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Abstract

Nucleoporin 98 rearrangements (NUP98r) are recurrent in myeloid neoplasms and are subtype-defining for acute myeloid
leukemia (AML) in the World Health Organization Classification 5™ edition (WHO5) and the International Consensus Classi-
fication (ICC). Identification of NUP98r is essential given the frequency of treatment resistance and possibility of sensitivity
to targeted therapies. However, NUP98r is often cryptic on karyotype and has over 40 described partners. Therefore, it is
underdiagnosed in the absence of dedicated testing that is not always routine practice, e.g., RNA-based next generation
sequencing (NGS), NUP98 break-apart fluorescence in situ hybridization, or real-time-quantitative polymerase chain reaction
for specific NUP98 fusions. Historically, AML with NUP98r has received the most attention in pediatric AML, where its inci-
dence is highest, but has been increasingly characterized in adult AML. By contrast, the incidence and behavior of NUP98
fusions in myelodysplastic syndromes (MDS) is less understood and based predominantly on case reports. In this study, we
describe our adult institutional experience with a clinically validated anchored multiplex PCR RNA-based targeted NGS as-
say, explore strategies for rational use of specific testing for NUP98r including a proof-of-principle based on WT7 and FLT3-
ITD mutational status, and integrate our results with a review of the literature. In total, we identified 3 MDS and 15 AML
patients with NUP98r as the genetic driver, including two novel fusion partners (FGF14 and LAMC3), thus highlighting the
utility of NGS testing to detect NUP98 fusions. Recognition of NUP98r in myeloid neoplasms is crucial for accurate diagno-
sis and prognosis, with significant implications for therapy or enrollment in clinical trials.

Introduction

Acute myeloid leukemia (AML) with nucleoporin 98 rear-
rangement (NUP98r) comprises one of several genetically
defined AML subtypes that have been newly incorporated
into both the 2022 International Consensus Classification
(ICC) and the 5% edition of the World Health Organization
Classification (WHO5), where a diagnosis of AML can be
made with a blast count under 20%."> AML with NUP98r has
historically been associated with adverse clinical outcomes
and chemotherapy resistance although recent preclinical
models have raised the possibility of rational targeted
therapy with menin inhibitors.® Thus, routine identification
of NUP98 rearrangement is important for clinical care of
patients with AML and future improvement of risk-adapted
therapy. However, the entity is underdiagnosed by many

clinical practices since the rearrangements are frequently
cryptic on conventional karyotype due to the location of
NUP98 at 11p15.4 near the terminal end of the short arm of
chromosome 11. The NUP98 gene, which encodes a com-
ponent of the nuclear pore complex, rearranges with over
40 unique fusion partners, all involving the N-terminal end
of NUP98 and notable for partner-specific enrichments for
monocytic, myelomonocytic, megakaryoblastic, or erythroid
differentiation.* Accordingly, reliable detection across the
entire spectrum of fusion partners requires complex testing
modalities such as whole transcriptome RNA-seq, targeted
RNA-based next generation sequencing (NGS) fusion assays
with coverage of NUP98 rearrangements, optical genome
mapping (OGM), whole genome sequencing (WGS), or flu-
orescence in situ hybridization (FISH) break-apart probes
for NUP98. Of these, NUP98 FISH is cheapest and fastest
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but does not identify the specific NUP98 partner and would
not detect other cryptic rearrangements that are potential
drivers in the absence of NUP98r. By contrast, WGS is the
most comprehensive and has started to become adopted
clinically, with accurate risk categorization for AML and
myelodysplastic syndromes (MDS) including reliable de-
tection of NUP98r.5¢

In recent years, RNA-based NGS fusion assays have enabled
estimates of the prevalence of NUP98r in AML, ranging from
7.2-8.0% of pediatric AML and 2.5-5.0% of adult AML.%™
NGS has also revealed distinct co-mutational patterns,
including enrichment of FLT3-1TD and WTT variants, par-
ticularly in AML with NUP98::NSD1. NUP98r has been less
studied in myeloid neoplasms outside of AML. Although
presumed to be exceedingly rare, their frequency may be
underappreciated.®*" Mouse models of NUP98::NSD7 have
generated conflicting data, with one study showing almost
universal transformation to AML, compared to other stud-
ies indicating a weak leukemogenic potential alone, but
increased when combined with FLT3-1TD.*-®® The presence
of a chronic or pre-leukemic phase of NUP98r AML may
be clinically relevant for the possibility of earlier detection
and intervention.

Here, we report morphological, clinical, and molecular find-
ings at our institution of adults with NUP98r AML or MDS,
and explore features in our data and in public datasets
which could prompt specific testing for NUP98r, potentially
providing the basis for cost-effective strategies in clinical
practices that do not employ screening for NUP98r. In par-
ticular, a myelomonocytic morphology and immunopheno-
type, WT71 mutations in MDS, and concurrent FLT3-ITD and
WT17 mutations in AML, in the absence of another subtype
defining genetic aberration (e.g., NPM7), highly enrich for
myeloid neoplasms with NUP98::NSD7 or occasionally other
NUP98 rearrangement partners.

