Gatti M, Venturini M, et al. Characterization of a Pseudoxanthoma elasticum-like patient with coagulation deficiency, cutaneous calcinosis and GGCX compound heterozygosity. *J Dermatol Sci*. 2018;89(2):201-204.
17. McMillan CW, Roberts HR. Congenital combined deficiency of coagulation factors II, VII, IX and X. Report of a case. *N Engl J Med*. 1966;274(23):1313-1315.
18. Jin D-Y, Ingram BO, Stafford DW, Tie J-K. Molecular basis of the first reported clinical case of congenital combined deficiency of coagulation factors. *Blood*. 2017;130(7):948-951.
19. Darghouth D, Hallgren KW, Issertial O, et al. Compound Heterozygosity of a W493C Substitution and R704/Premature Stop Codon within the γ -Glutamyl Carboxylase in Combined Vitamin K-Dependent Coagulation Factor Deficiency in a French Family. *Blood*. 2009;114(22):1302-1302.
20. Okubo Y, Masuyama R, Iwanaga A, et al. Calcification in dermal fibroblasts from a patient with GGCX syndrome accompanied by upregulation of osteogenic molecules. *PLoS One*. 2017;12(5):e0177375.
21. Khongphithakskul P, Sasanakul W, Kwanchaiyanich R, et al. Recurrent Bleeding Symptoms in an Infant with Heterozygous Mutation of Gamma Glutamyl Carboxylase Gene. *iMedPub*. 2015, 1:3.