Methods

Nucleic acid extracted from blood, bone marrow (BM), or
extramedullary disease sites was tested by one or more of
several NGS assays: 1) a clinically validated targeted RNA
assay (Heme Fusion Assay [HFA]; Integrated DNA Technol-
ogies) designed principally to detect fusions through an-
chored multiplex polymerase chain reaction (PCR) (AMP)™
and performed on clinical samples as part of patient care
from 2017-2024 (N=381; HFA clinical cohort) and on re-
search samples for this study (N=7) at the Center for In-
tegrated Diagnostics at Massachusetts General Hospital;
2) a clinically validated targeted DNA panel (Rapid Heme
Panel [RHP*] version 3)%° based on NEBNextDirect (New
England BioLabs) to detect single nucleotide variants,
small indels, and copy number alterations, and performed
on clinical samples as part of patient care from 2019-2024
(N=21209; RHP cohort) at the Center for Advanced Molec-
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ular Diagnostics at Brigham and Women’s Hospital; and
3) total RNA sequencing performed on research samples
for this study (N=2) at the Dana-Farber Cancer Institute
molecular biology core facility. The research RNA-based
NGS testing was performed on nucleic acid extracted from
archived cytogenetic pellets. Data were processed by de-
fault clinical pipelines (HFA, RHP) or by a custom pipeline
(total RNA-seq) using adapter trimming by BBDuk, align-
ment to hg19 by bwa-mem, and manual analysis of bam
files. NUP98 break-apart FISH (Empire Genomics; 11p15.4)
was performed on 100 interphase nuclei. Overall survival
(determined from the date of first diagnosis to death from
any cause) was assessed using the Kaplan-Meier method.
Public RNA sequencing FASTQ files were downloaded from
the Sequence Read Archive (www.ncbi.nlm.nih.gov/sra) for 2
MDS datasets (SRP149374, SRP418365) and aligned to hg19
by bwa-mem.??2 Alignments were analyzed by: i) search-
ing for select fusions via grep (restricted to alignments to
partner gene regions) for exon-exon junctional sequences
(30 nucleotides consisting of 15 from each exon) and their
reverse complements across all possible exon combina-
tions producing the fusion or its reciprocal as previously
described,? followed by manual confirmation of hits; ii)
outlier isoform analysis for aberrant expression of isoforms
in select genes (KMT2A, UBTF) as previously described,?;
and iii) custom variant detection based on pileup data
across padded coding sequence of the WT7 gene. Annota-
tions (mutations, fusions, cytogenetics, diagnoses) for the
IPSS-M MDS cohort and the Leucegene AML cohort were
retrieved from previously published data.*° The study was
conducted in accordance with the Declaration of Helsinki
and with the approval of the institutional review boards
at the Dana-Farber Cancer Institute and Massachusetts
General Brigham.

Results

NUP98 rearrangements are effectively detected by
anchored multiplex polymerase chain reaction-based
targeted RNA sequencing, revealing novel partners and a
potential enrichment in high-risk myelodysplastic
syndromes

NUP98r was identified through the targeted RNA sequenc-
ing HFA assay in 18 patients overall (Table 1 and Online
Supplementary Figure ST7), with diagnoses of AML (N=14),
MDS (N=3), or B/myeloid mixed phenotype acute leukemia
(MPAL) (N=1) at the time of initial NUP98r detection. Eight
different partner genes were observed, comprising 6 es-
tablished (DDX10, HOXD13, KDM5A, NSD1, PRRX2, TNRC18)
and 2 novel (FGF14, LAMC3) partners (Online Supplemen-
tary Table S1). The novel partners both contained domains
that form a coiled coil structure, similar to many other
non-HOX NUP98 partners.*® NSD7 was the most frequent
partner (11/18 patients; 61.1%), with single occurrences of
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other partners. Fusions involving 6/8 (75%) partners (FGF14,
KDM5A, LAMC3, NSD1, PRRX2, TNRC18) from 15/17 (88.2%)
evaluated patients were cytogenetically cryptic on conven-
tional karyotyping (Table 1), highlighting the utility of RNA-
based NGS for comprehensive detection of NUP98r. Only
one case (MPAL_1) had NUP98 FISH performed during initial
clinical workup. Nine NUP98r cases (50%) had a normal
karyotype. Ten of the 15 (66.7%) AML/MPAL cases showed
myelomonocytic or monocytic differentiation by morphology
and flow cytometry (Table 1, Online Supplementary Figure
S2), including 7/9 (77.8%) with NUP98::NSDT and 3/6 (50%)
with non-NSD1 partners (TNRC18, DDX10, PRRX2). No other
subtype-defining alteration was identified by any testing
modality in any of the NUP98r cases, including those with
novel fusion partners. KMT2A-PTD was also absent from
NUP98r cases, akin to mutual exclusivity reported in pedi-
atric AML; this alteration in AML has been associated with
aberrant HOXB expression, similar to AML with NUP98::NSD1,
mutated NPM1, DEK::NUP214, and UBTF-TD, although it is
not subtype-defining.&3"32

The majority of NUP98 fusions were detected through clin-
ical testing during the course of patient care, with clinically
reported NUP98r in samples from 14 patients across the
HFA clinical cohort, including 11/257 (4.3%) of all newly
diagnosed AML patients treated at one institution (Mas-
sachusetts General Hospital) between 2017-2024 (Online
Supplementary Figure S7). The other 3 clinically identified
NUP98r patients accounted for 2/46 (4.3%) MDS and 1/3
(833.3%) MPAL from the HFA cohort; however, these test
populations were subject to selection bias, particularly given
the lack of clear guidelines on which MDS cases should be
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tested by an RNA fusion assay. Most MDS cases that were
tested had high-risk features and clinical concern for AML,
particularly elevated blast counts (28/46, 60.9%) and/or high
to very high International Prognostic Scoring System (IP-
SS)-Molecular scores (29/46, 63.0%) (Online Supplementary
Table S2). No cases tested clinically by HFA from patients
diagnosed with MDS/myeloproliferative neoplasm (MPN)
overlap (0/24), MPN (0/49), or another myeloid neoplasm
(0/5) demonstrated a NUP9S8r.

WT1 mutations are recurrently observed with and
without FLT3-ITD in acute myeloid leukemia with
NUP98::NSD1 and occur in myeloid neoplasms with other
NUP98 rearrangements

We investigated co-mutational profiles of the 14 NUP98r
cases from the HFA cohort, as characterized by target-
ed DNA-based NGS testing (RHP). Consistent with prior
studies, the most common co-occurring mutations at
diagnosis were: i) FLT3-1TD in 6/14 cases (42.9%; all har-
boring NUP98::NSDT) with variant allele frequencies (VAF)
ranging from <1% to 25%; and ii) WT7in 6/14 cases (42.9%;
5 with NUP98::NSD1 and 1 with NUP98::LAMC3) with VAF
ranging from 5.5% to 47.2%, where 4/14 (28.6%) had mul-
tiple (2-4) WTT1 mutations (Figure 1, Online Supplementary
Table S3). All 6 cases with WT7 mutations harbored one or
more frameshift variants for a total of 12 frameshifts (vs.
1 nonsense) including frameshift insertions in all cases.
Concurrent FLT3-ITD and WT7 mutations were seen in
3/14 cases (21.4%). Mutations in RUNX1, MYC, TET2, KRAS,
and PTPN11 were also each seen more than once (Figure
1). Myelodysplasia-related (MR) gene mutations were not

WT1

FLT3-1TD

RUNX1

MYC

TET2

NRAS

KRAS

DNMT3A

NFE2

CEBPA

JAK2 | [ ]

PTPN11 |

P53

CDKN2A

Fusion gene| NSD1 [ NSD1 | NSD1 | NSD1 |LAMC3t| NSD1 | NSD1 | NSD1 | NSD1 [TNRC18| DDX10 | KDMS5A | FGF14t [HOXD13| PRRX2 [ NSD1 | NSD1 | NSD1
= N < ", 2 ~ [ o0 © n ~ B - ) S S a m,
_l| _,I _II &| _.| ml _II _II _|I _II _II _II ml _'I _ll _'I _'I 8
: £ 3 £ 3 £3 % 3558 % ¢ % % 8§ ¢
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Figure 1. Co-mutation plot of the Heme Fusion Assay and Rapid Heme Panel (RHP) cohorts at initial diagnostic bone marrow
biopsy. Pathogenic mutations identified in each NUP98r case are represented by blue boxes. If multiple mutations occur in the
same gene, the number of concurrent mutations is indicated within the blue box. RHP: Rapid Heme panel. "RHP cohort. *Novel

fusion partner.
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identified, except in RUNXT, which is considered an MR gene
by the ICC but not by the WHOS5. FLT3-ITDs were detected
exclusively in AML cases.®*® By contrast, 1/2 (50%) MDS
cases demonstrated multiple WT7 mutations up to 40% VAF.
WT7 mutations also developed after the initial diagnosis
in 3 cases (AML_5, AML_6, AML_7) with fusions to TNRC18,
NSD1, and DDX10, again with one or more frameshifts in
every case. Thus overall, 9/14 (64.3%) cases presented with
or developed a WT7 mutation at various stages of their
clonal hierarchies.

Mutational status of WTT1 identifies candidate cases for
selective testing for NUP98r in myelodysplastic
syndromes

We explored whether WT7 mutations detected by up-
front DNA-based NGS testing of MDS, in the absence of
potential subtype-defining molecular or cytogenetic fea-
tures determined from routine workups, might provide a
rational strategy for initiation of HFA testing with the goal
of detecting rare NUP98r cases. As a proof of principle,
we interrogated DNA-based NGS testing across all MDS
cases of the HFA cohort (N=45 with DNA NGS), revealing
WT1 mutations in 4/45 (8.9%) cases: an NPM7-mutated
case by RHP, a MECOM-rearranged (MECOMr) case by cy-
togenetic studies, a case with KMT2A-PTD by RHP, and
the NUP98r case described earlier that was cryptic on
karyotype and characterized subsequently by HFA. Under
a hypothetical tiered approach to MDS evaluation, the
latter 2 cases would be candidates for dedicated NUP98r
testing, whereas the first 2 cases were already charac-
terized by their initial workups. However, NUP98r testing
of KMT2A-PTD cases may have limited yield, given the
mutual exclusivity of KMT2A-PTD with NUP98r (and most
other molecular subtypes) reported in pediatric AML and
the similar absence of KMT2A-PTD from the NUP98r HFA
cohort. Therefore, the hypothetical yield of the proposed
tiered strategy would be 1/1 (100%) if KMT2A-PTD cases
were deliberately excluded from further testing or 1/2
(50%) otherwise or if a clinical practice did not include
detection of KMT2A-PTD as part of their initial workup. Of
note, one NUP98r MDS case from the HFA cohort would
have been missed by this strategy, since that case har-
bored only a DNMT3A mutation, which is widely mutated
across myeloid neoplasms and thus not amenable to a
molecular strategy for rationed testing.

The above WT7 mutational rate (8.9%; 4/45) and hypo-
thetical HFA testing rate (2.2%; 1/45 after also exclud-
ing KMT2A-PTD) reflected a high-risk MDS cohort. As a
broader estimate of testing rate using the public IPSS-M
dataset, 37/2591 (1.4%) of its MDS (WHO4) cases harbored
pathogenic WT7 mutations with an enrichment in higher
risk subtypes (MDS-EB2: 17/438 [3.9%]; MDS-EB1: 10/464
[2.2%]) and subsequent contribution to criteria for a pro-
posed AML-like group of MDS.?** Of these 37 WT7-mutated
MDS cases, 14 showed key alterations considered mutually
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exclusive with NUP98r: mutated NPM1 (N=6), KMT2A-PTD
(N=4), biallelic TP53 mutations (N=1), biallelic DDX47 muta-
tions (N=1), t(6;9)(p23;934)/DEK::NUP214 (N=1), and t(3;21)
(926;922)/RUNX1::MECOM (N=1). After their exclusion, hy-
pothetical HFA testing might then apply to 23/2591 (0.9%)
MDS cases. These 23 cases demonstrated either single
missense variants (N=8 cases), single nonsense variants
(N=3), single splice variants (N=2), or purely frameshifts (8
insertions only, 1 deletion only, 1 both), thus an alternative
minimalistic strategy might test only the 9/2591 (0.3%)
harboring an insertion frameshift. The IPSS-M cohort,
however, did not have NUP98r status (or RNA sequencing
data) to measure testing yield.

We attempted to further validate the WT7-based strategy
by applying it to the RHP cohort (Figure 2A). Screening
yielded 17 adult patients with MDS harboring WT7 mu-
tations, of which 7 were found to have an alteration
considered mutually exclusive with NUP98r by either
RHP or kayotype: NPM1 mutation (N=5), MECOM-r (N=1),
or TP53 multi-hit (N=1) (Figure 2A). Cases from 6 addi-
tional patients harbored KMT2A-PTD, which we decided
not to test further for the reasons discussed earlier. Of
the remaining 4 patients, 2 had already undergone test-
ing within the HFA clinical cohort, with one positive for
NUP98r and one negative for any fusions by HFA. The final
2 patients underwent retrospective HFA testing for this
research study, with one positive for NUP98r and one fail-
ing sequencing quality control metrics. Thus, the overall
HFA yield for NUP98r within WT7-mutated MDS without a
key driver (including KMT2A-PTD) was 2/3 (66.7%) in this
limited dataset.

We also reanalyzed public RNA sequencing data from two
adult MDS cohorts, resulting in detection of NUP98r in 4
more MDS cases involving 2 different partner genes (3
cases with NUP98::NSD1, 1 with NUP98::HOXA9), for co-
hort frequencies of 2/215 (0.9% in SRP418365) and 2/109
(1.8% in SRP149374) (Online Supplementary Table S4). No
evidence was found for NUP98 fusions involving 22 other
partner genes that have been reported previously in MDS,
CMML, or AML across predominantly adult studies (Tables
2, 3) (DDX10, EMX1, FGF14, HHEX, HMGB3, HOXA11, HOXAI13,
HOXC13, HOXD12, HOXD13, KAT7, KDM5A, LNP1, NSD3, PHF23,
PRRX1, PRRX2, PSIP1, RAP1IGDST1, TLX1, TNRC18, TOPT). We
lacked knowledge of WT7 mutational status on the DNA
level to fully evaluate the WT7-based strategy. As a proxy,
we instead screened the RNA-seq data for expressed WT1
loss-of-function (LOF) mutations (frameshift, nonsense,
or splice site) while adopting an approach prioritizing
sensitivity in order to partially offset inherent limitations
posed by RNA, including variably low WT7 expression,
nonsense mediated decay of mutant RNA transcripts,
splicing mutations that may not appear within mature RNA
transcripts (e.g., by conferring exon skipping rather than
intron retention), and shallow sequencing coverage. Our
analysis detected expressed WT7 LOF mutations in 3/4

Haematologica | 111 February 2026
523



ARTICLE - NUP98 rearrangements in adult myeloid neoplasms

(75%) NUP98r cases (3/3 NUP98::NSD1; 0/1 NUP98::HOXA9)
and 15/324 (4.6%) MDS cases overall, with individual cohort
frequencies of 5/215 (2.3% in SRP418365) and 10/109 (9.2%
in SRP149374) (Online Supplementary Table S5). The higher
frequency of the latter cohort was hypothesized to be a
consequence of CD34* enrichment and was associated
with higher expressed VAF; however, the possibility of a
component of false positives also existed. Outlier isoform
analysis demonstrated 2 KMT2A-PTD and one UBTF-PTD
within non-NUP98r cases expressing WT7 LOF mutations.
After excluding KMT2A-PTD cases, the hypothetical yield
of the WT7-based strategy was 1/3 (33.3% in SRP418365)
and 2/10 (20% in SRP149374) but potentially could be
greater, given the lack of annotations (e.g., cytogenetics)
and the possibility of additional findings upon standard
workups (e.g., MECOMTr). Of note, all 3 NUP98::NSD1 cases
exhibited WT7 frameshift insertions, similar to cases in
our local cohort. Thus, the alternative strategy of using
WT1 frameshift insertions might largely maintain sensitiv-
ity while increasing specificity, with a hypothetical yield
across both public cohorts of 3/4 (75%) for NUP98r, where
the non-NUP98r case harbored UBTF-TD and would also
benefit from subtyping.

*2,12%

B NPM1 mutation
m KMT2A-PTD
B TP53 multi-hit

MECOM rearrangement
B NUP98 rearrangement
m NOS*

L.D. Yuen et al.

Mutational status of WT1/FLT3-ITD identifies candidate
cases for selective testing for NUP98r in acute myeloid
leukemia

In AML, RNA-based NGS testing was a part of routine work-
ups in some but not all our local institutional practices
during the study period. As access to testing expands, it is
likely that clinical practices will increasingly adopt either
universal upfront RNA-based NGS or a tiered approach with
reflex testing of all AML cases that do not have a charac-
terized subtype after routine workup. However, in a setting
of limited resources with goals of maximizing positive pre-
dictive value, we explored the utility of WT1/FLT3-1TD dual
mutations in the absence of subtype-defining genetic fea-
tures (by RHP or cytogenetics) as another potential rational
strategy in AML for initiation of HFA testing. Screening of
the RHP cohort identified 41 adult patients with AML har-
boring both a WT7 mutation and FLT3-1TD, of which 31 were
found to have a genetic abnormality considered mutually
exclusive with NUP98r, including NPM1 (N=15), KMT2A-PTD
(N=T7), PML::RARA (N=6), DEK::NUP214 (N=1), MECOMr (N=1),
and CEBPA bZIP domain mutation (N=1) (Figure 2B), of which
all but KMT2A-PTD further enabled AML classification by
the ICC or the WHO5. Of the remaining patients, 3 had al-

15, 37%

B NPM1 mutation
B AML-MR with KMT2A-PTD
B PML::RARA
W DEK::NUP214
MECOM rearrangement
m CEBPA mutation
B NUP98 rearrangement
m NOS
B AML-MR without KMT2A-PTD

Figure 2. Mutually exclusive genetic alterations in myelodysplastic syndromes with WT7 mutations and acute myeloid leukemia
with WT7 and FLT3-1TD mutations. (A) Adult myelodysplastic syndrome (MDS) cases with WT7 mutation in the Rapid Heme Pan-
el database (N=17), labeled with detected genetic driver. NOS: no genetic driver detected. *1 case sample with no known genet-
ic driver failed QC metrics on Heme Fusion Assay. (B) Adult acute myeloid leukemia (AML) cases with WT7 mutation and FLT3-1TD
in the Rapid Heme Panel database (N=41), labeled with detected genetic driver. AML-MR: myelodysplasia-related, by the Interna-
tional Consensus Classification (ICC); NOS: no genetic driver detected. Of note, 2 of the 3 AML-NOS cases subsequently underwent

total RNA-sequencing, and both were found to harbor UBTF-TD.
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; Figure 3. MDS_3 progression to acute myeloid leu-
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MDS-IB2 (day 41)

ready undergone testing within the HFA clinical cohort, with
one positive for NUP98::NSD71 and 2 negative for fusions.
The final 7 patients included 5 with available material for
retrospective HFA testing for this research study, yielding
detection of NUP98r in 4/5 (80%) cases (Online Supple-
mentary Figure S7). One of the 4 patients with successful
confirmation of NUP98r at the AML stage also had NUP98r
detected at an earlier MDS stage through the WT7 screen.
This case (MDS_3) progressed from MDS-MLD to MDS-1B2
together with rising peripheral blasts and relapsed quickly
after transplant as AML, with emergence and outgrowth
of FLT3-I1TD across the serial samples (Figure 3A, B). FISH
analysis performed for this study supported the early
clonal nature of the NUP9S8r at the initial MDS timepoint
(Figure 3C). Thus, the overall HFA yield for NUP98r within
FLT3-/TD*/WTT* AML without a mutually exclusive molecular
alteration by RHP or karyotype was 5/8 (62.5%). To further
characterize the 3 cases which remained unresolved after
HFA, 2 had available material for total RNA-sequencing,
revealing UBTF-TD in both.

Examination of the well-characterized Leucegene AML
cohort (n=452) demonstrated similar findings (Online Sup-
plementary Table S6). Out of 17 AML cases positive for
both FLT3-1TD and WT7 mutations, 15 harbored a genetic

alteration considered mutually exclusive with NUP9ST,
again with NPM1 mutations (N=8) and KMT2A-PTD (N=5)
as the most common, along with PML::RARA (N=1) and
classic biallelic CEBPA mutations (N=1). Of the 2 remaining
cases, one harbored NUP98::NSD1 while the other could
be considered AML-MR. Thus, the hypothetical yield of a
WT1/FLT3-1TD strategy would be 1/2 (50%) if KMT2A-PTD
status is determined up front. The Leucegene cohort also
contained 16 additional AML cases with WT7 mutations
but lacking FLT3-1TD, of which 11 harbored a genetic alter-
ation considered mutually exclusive with NUP98r, including
PML::RARA (N=6), NPM1 mutations (N=2), classic biallelic
CEPBA mutations (N=1), RUNX71::RUNX1T1 (N=1), and KM-
T2A::AFDN (N=1). After their exclusion, 5 cases remained,
with 2 harboring NUP98::NSD1, 2 potential AML-MR, and
one AML-NOS. Thus, the hypothetical yield of a WT7-based
strategy regardless of FLT3-ITD status would be 3/7 (42.9%)
if KMT2A-PTD cases are excluded.

NUP98r myeloid neoplasms have an aggressive clinical
course with poor outcomes even after stem cell
transplantation

In our two cohorts, 11 of the 14 AML patients plus the one
patient with MPAL were initially treated with induction
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chemotherapy (daunorubicin plus cytarabine [7+3] or vin-
cristine, doxorubicin, methotrexate, plus cytarabine). Three
of 14 patients with AML and all 3 MDS patients received
hypomethylating agent (HMA)-based therapy with decitabine
and venetoclax or with decitabine alone. One patient with
AML died two days after starting 7+3 induction chemother-
apy, and 2 patients failed to achieve remission, while the
other 15 proceeded to hematopoietic stem cell transplant
(SCT) in first complete remission (CR1). Post transplant
relapse was seen in 60.0% (9/15) of patients transplanted
in CR1, including MDS_3 who relapsed with AML (Figure 3).
Of the remaining patients, 5 are in remission at 26 days, 42
days, 9.4 months, 19.6 months, and 21.3 months after SCT,
and one has achieved sustained remission (98 months)
after a second SCT (Table 1). In the HFA cohort, 8 patients
died with a mean overall survival (OS) of 14 months. The
median OS of the RHP cohort was 12 months (Figure 4).

Discussion

NUP9S8r is a rare genetic finding that is AML-defining in new
classification systems but prone to under-detection without
dedicated or complex testing. It portends a poor prognosis
and likely requires dedicated therapeutic approaches. Here,
utilizing a clinically validated targeted RNA sequencing
approach, we studied the frequency of NUP98r in myeloid
neoplasms in adult patients at two large academic centers
and found 18 cases overall, including 11/257 (4.3%) of all
newly diagnosed AML patients treated at one institution. In
doing so, we also detected NUP9S8r in patients with MDS,
uncovered novel NUP98 fusion partners, and identified fre-
quent co-mutations which could be leveraged to prompt
dedicated testing for NUP98r.

In our review of the literature, less than 200 adult NUP98r
with AML (Table 2) and far fewer adult NUP98r cases with
other myeloid diagnoses (14 MDS, 4 CMML) (Table 3) have
been described to date. The frequency of NUP98r in MDS
is difficult to estimate precisely, given the lack of large

L.D. Yuen et al.

comprehensive studies (Table 3). The most applicable
study tested 101 consecutive adult MDS patients at a sin-
gle institution by OGM, resulting in detection of NUP98r in
2/101 (2.0%) cases (1 NUP98::NSD1, 1 NUP98::PRRX2). Sim-
ilarly, our reanalysis of public RNA-sequencing data from
2 adult MDS cohorts revealed NUP98r in 2/215 (0.9%) and
2/109 (1.8%) patients (3 NUP98::NSD1, 1 NUP98::HOXA9).
Our study of the HFA clinical cohort revealed NUP98r at a
slightly greater incidence in 2/46 (4.3%) adult MDS patients
(1 NUP98::NSD1,1 NUP98::FGF14). However, this cohort was
subject to non-universal testing patterns and enriched for
high-risk MDS. We also identified another high-risk MDS
case with NUP98::NSD17 through our dedicated strategies.
Although relatively small, these studies suggest that this
genetic aberration may be more common in MDS than pre-
viously thought, particularly in high-risk patients. Of note,
an older study testing only for NUP98::NSD71 by RT-PCR
detected no cases out of 193 MDS patients.*® Finally, since
NUP98r is AML-defining in both the ICC (if >10% blasts)
and the WHO5 (if >5% BM / >2% blood blasts) when with
increased blasts, the 2/3 of the NUP98r MDS reported in
the literature with at least 5% blasts would now be diag-
nosed as AML. Therefore, screening of MDS cases will also
be important to identify cases that are actually AML, if they
meet the blast criteria and have NUP9S8r.

Only 2 NUP9S8r cases in our cohort were recognized by
karyotype (11.2% of 17 evaluable) (Table 1), highlighting the
need for testing beyond conventional cytogenetics. Indeed,
the most common NUP98r gene partners in adult and pe-
diatric AML (NSD7 and KDM5A) are well-known to produce
karyotypically cryptic fusions. Moreover, a substantial pro-
portion of uncommon NUP98r gene partners may similarly
generate cryptic fusions according to recent comprehensive
studies of adult AML enabled by RNA-based NGS. The larg-
est such study reported 4 uncommon partners that were
always cryptic by karyotype (HMGB3, KMT2A, PSIP1, and
TNRC18), 4 that were never karyotypically cryptic (HOXA9,
TOP1, DDX10, and HHEX), and one that was variably cryptic
(PRRX2).° In our study, uncommon fusions involving both

— 1 ——— HFA clinical cohort
_g 7] —— RHP cohort
> 08
? 1L
o 0.6 I
>
=
O 04
>
=
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Figure 4. Overall survival curve of the Heme Fusion Assay clinical cohort and the Rapid Heme Panel cohort. Mean overall surviv-

al was 14 months and 12 months, respectively.
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novel partners (FGF14 and LAMC3) as well as TNRC18 were
karyotypically undetectable, versus 2 (DDX70 and HOXD13)
that were characterizable. By contrast, in a study of pedi-
atric AML with NUP98r, uncommon partners were mostly
detectable by conventional karyotype G-banding.”

Until universal screening for NUP98r becomes widely ad-
opted as part of routine workups, strategies for rational
test utilization are critical to ensure accurate detection of
this entity. These strategies may be particularly beneficial
for MDS, where guidelines for RNA-based NGS testing are
lacking. We propose a tiered approach in the absence of
universal screening and show here that it is possible to iden-
tify a subset of cases with high likelihood of NUP98r based
on results from standard molecular testing. Specifically,
MDS with WTT mutations and AML with FLT3-ITD and WT7
co-mutations are enriched for NUP98r and thus represent
candidates for follow-up dedicated testing in the absence
of AML subtype defining alterations and KMT2A-PTD. These
cases alternatively could harbor UBTF-TD, another high-
risk alteration that is more common in pediatric MDS/AML
but also occurs rarely in adults, including the 2 AML-NOS
cases in our FLT3-ITD*/WT1" AML cohort and a WT7* MDS
case from the public RNA sequencing data; of note, most
UBTF-TD should eventually be detectable during up-front
testing by adding UBTF exon 13 to DNA-based panels. Fur-
ther development of strategies to detect NUP98r may be
warranted to leverage other known features, such as its
association with FAB subtypes M4 and M5 (e.g., 10/15 cases
in our NUP98r cohort) or the high frequency of a normal
karyotype (9/17 evaluable cases in our cohort).

Although identification of NUP98r cases is critical for appro-
priate diagnosis and prognosis of AML, the optimal approach
to NUP98r testing must balance cost and turnaround time
with sensitivity. The most economical and fastest testing
option is NUP98 FISH, with a proposed reimbursement in
the United States of $145.28 per test (CPT code 88368)
and a turnaround time as short as 1-2 days but longer if
run in batches/infrequently. However, since the incidence
of NUP98r cases is less than 5% of cases of adult AML,
the overall cost of universal testing for all AML patients
would be quite high relative to the very low pre-test prob-
ability — the cost to the healthcare system is effectively
greater than 20 times the individual FISH cost, or more
than $2,905.60 per each NUP98r case detected. In MDS,
where NUP9S8r is rarer (potentially 2% of cases), universal
testing would be even more costly. Selective testing, such
as through WTT or FLT3-ITD/WTT1 strategies, is, therefore,
a much better fit for NUP98 FISH. Larger studies will be
needed to better characterize yield and to further develop
and optimize strategies.

On the surface, RNA sequencing appears to be more cost-
ly, with a proposed reimbursement in the United States
of $2,919.60 per test for a targeted RNA sequencing panel
(CPT code 81455, 2025 Clinical Diagnostics Laboratory fee
schedule) and a longer turnaround time (at least 4-7 days)
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than FISH. However, universal RNA sequencing allows for
essentially 100% detection of NUP98r fusions, identification
of gene partners, and appropriate disease subclassification.
In addition, RNA sequencing approaches capture not only
NUP98r cases but a wide spectrum of clinically important
alterations that are critical for diagnosis, prognosis, and
treatment of AML, some of which may also be cryptic by
metaphase karyotype. Similar results may be obtained by
WGS-based or whole transcriptome-based methods. On
the other hand, a tiered approach with only karyotype and
a DNA panel upfront would have an initial turnaround time
of 3-5 days. Based on the results, reflex testing for RNA
sequencing or FISH could be added. This strategy increas-
es pre-test probability and decreases costs compared to
universal testing, but results in longer turnaround times
and lower sensitivity of NUP98r detection. Importantly, all
testing algorithms are institution-specific, influenced by
the availability of individual tests, testing schedules, and
local logistics. Thus, testing decisions are ideally man-
aged/supervised by pathology, as algorithmic testing in
hematopathology has previously been shown to improve
cost-effectiveness.®®

NUP98r has consistently been associated with worse out-
comes in studies of both pediatric and adult AML.""37-40
In our study, we observed high relapse rates even after
SCT in CR1 (60% of patients). Therefore, there is a need to
identify NUP98r at diagnosis and to develop more effec-
tive treatment strategies. In pre-clinical models, NUP98r
AML has demonstrated sensitivity to Menin inhibition, with
eviction of both NUP98 fusion proteins and KMT2A (MLLT)
from chromatin at a critical set of pro-leukemic genes.3
Given the recent approval of Menin inhibitors for AML with
KMT2A rearrangement and their active development for
NPM1-mutated AML, there are several phase | clinical tri-
als (e.g., clinicaltrials.gov NCT05326516 and NCT05453903)
that also recruit patients with NUP98r AML.#-** Recent
PDX mouse models of NUP98r have also indicated that the
combination of a Menin inhibitor with a CDK4/6 inhibitor
(palbociclib) or a FLT3 inhibitor (gilteritinib) has a syner-
gistic anti-leukemic effect.*®* In addition, several alterna-
tive treatments may be promising for NUP98r AML. One
example is venetoclax, a BCL-2 inhibitor, which may be
effective against AML with HOXA/B gene overexpression.464’
Another example is dasatinib, an inhibitor of ABL and SRC
family kinases, which has synergistic effects on cells with
NUP98::NSD1 and FLT3-1TD.*®

In conclusion, our results indicate that AML with NUP98r
cases are usually cytogenetically cryptic and can be missed
with conventional molecular testing, such as karyotype
testing, FISH for common translocations, and myeloid-di-
rected NGS panels looking at DNA mutations. Targeted
RNA sequencing with anchored multiplex PCR or hybrid
capture enrichment, whole transcriptome sequencing or
other genome wide technologies, such as optical genome
mapping, should be considered to detect NUP98r alterations.
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Our high-yield tiered approach could be used to perform
dedicated testing in the subset of AML and MDS that are
enriched for NUP98r, which we, like others, demonstrat-
ed to be associated with poor prognosis. In fact, NUP98r
should be specifically investigated in MDS as well, since it
could lead to a change in diagnosis to AML and since the
ability to detect NUP98r prior to leukemic transformation
may allow for earlier intervention.
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